
14 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

An Explainable Model for Fault Detection in HPC Systems / Molan M.; Borghesi A.; Beneventi F.; Guarrasi
M.; Bartolini A.. - ELETTRONICO. - 12761:(2021), pp. 378-391. (Intervento presentato al convegno
International Conference on High Performance Computing, ISC High Performance 2021 tenutosi a ONLINE
nel 2021) [10.1007/978-3-030-90539-2_25].

Published Version:

An Explainable Model for Fault Detection in HPC Systems

This version is available at: https://hdl.handle.net/11585/844129 since: 2022-01-05

Published:
DOI: http://doi.org/10.1007/978-3-030-90539-2_25

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/844129
http://doi.org/10.1007/978-3-030-90539-2_25

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Molan, M., Borghesi, A., Beneventi, F., Guarrasi, M., Bartolini, A. (2021). An
Explainable Model for Fault Detection in HPC Systems. In: Jagode, H., Anzt, H.,
Ltaief, H., Luszczek, P. (eds) High Performance Computing. ISC High Performance
2021. Lecture Notes in Computer Science(), vol 12761. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-
030-90539-2_25

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-030-90539-2_25
https://doi.org/10.1007/978-3-030-90539-2_25

An Explainable Model for Fault Detection in
HPC Systems?

Martin Molan1[0000−0002−6805−2232], Andrea Borghesi1[0000−0002−2298−2944],
Francesco Beneventi1, Massimiliano Guarrasi2[0000−0002−3175−4628], and Andrea

Bartolini1[0000−0002−1148−2450]

University of Bologna, Italy1

CINECA, Italy2

{martin.molan2,andrea.borghesi3,francesco.beneventi,a.bartolini}@unibo.it
m.guarrasi@cincea.it

Abstract. Large supercomputers are composed of numerous compo-
nents that risk to break down or behave in unwanted manners. Identi-
fying broken components is a daunting task for system administrators.
Hence an automated tool would be a boon for the systems resiliency.
The wealth of data available in a supercomputer can be used for this
task. In this work we propose an approach to take advantage of holis-
tic data centre monitoring, system administrator node status labeling
and an explainable model for fault detection in supercomputing nodes.
The proposed model aims at classifying the different states of the com-
puting nodes thanks to the labeled data describing the supercomputer
behaviour, data which is typically collected by system administrators
but not integrated in holistic monitoring infrastructure for data center
automation. In comparison the other method, the one proposed here is
robust and provide explainable predictions. The model has been trained
and validated on data gathered from a tier-0 supercomputer in produc-
tion.

Keywords: Machine Learning · High Performance Computing · Fault
Detection

1 Introduction

High Performance Computing (HPC) systems are large machines composed by
hundreds of thousands (up to millions) of smaller components (both software and
hardware), all interacting in complex manners. A key challenge to be addressed
by researchers in this area is the detection of anomalies and fault conditions
that can arise due to the incorrect or sub-optimal behaviour of a wide variety
of components. The large scale of the problem motivates the development of an
automated procedure for anomaly detection in current supercomputers, and this
need will become even more pressing for future Exascale systems [25].

? Supported by University of Bologna and CINECA, Italy

2 Molan et al.

In this situation, a great help comes from the fact that the performance and
operative status of HPC systems are continuously monitored by different re-
porting and monitoring services, that gather data from software and hardware
components [15]. Thanks to this data, it is possible to evaluate the health sta-
tus of the system. These monitoring services are designed for and used by HPC
system administrators who monitor the operation of the whole system, and who
can manually disable certain parts to prevent serious damage to hardware com-
ponents, or negative effects to system availability.

