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Abstract. The goal of this work was to integrate in situ possibilities into
the general-purpose code-coupling library PDI [1]. This is done using the
simulation code Alya as an example. Here, an open design is taken into
account to later create possibilities to extend this to other simulation
codes, that are using PDI.

Here, an in transit solution was chosen to separate the simulation as
much as possible from the analysis and visualization. To implement this,
ADIOS2 is used for data transport. However, to prevent too strong a
commitment to one tool, SENSEI is interposed between simulation and
ADIOS2 as well as in the in-transit endpoint between ADIOS2 and the
visualization software. This allows a user who wants a different solu-
tion to easily implement it. However, the visualization with ParaView
Catalyst was chosen as default for the time being.

Keywords: in transit · SENSEI · ADIOS2 · High-performance comput-
ing (HPC).

1 Motivation

The goal of this work was to integrate in situ possibilities into the general-
purpose code-coupling library PDI [1]. This is done using the simulation code
Alya as an example. Here, an open design is taken into account to later create
possibilities to extend this to other simulation codes, that are using PDI.

The use of in situ procedures has many advantages. It allows to see first
results faster, to analyze more intermediate steps and reduce the required I/O
resources because fewer or even no complete data sets have to be stored. Despite
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these advantages, the use of in situ methods is fraught with problems. For ex-
ample, there are further dependencies when programming simulations, as well as
when compiling and running the simulation. These dependencies can also change
with version changes of the used in situ library, which requires additional work
on the simulation code to be able to use current versions with new features.
In addition, there is also a competition for resources on the individual com-
pute nodes, as additional code must now be run for the in situ procedures. This
requires CPU time, network bandwidth, and most importantly for some simula-
tions, working memory, depending on the chosen in-situ method. Especially in
the case of an in situ visualization running on the same compute nodes as the
simulation, there is a risk that small changes to the visualization pipeline can
dramatically increase the amount of memory required. This then has the risk
of crashing the simulation and the complete progress of the simulation could be
lost.

2 pdi2sensei

Here we use different solutions that are already available in the in situ area
and combine them in a way to make it as easy and as error-free as possible for
the end-user. For this, we first use PDI [2] (PDI data interface), which allows
reducing the dependencies of the simulation to a library. PDI allows users to
customize the data output of the simulation via a configuration file without
recompiling the simulation. PDI enables different methods of data output to be
configured, such as traditional I/O with the use of HDF5. PDI requires only a
library agnostic annotation of the simulation code and then allows the use of
libraries from a specification tree [1].

The further problem of changes in version jumps of in situ libraries is solved
by using SENSEI [7], which provides a common interface to use different in situ
libraries with one interface. This allows to support various libraries at once and
permits to change the visualization backend later if there are new or different
requirements for the in situ analysis or visualization.

To minimize the conflict over resources and impact on the simulation, we
use the in-transit specialization of the in situ solutions. Therefore, we use dif-
ferent computational nodes for the actual analysis and visualization work. This
reduces the impact on the simulation nodes to only the data traffic to the in-
transit nodes. It also allows us to use appropriate nodes (for example use nodes
with GPU for your visualization) and node counts for both visualization and
simulation. For the data transport, we use ADIOS2 [8, 9], which transports the
data for us. ADIOS2 also allows the use of M2N communication, so the num-
ber of simulation nodes can be different from the number of in-transit nodes,
and ADIOS2 distributes the data. ADIOS2 has several transport mechanisms [9]
(called engine in ADIOS2), currently, we use SST, which in our case uses a shared
file system to exchange network information via a file and then transport the
user data via the network. In the future, the different engines that are possible
with ADIOS2 will also allow testing with new hardware such as burst buffers by
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writing to the burst buffer for data transfer and retrieving this data from other
nodes. This would then make the simulation code even more independent from
the analysis and visualization code.

ADIOS2 then passes the data on the in-transit node to SENSEI, where it can
then be flexibly transferred to various in situ solutions. Here we use the solution
developed by ParaView [10] called Catalyst [11]. Using Catalyst, a predefined
visualization pipeline can be used to store rendered images and pre-analyzed
data. In addition, there is the possibility to use a live interactive visualization,
where you can send selected data to ParaView and adjust your visualization
with ongoing updates.

Here we started with the development of pdi2sensei, which makes it possible
to easily transfer the data passed by PDI from the simulation to SENSEI while
making the conversion to the VTK data needed by SENSEI as simple as possible.
As a base configuration, this SENSEI component is configured to use ADIOS2 to
send the data directly to the in-transit nodes. Here we use SENSEI again to pass
the data from ADIOS2 flexibly to different in situ solutions, here Catalyst. Using
SENSEI in both places allows adapting both transport and in situ solutions to
new requirements. As the first simulation using this setup, we have chosen Alya,
for the purpose of simulating the airflow over complex terrain.

3 Example

Alya is a parallel multi-physics/multi-scale simulation code developed at the
Barcelona Super-computing Center to run efficiently on high-performance com-
puting environments. It can solve a wide range of problems, including solid
mechanics, compressible and incompressible flow, flows with interfaces using the
level set method, combustion, and thermal problems. The case presented in this
work is an incompressible flow simulation using wall-modeled Large Eddy Sim-
ulation. The convective term is discretized using a recently proposed Galerkin
finite element (FEM) scheme, which conserves linear and angular momentum,
and kinetic energy at the discrete level described in [13]. Neither upwinding
nor any equivalent momentum stabilization is employed. To use equal-order el-
ements for both velocity and pressure, numerical dissipation is introduced only
for pressure stabilization via a fractional step scheme. The set of equations is
integrated in time using a third-order Runge-Kutta explicit scheme. Due to the
high Reynolds number of Atmospheric Boundary Layer flows, wall modeling is
required at the ground. A novel wall modeling finite element implementation is
used [14] in this work.

The Bolund experiment is a classical benchmark for microscale atmospheric
flow models over complex terrain [15–17]. It has been the basis for a unique blind
comparison of flow models. Despite its relatively small size, its shape induces
complex 3D flow. The wind comes from the sea, and thus the inflow profile is
relatively simple to impose. The flow collides against a 10m height cliff, and a
complex recirculation is formed at the region of interest located at the top of
the cliff. For the results presented in this work, an unstructured grid with 31M
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elements has been used. The number of Elements can be scaled up by Alya as
well, by passing on a subdivision command in the configuration file, splitting
each cell into eight cells [18]. As this can be done multiple times the simulation’s
cell numbers can be increased by powers of eight, increasing the resolution of
the simulation data.

4 Conclusion

To be able to use this in such a way some steps were necessary. First of all,
PDI must be integrated to be able to transfer the data to PDI. Here it was very
helpful that there is already a previous possibility to do in situ visualization in
Alya, so the access to all needed data was already possible in one place in the
code. However, the previous solution is not as flexible as the new solution, which
is why this update was made. Next, a simple way had to be created in pdi2sensei
to start the previously described setup with in-transit as easy as possible and
with as little setup as necessary as a base configuration. Then, functions were
implemented in pdi2sensei that allows for the user of pdi2sensei to connect data
provided by the simulation through PDI to the data expected by SENSEI. This
allows using the setup with few lines of code. You only have to pass your data
to PDI in the simulation code and specify in the configuration file of PDI which
values you want to pass to pdi2sensei.
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