Best practice (default operation) of the HPC system or a data center relies
on the use of tools for event monitoring, software service and node status report-
ing [2]. These services/software tools warn system administrators about critical
conditions; system administrators can then verify the automatically generated
alarms by manually inspecting the system status. Based on the result of the
inspection, it is decided if it was a false alarm or if the compute node has to be
”drained” from the production. Node downtime is recorded in logs and it is then
used for post-mortem analysis. The current trend in data center information is
systematic recording of system information data such as data coming from phys-
ical sensors’ telemetry (temperature, power), micro-architectural events (IPC,
cache misses), data coming from the computing resources and infrastructure
data from cooling and power equipment (DCIM) [6, 19, 5]. This data is stored in
the form of multivariate time series. However, in current HPC systems service-
reporting tools are decoupled from physical monitoring infrastructure. The first
contribution of this paper is combining both the traditional (based on reporting
services) and industry 4.0 (based on granular) data sources. Concretely: we ex-
tend the Examon [6, 5] framework with Nagios data [3]. Our goal is to detect
critical HPC node failures that are recorded by system administrators via Nagios
as DOWN+DRAIN events (in the rest of the paper system failure and label is
synonymous with DOWN+DRAIN event).

Using this data we build the second contribution of this work: an explain-
able fault detection/classification model based on Machine Learning (ML). The
model will classify HPC node state depending on the monitored data. We call
the model TrueExplain as it is based on TrueSkill model originally developed
by Microsoft research [13]. This model benefits the administrators of the HPC
system in two ways. First, it automates fault detection; this could shorten the
elapsed time between recognition of system failure and reaction by administra-
tors. Secondly, the proposed model provides insights into the dynamics of HPC
system operation. The insight generation capability of the ML model can sup-
port the decision process that hinges on the model’s predictions. Identified root
cause of the suspected fault can be interpreted by a human user. Explainable ML
models can also be more reliable as they can be validated by a domain expert.
Despite explainable AI not being a novel concept, this is the first time it has
been applied to resiliency in HPC systems and trained on real data from HPC
production.

As a final contribution, it must be stressed out that the model was trained
and validated using labeled data collected on a tier-0 supercomputer hosted by

An Explainable Model for Fault Detection in HPC Systems 3

the Italian Supercomputing Center (Cineca) [1]. We dealt with the real anomalies
from a production machine unlike most approaches in the literature that deal
with “synthetic” or artificially injected anomalies.

2 Related Works

Previous research works have made preliminary exploration towards the creation
of model for fault detection in HPC systems. There have been approaches based
on large quantity of data with scarce labels. These approaches belong to the
semi-supervised field. For instance, Borghesi et al. [7–9] propose the usage of
a particular type of Deep Neural Network (DNN) called autoencoder to learn
the characteristic behaviour of a supercomputer in healthy state. These trained
DNNs are then used to classify between normal and anomalous points in incom-
ing data streams.

When the labels are available researchers have employed supervised ML-
inspired algorithms to perform anomaly detection with high accuracy. Tuncer
et al. [24] deal with the problem of diagnosing performance variations in HPC
systems, using labeled data collected from a HPC simulator. The authors train
different ML algorithms to classify the behaviour of the supercomputer using
the gathered data. In a similar fashion, Netti et al. [18] propose a model based
on Random Forest to classify different types of faults that can happen in a HPC
node.

The previously described methods have been proven to be useful and have
good accuracy. The important difference between existing work and the work
presented in this paper is the use of data from real HPC production. Existing
work such as [18] uses anomaly injection to artificially create faults that are
then approximated with a machine learning model. As such there can be doubt
about the generalization capabilities of such models; ML approach that is capable
of recognising the dynamics and characteristics of fault injection might not be
able to recognise the dynamic of actual failures. The dynamics of failures might
be more complex and more difficult to model than the dynamics of injected
anomalies. Additionally, from a ML perspective, training on a real dataset brings
additional challenges in the form of noise in the data. Instead, in this work, we
deal with real, noisy data.

Additionally we aim at a fault detection model whose predictions could be
explained. We have thus obtained a tool for data center automation that can
be adopted by system administrator and facility owners more willingly, as it is
possible to interpret its decision on a human-understandable way. The outputs of
explainable models can be cross-referenced and checked by domain experts. Black
box models can never truly be validated by domain experts - the very prominent
(and in recent years popular with researchers) filed of research that deals with
fairness and bias in artificial intelligence is largely the result of the inherent
impossibility to examine the rules learned by complex black-box models [16]. It
is shown that just trusting the black box models can lead to models that make
ultimately wrong decisions [16].

4 Molan et al.

Explaining ML models has been a rich source of research works. A base-
line explainable approaches are feature importance explanation models like [26].
Another possible approach are inherently explainable models [11]. Among ex-
plainable models, Bayesian models are very promising. In particular a recent
work by Microsoft Research [13] proposes a scalable Bayesian approach called
True Skill. The basic idea is similar to ELO rating in chess [21] and is based
on predicted skill of two opponents and their previous interactions. As opposed
to ELO rating, the skill is a Gaussian variable (not a scalar value). The update
of this variable depends both on it’s mean and it’s variance. The skill estimates
(model priors) are updated so that the score of the winner is increased and score
of the loser is decreased. The score update (increase for the winner and decrease
for the looser) depends on the relative skills of the opponents. In general, this
process could require a lot of previous data (not available for new players) and
to overcome this limitation TrueSkill models player score as a Gaussian random
variable instead of as a scalar value; the additional information obtained via
the probability distribution – in particular the variance – allows for the more
efficient update of players’ scores.

The basic idea of TrueSkill can be adopted to other problems where interac-
tion can be modeled as opposition between two agents. For instance, TrueLearn
was developed by Bulathwela and et al. [10] to model the learning path of stu-
dents consuming educational materials. The opposing agents are the learner and
the material; the estimated parameters are material difficulty and learner’s skill.
Similarly, Molan et al. generalize TrueSkill [17] to assist blind students. In this
case, the model learns student’s accessibility preferences and uses those prefer-
ences to rank materials in terms of suitability. The idea of two opposing agents in
Bayesian learning can also be abstracted for classification settings. This method
was explored by Graepel et al. [12] to learn user preference with regards to
different types of ads.

In this paper, we will extend the usage of TrueSkill to the context of fault
classification in HPC systems, as described in the following section.

3 Methodology

The aim of this work is to construct an explainable ML model, trained on real
data that I) is accurate and robust and II) provides justification for its decision.
Robust models stay the same (and have the same predictions) when they are
trained multiple times on the same dataset. We limit our focus on the binary
classification, that is distinguishing the normal state of a HPC node from a
faulty one. For this scope, the critical element is the identification of the most
relevant attributes and of their relative contributions. To this end, we develop
a Bayesian approach based on TrueSkill [13] aimed at estimating the relative
importance of the input features. We name this approach TrueExplain. TrueEx-
plain is compared to the standard for explainable classification models: decision
trees. Decision trees serve as a baseline against which our novel ML apprach will
be evaluated.

An Explainable Model for Fault Detection in HPC Systems 5

As a classifier, we opted to implement DTs as a baseline as they are simple
to implement and tend to provide good accuracy [24]. Furthermore, in this work
we are not only interested in the classification accuracy per se, but rather on
the explainability of the model – and DTs are notoriously more “transparent”
compared to model such as neural networks. Secondarily, we want to obtain
a robust model, that is a model capable of making consistent predictions over
multiple runs.

TrueExplain is an extension of TrueSkill that can be used for classification.
It is a form of Bayesian method, that aims to increase the robustness of the
overall approach and provide the explainability in the form of feature importance.
The feature importance is modeled as a Gaussian variable with its mean and
variance; the variance can be interpreted in terms of uncertainty about the model
prediction. Additionally, the Bayesian approach True Explain is more robust and
has consistent classification performance across different subsets of data – which
is not necessarily the case for decision trees.

Our approach TrueExplain exploits the the Bayesian approach introduced
by TrueSkill – it is an opposition-based classifier. Binary classification can be
interpreted as an opposition of two agents as presented in table 1. Currently,
TrueExplain only works for one-hot encoded discrete (nominal) variables; gener-
alization to continuous variables is a topic of ongoing research. Hence, TrueEx-
plain expects data composed by a set of examples (or rows), each one possessing
a collection of binary features assuming only values 0 or 1 and a binary label;
if the original data set contains non-categorical data, one-hot encoding needs to
be applied.

TrueExplain is trained through iterating over rows of the data set – the
model is updated after each row (each example in the training set). In order
to understand an update after a single row, it is important to understand how
to construct two opposing teams from a single line in a data set. The binary
classification problem (an example can represent either a normal data point or a
fault) is presented as a ”game” between two opposing teams (the core scheme of
TrueSkll). One team is represented by active (hot) features (features with value
1) and it is described by a Gaussian variable whose parameters have to be learned
through the training process. The other team is a dummy one described by a
(deformed) variable with zero mean and zero variance. The dummy team is the
same size as a feature team. Both teams are presented in Table 1. Information
about the label is interpreted as the outcome of the opposition; if the label is 1
the feature team won - otherwise the dummy team won.

Table 1: Representation of two opposing teams. G(0,0) designates a deformed
Gaussian distribution. G(f) denotes a learned Gaussian for a feature f .

G(f2) G(f3) G(f5) ... G(f(N-1))

vs.

G(0,0) G(0,0) G(0,0) ... G(0,0)

6 Molan et al.

The main advantage of using the scalable Bayesian approach as a classifier are
interpretability and robustness. A Gaussian variable is associated to each feature
and its parameters are learned during training. The mean value represents the
relative feature importance and the variance represents the estimated confidence.

4 Case Study: Marconi HPC System

A very important aspect for the anomaly detection approach is the availability of
large quantity of data that monitors and describes the state of a supercomputer.
To test our approach we take advantage of a supercomputer with an integrated
monitoring infrastructure able to handle large amounts of data coming from
several different sources. We opted for a supercomputer hosted by Cineca, Italy,
named Marconi [14] (peak performance 20PFlops), already endowed with a
holistic monitoring infrastructure called Examon [6, 4]. We collect three kinds
of data: i) physical data measured with sensors; ii) workload information ob-
tained from the job dispatcher; iii) information about the state of the system
and its services collected by Nagios [3], a tool to provide alerts for system ad-
ministrators. In this work we propose to use the information about the system
services provided by Nagios to characterize Marconi’s nodes. In Nagios the labels
have been manually annotated by system administrators by reporting the nodes
which experienced a failure in the considered time-frame. Nagios information
consists of a set of categorical values for each alert probe set up during the con-
figuration phase; this data type is well-suited for the one-hot encoding required
by TrueExplain (see Sec. 3). To the best of the authors knowledge this is the
first work proposing to use Nagios data integrated with a holistic monitoring
infrastructure.

4.1 Dataset

The dataset consists of data collected from Marconi over a period of over 4
months1. The size of the collected data is 1GB. The data set is composed by
combining high level status reporting information and corresponding system
availability information – both recorded by Nagios reporting system. The label
(target) consists of two values: 0 describing normal operation and 1 describing
fault (DOWN+DRAIN event as recorded by Nagios). The label is provided by
system administrators. On average we have recorded 1.5 faults per node (in the
time period) with a maximum of 10 and minimum of 0 faults. The data sampling
frequency is 15 minutes, as determined by Nagios monitoring functionalities. 15
minutes is the maximum possible sampling frequency. The data about a single
computing node’s availability (manual shutting down of nodes – our label), is
referenced to subsystem availability reporting intervals – each 15 minute interval
is annotated by information about node availability at that time interval.

All the data, discussed in this paper, was collected on the A1 partition of
the Marconi system that consists of 1521 nodes with 36 cores and 128GB of

1 April-July 2019

An Explainable Model for Fault Detection in HPC Systems 7

RAM. All nodes were manufactured by the same supplier. All nodes also report
the same data back to the monitoring system. Since all the nodes are part of
the same partition and were in full production, they were similarly frequently
used. We have specifically chosen the observation period where all nodes were
in production. We have no information about the job status on the nodes; this
could be a useful additional information but it is the subject of further work.

4.2 Raw data pre-processing

The data is stored as system logs, one log for each service monitored by Nagios
(including node availability – our label), and divided in multiple files depending
on nodes and time stamp. This raw data format (shown in Table 2) is not suitable
for training ML models. It has been reshaped by a pre-processing phase which
included merging data from different Nagios services (including label data).

Table 2: Raw dataset as recorded in system logs.
Time stamp Node Reporting service State

1256953732 r033c01s04 CPU temp Warning (1)

To have a suitable training set for TrueExplain, raw data is transformed to
an attribute-value description, that is each instance is described by values of
selected attributes (and a target variable) [22]. The transformation produces the
data in the new format summarized in Table 3.

Table 3: Section of attribute-value representation of data.
Node Time Stamp CPU temp . . . Downtime/Target

r033c01s04 1256953732 Warning (1) . . . Available (0)

For each time stamp and for each node, information for all reporting services
are recorded alongside the log (downtime label) information. The downtime label
also serves as a target class (label) while building the fault detection model.
The data transformation is performed via parallel jobs executed on another
supercomputer hosted at CINECA, namely Galileo HPC system. Galileo is also
used for training and testing TrueExplain; Galileo is composed by 1022 nodes
equipped with 2 x 18-cores Intel Xeon E5-2697 v4 (Broadwell) at 2.30 GHz.
Overall, the data transformation was run on 60 nodes and it took a few minutes
less than 3 hours.

4.3 Data description

The data set consists of 31 attributes and a target nominal attribute Fault.
Attributes correspond to available monitoring services; Fault is a binary attribute

8 Molan et al.

describing whether the system is at Fault at a given timestamp. Fault events are
identified through the logs annotated by system administrators under normal
Marconi usage – we did not require any additional annotation operation besides
those performed for typical system maintenance. As each node will have its own
fault detection model (trained and tested on its own data), the data is grouped
accordingly. Two of the 31 attributes are then not informative for TrueExplain
– timestamp and node 2 – and are discarded.

The input features/attributes are listed in Table 4. They represent the sta-
tuses of various subsystems of the supercomputer nodes. All 29 attributes are
categorical attributes with three possible values: 0 denotes normal operational
condition, 3 denotes a warning situation and 2 denotes a potentially serious (ab-
normal) condition3. These values come from configuration of Nagios on Marconi.

Table 4: Attributes used in construction of a model. The attributes are in the
format - component::service::status or component::status.

alive::ping backup::local::status cluster::status::availability
cluster::status::criticality cluster::status::internal dev::raid::status
dev::swc::confcheckself filesys::local::avail filesys::local::mount
filesys::shared::mount memory::phys::total ssh::daemon
sys::ldap srv::status batchs::JobsH filesys::eurofusion::mount
sys::gpfs::status dev::ipmi::events dev::swc::bntfru
dev::swc::bnthealth dev::swc::bnttemp dev::swc::confcheck
batchs::client::state batchs::client net::opa::pciwidth
net::opa sys::orphaned cgroups::count core::total
sys::cpus::freq batchs::client::serverrespond

5 Experimental Results

In this work we focus on obtaining a model that is explainable and robust (and
not necessarily the most accurate). We have trained and tested different standard
supervised classification methods from the literature, namely: Decision Trees
(DT), Linear Support Vector Machine (L-SVM), Nearest Neighbors (NN), Ra-
dial Basis Function SVM (RBF-SVM), and Random Forest (RF)4. All standard
ML techniques are implemented in Python 3 (Python 3.6) using Scikit-learn [20];
TrueExplain is implemented in Python 3 as an extension of TrueSkill. The per-
formance of different classification algorithms is evaluated on the pre-processed
data set. All algorithms receive the same data that is processed in the same

2 Time stamps uniquely identifies rows/examples
3 Value 1 is unused
4 Hyperparameters: DT max dept equal to none, splitting heuristic Gini impurity, min

samples leaf equal to 1; L-SVM loss function squared hinge, regularization l2; NN
number of neighbours equal to 5, uniform weights, euclidean metric; RBF-SVM has
RBF kernel, regularization parameter equal to 1, RF number of estimators equal to
10, base estimator parameters same as DT

An Explainable Model for Fault Detection in HPC Systems 9

manner.F-score for the algorithms was calculated on a 20% test set. Each al-
gorithm was trained and tested on 57 different nodes of Marconi. The average
accuracy results (measured as F-Score) over all nodes are presented in Table 5.

Table 5: Average accuracy of classification methods across all nodes.

Decision Trees (DT) 0.97
Linear SVM 0.51
Nearest Neighbors 0.83
RBF SVM 0.66
Random Forest (RF) 0.91
TrueLearn 0.77

These experimental results reveal that TrueLearn is not the most accurate
method. Its accuracy is on par with other methods, being outperformed only by
DT-based classifiers. As mentioned earlier, in this work we do not aim at finding
the most accurate ML model for fault detection, but we rather focus on obtaining
a model that is explainable and robust. In the following section we discuss the
robustness results; in particular we compare the robustness of TrueLearn with
the robustness of the best explainable method, that is decision tree.

We do not measure the robustness since we are comparing a method that
gives the same result in every run against the method (decision trees) that gives
multiple different results. If we had multiple methods that produce different
models between different runs, we could measure robustness of those methods
by similarity of the models (e.g. similarity of decision tree graphs). In our case,
robustness is the inherent characteristic of the design of the TrueLearn.

5.1 Fault Detection Robustness

Standard implementations of decision tree classifier [23] use random choice for
splitting feature if more than one feature carry the same information about
target label. This is the reason why decision trees, as well as their accuracy, can
change between different runs on the same dataset. Results of 100 runs on the
same dataset, validated by chronological 80/20 split are presented in a table 6.
This is in stark contrast with TrueLearn which provides the exact same accuracy
level on all runs; this is a significant boost in terms of model robustness and
reliability. As seen in the table 6 the biggest difference between min, max and
average accuracy is on the node r104c14s02. This node is the same as other
nodes in terms of configuration but it serves as a good example of instability of
decision trees. There are three possible induced decision trees on that dataset;
the induced decision trees are presented on Figures 1a, 1b and 1c. All three
possible decision tree graphs are equally likely and each one occurs in 1

3 of the
cases.

10 Molan et al.

(a) 46.2% accuracy (b) 84.6% accuracy

(c) 100% accuracy

Fig. 1: Different decision trees on node r104c14s02. Left node predicts class 1
(fault) and right one class 0 (no fault). Reported is the accuracy on the test set.

5.2 Visualization of learned parameters for Bayesian classifier
TrueExplain

On the same node - node r104c14s02 - where decision trees experienced most
fluctuation in terms of performance, TrueExplain classifier is also trained. Per-
formance of TrueExplain classifier is the same on all runs. Distributions can also
be visualized and plotted as Gaussians as presented in Figure 2.

6 Discussion

In general explainable classification models perform well compared to black box
models. This is probably mostly the result of very informative features; reporting
services (NAGIOS) already transform low level diagnostics data into higher level
features. As such this dataset (beyond the frame of this work) could serve as a
nice practical dataset for explainable classification models. Comparing the two
explainable models (decision trees and Bayesian classifier TrueExplain) we see
that decision trees outperform Bayesian approach in both the average and the

An Explainable Model for Fault Detection in HPC Systems 11

Table 6: Average, min and max accuracy in 100 runs of decision tree algorithm
on the same dataset - results on selected nodes with average calculated on all
nodes.

Node average accuracy max accuracy min accuracy

r070c13s04 1.00 1.00 1.00
r075c13s02 0.85 1.00 0.53
r078c14s01 0.72 0.72 0.72
r090c14s02 1.00 1.00 0.99
r093c15s03 0.99 0.99 0.98
r094c04s03 1.00 1.00 1.00
r098c05s02 0.86 1.00 0.77
r103c11s02 0.86 0.86 0.86
r104c12s02 0.81 1.00 0.46
r104c14s02 0.83 1.00 0.46
r112c02s02 1.00 1.00 0.99
r145c10s04 0.99 1.00 0.98
r162c15s01 0.87 1.00 0.81
r169c11s04 0.70 0.97 0.65
r170c13s04 0.99 1.00 0.96

Average 0.974 0.992 0.951

Fig. 2: Plotted weight distributions form TrueExplain, learned from node
r104c14s02. The performance of TrueExplain is constant across different runs.

best case. It is the worst case scenario for Decision trees that is worrying - on
this problem one has no guarantee that decision trees will be able to learn and
produce usable predictions.

Exploring the most problematic node for decision trees - node r104c14s02 -
illustrates the nature of the problem with decision trees. After training decision
tree classifier on train dataset (80 percent of the data) it is apparent that the
algorithm recognizes multiple features as equally informative on the train set.
Thus the algorithm randomly chooses between three possible models (Figures
1a, 1b and 1c). Only model 1c however performs equally well on the test set.
Diving into the nature of the underlying problem it can be assumed that different
reporting services report errors simultaneously. Only one error is however the real

12 Molan et al.

cause of the fault that can be generalized to the test set. Decision trees however
have no guarantee of recognizing the real culprit. Described problem is especially
characteristic for small dataset (per node models) and can be addressed by
accumulating more data.

Bayesian model TrueExplain recognizes and increases the weights of all pos-
sible causes of a system failure. This system (on such a small dataset) protects
against false negative errors that decision trees can make. The main advantage
of the Bayesian approach is that it can recognize multiple factors as equally
important in predicting a malfunction. For each attribute, TrueExplain learns
two parameters µ (expected value) and σ. µ denotes expected contribution to
class 1 (positive µ) or class 0 (negative µ). Additionally Bayesian learner True-
Explain also communicates prediction certainty. Variance (curve width) carries
information about parameter certainty – as the certainty increases the width of
the curve decreases (the Gaussian curve slowly tends towards a constant).

We are using the one-hot encoding for features; each feature is split into three
sub-features according to it’s critical state (0, 2, 3). Let us focus on a node where
decision trees achieve poor performance: r104c14s02. Investigating the outputs
of the TrueExplain for node r104c14s02, it can be seen that the model identifies
as the most influential features (highest negative expected value - µ) contributing
to class 0: filesys::shared::mount, sys::gpfs::status, batchs::client::state, all with
critical state 0. Interestingly the same three factors, when they have critical state
2 (fault), are the most relevant to class 1. This means that, for this specific node,
these three factors really determine if the node is available or not. In other words,
these three factors explain the availability of examined node. Identification of
pairs of important attributes (similar importance of the same feature with critical
state 0 and critical state 2) is also in line with domain expectations for the
problem. If a fault of a subsystem means the downtime of the node, than the
normal operation of the subsystem should indicate availability of the node.

7 Conclusions

In this paper we tackle the problem of anomaly recognition in HPC systems.
We propose a novel approach to characterize the behaviour of a supercomputing
node, through the combination of I) measurements from hardware/software sen-
sors and II) labels(system availability) provided by system administrators. Using
this labeled data, we created and trained TrueExplain, a Bayesian classifier for
distinguishing normal and anomalous states in supercomputing nodes. We have
empirically shown that TrueExplain is I) robust, II) its decision offers a possi-
bility for interpretation, and III) it works on smaller training set. The last point
is very beneficial in terms of implementation on HPC systems, as it means that
explainable and efficient models can be constructed for individual or multiple
nodes relatively early on in the operational life of a new HPC system. Based
on the work presented here, informative models for each individual node can be
constructed in just a few months of operation. Another additional benefit of the

An Explainable Model for Fault Detection in HPC Systems 13

proposed Bayesian model is that it is inherently an online training algorithm –
which means it can be trained in real time.

TrueExplain also can greatly help HPC system administrators as it accurately
detects undesired states, thus improving the supercomputer resilience. This re-
sult is boosted by empirically proven robustness of the presented approach, as it
is capable of consistently providing the same classification results over different
nodes and hundreds of runs. Furthermore, the fact that our model is relatively
simple to explain means that predictions can greatly help HPC operators in
identifying the malfunctioning components and fault root causes.

8 Code access

Code for a classifier, implemented in this work is accessible at:

https://github.com/MolanM/TrueExplain

9 Acknowledgements

This research was partly supported by the
EU H2020-ICT-11-2018-2019 IoTwins project (g.a. 857191),
the H2020-JTI-EuroHPC-2019-1 Regale project (g.a. 956560)
and Emilia-Romagna POR-FESR 2014-2020 project “SUPER: SuperComputing
Unifier Platform – Emilia-Romagna”.
We also thank CINECA for the collaboration and access to their machines.

References

1. Cineca inter-university consortium web site, http://www.cineca.it//en, accessed:
2018-06-29

2. Sensu go: Sensu go 5.20, https://docs.sensu.io/sensu-go/latest/
3. Barth, W.: Nagios: System and network monitoring. No Starch Press (2008)
4. Bartolini, A., Borghesi, A., et al.: The D.A.V.I.D.E. big-data-powered fine-grain

power and performance monitoring support. In: Proceedings of the 15th ACM
International Conference on Computing Frontiers, Ischia, Italy, 2018 (2018)

5. Bartolini, A., Beneventi, F., Borghesi, A., Cesarini, D., Libri, A., Benini,
L., Cavazzoni, C.: Paving the way toward energy-aware and automated dat-
acentre. In: Proceedings of the 48th International Conference on Paral-
lel Processing: Workshops. ICPP 2019, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3339186.3339215,
https://doi.org/10.1145/3339186.3339215

6. Beneventi, F., Bartolini, A., et al.: Continuous learning of hpc infrastructure mod-
els using big data analytics and in-memory processing tools. In: Proceedings of the
Conference on Design, Automation & Test in Europe. pp. 1038–1043. European
Design and Automation Association (2017)

7. Borghesi, A., Bartolini, A., et al.: Anomaly detection using autoencoders in hpc
systems. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)

14 Molan et al.

8. Borghesi, A., Bartolini, A., et al.: A semisupervised autoencoder-based approach
for anomaly detection in high performance computing systems. Engineering Ap-
plications of Artificial Intelligence 85, 634–644 (2019)

9. Borghesi, A., Libri, A., et al.: Online anomaly detection in hpc systems. In: 2019
IEEE International Conference on Artificial Intelligence Circuits and Systems
(AICAS). pp. 229–233. IEEE (2019)

10. Bulathwela, S., Perez-Ortiz, M., et al: Truelearn: A family of bayesian algorithms
to match lifelong learners to open educational resources. In: Proceedings of the
AAAI Conference on Artificial Intelligence (2020)

11. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine
learning. CoRR abs/2011.07876 (2020), https://arxiv.org/abs/2011.07876

12. Graepel, T., Candela, J., et al.: Web-scale bayesian click-through rate prediction for
sponsored search advertising in microsoft’s bing search engine. Omnipress (2010)

13. Herbrich, R., Minka, T., Graepel, T.: Trueskill™: a bayesian skill rating system.
In: Advances in neural information processing systems. pp. 569–576 (2007)

14. Iannone, F., Bracco, G., et al.: Marconi-fusion: The new high performance comput-
ing facility for european nuclear fusion modelling. Fusion Engineering and Design
129, 354–358 (2018)

15. Massie, M.: Monitoring with Ganglia. O’Reilly Media, Sebastopol, CA (2012)
16. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on

bias and fairness in machine learning. arXiv preprint arXiv:1908.09635 (2019)
17. Molan, M., Bulathwela, S., Orlic, D.: Accessibility recommendation system. In:

Proceedings of the OER20: Open Education Conference (2020)
18. Netti, A., Kiziltan, Z., et al.: A machine learning approach to online fault classifi-

cation in hpc systems. Future Generation Computer Systems (2019)
19. Netti, A., Mueller, M., Guillen, C., Ott, M., Tafani, D., Ozer, G., Schulz, M.: Dcdb

wintermute: Enabling online and holistic operational data analytics on hpc systems
(10 2019)

20. Pedregosa, F., Varoquaux, G., Gramfort, A., et Al.: Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

21. Pelánek, R.: Applications of the elo rating system in adaptive educational systems.
Computers & Education 98, 169 – 179 (2016)

22. Sammut, C., Webb, G.I. (eds.): Attribute-Value Learning. Springer US (2010)
23. Sharma, H., Kumar, S.: A survey on decision tree algorithms of classification in

data mining. International Journal of Science and Research (IJSR) 5(4) (2016)
24. Tuncer, O., Ates, E., et al.: Diagnosing performance variations in hpc applications

using ml. In: International Supercomputing Conference. Springer (2017)
25. Yang, X., Wang, Z., Xue, J., Zhou, Y.: The reliability wall for exascale supercom-

puting. IEEE Transactions on Computers 61(6), 767–779 (2012)
26. Zamuda, A., Zarges, C., Stiglic, G., Hrovat, G.: Stability selection us-

ing a genetic algorithm and logistic linear regression on healthcare records.
In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion. p. 143–144. GECCO ’17, Association for Computing Machin-
ery, New York, NY, USA (2017). https://doi.org/10.1145/3067695.3076077,
https://doi.org/10.1145/3067695.3076077

	Copertina_postprint_IRIS_UNIBO
	molan_MODA2021

