
Optimal Randomized Partial Checking for
Decryption Mix Nets

Thomas Haines1 and Johannes Müller2[0000−0003−2134−3099]

1 Norwegian University of Science and Technology, Norway,
firstname.lastname@ntnu.no

2 SnT, University of Luxembourg, Luxembourg,
firstname.lastname@uni.lu

Abstract. One of the most important verifiability techniques for mix
nets is randomized partial checking (RPC). This method is employed in
a number of prominent secure e-voting systems, including Prêt à Voter,
Civitas, and Scantegrity II, some of which have also been used for real
political elections including in Australia.
Unfortunately, it turned out that there exists a significant gap between
the intended and the actual verifiability tolerance of the original RPC
protocol. This mismatch affects exactly the “Achilles heel” of RPC,
namely those application scenarios where manipulating a few messages
can swap the final result (e.g., in close runoff elections).
In this work, we propose the first RPC protocol which closes the afore-
mentioned gap for decryption mix nets. We prove that our new RPC
protocol achieves an optimal verifiability level, without introducing any
disadvantages. Current implementations of RPC for decryption mix nets,
in particular for real-world secure e-voting, should adopt our changes to
improve their security.

1 Introduction

Mix nets are indispensable building blocks of many secure e-voting sys-
tems. Essentially, a mix net consists of a sequence of mix servers which
take as input the encrypted messages provided by the senders (e.g., the
voters’ ballots), secretely shuffle them, and eventually output the permu-
tated plain messages (e.g., votes). Unless all mix servers are corrupted,
the mixing breaks the individual connections between the senders and
their revealed messages in the output. In the context of e-voting, this
property guarantees vote privacy.

For secure e-voting, it is also important to ensure that the voters’
intent be reflected correctly in the election result, even if the mix servers
are corrupted and actively try to tamper with the votes. For this purpose,
a mix net must be verifiable to guarantee that manipulating the senders’
input, and generally incorrect mixing, can be detected. In the literature,

numerous mix nets have been proposed that aim to achieve verifiability
(see, e.g., [1, 2, 11,14–16,18,18,21–23]).

One of the most prominent verifiability techniques for mix nets is
randomized partial checking (RPC), originally introduced by Jakobsson,
Juels, and Rivest [15]. RPC combines several advantageous features:

– Wide field of applications: RPC allows one to realize secure electronic
elections even if the voters’ choices are complex. This is the case for
Instant Runoff Voting (IRV) or Single Transferable Vote (STV) which
are commonly used in political elections all over the world, for example
in Australia, India, Ireland and the UK. Such elections cannot be
handled easily by homomorphic e-voting schemes.

– Intuitive concept : The main idea of RPC is exceptionally simple: Once
a mix server has completed its mixing, the mix server is challenged to
open the links between a number of randomly chosen output messages
and the respective input ciphertexts. If the mix server manipulated
(i.e., dropped or replaced) one of the associated input ciphertexts,
then this will be detected.

– Lightweight and simple crypto: The computational overhead of RPC is
small. Moreover, RPC requires well-studied black-box cryptographic
primitives only. This is particularly advantageous when it comes to
implementing a verifiable mix net correctly in practice. For example,
the recently discovered attacks on the Internet voting scheme that was
supposed to be employed in Swiss federal elections [12] mainly reduce
to the fact that the sophisticated cryptographic components related
to the underlying proof of shuffle were not implemented correctly.

Due to these features, RPC mix nets are used in several prominent
secure e-voting systems, including Prêt à Voter [7], Civitas [8], and Scant-
egrity II [5]. Some of these systems have also been used for real political
elections, for example in the Australian state of Victoria [3].

Unfortunately, it turned out that the verifiability tolerance of the orig-
inal RPC protocol [15] is significantly worse than intended. Jakobsson et
al. [15] stated that manipulating k messages in the original RPC pro-
tocol remains undetected with probability at most (12)k but this claim
was disproven subsequently. A number of pitfalls were discovered [17,20]
that allow for manipulating k messages in the original RPC protocol but
which remain undetected with probability (34)k. This gap affects exactly
the “Achilles heel” of RPC, namely those application scenarios where ma-
nipulating a few messages can swap the final result (e.g., in close runoff

2

10 20 30 40 50
10−15

10−12

10−9

10−6

10−3

x : Margin

f
(x

)
:

C
h
a
n
ce

o
f

u
n
d
et

ec
te

d
m

a
n
ip

u
la

ti
o
n

(1/2)x

(3/4)x

Fig. 1. Difference in concrete verifiability tolerances between original RPC (blue) and
optimal RPC (red).

elections). In such cases, the asymptotic behaviour of the verifiability tol-
erance is rather irrelevant; instead, it is important that the base of the
exponential function is small. We illustrate this in Fig. 1.

Elections with close margins are fairly common. For example, in the
2020 Queensland election, Bundaberg had a margin of 9 which the orig-
inal RPC protocol would have allowed to be changed undetectably with
probability 7.5%. On the contrary, in an RPC protocol with optimal veri-
fiability tolerance, i.e., (12)k, swapping the election result would have been
caught with 99.8% probability. Designing such an optimal RPC protocol
and proving it secure is the main objective of this paper.

Contributions. In this paper, we provide the following contributions:

1. We propose an optimal RPC protocol for decryption mix nets. Our
new protocol preserves all advantages of the original RPC protocol: it
is widely applicable, intuitive, lightweight, and does not require any
cryptographic primitives in addition to the basic ones employed in
original RPC.

2. We formally prove that the new RPC protocol improves the verifi-
ability tolerance of the original one from (34)k down to (12)k under
the same cryptographic and trust assumptions. For this purpose, we

3

use the verifiability framework by Küsters, Truderung, and Vogt [19]
which was already applied in [20] to analyze the original version of
RPC decryption mix nets, as well as all other techniques for verifiable
mix nets (see [13]). We emphasize that the attacks discovered on the
original RPC protocol demonstrate the importance of such a formal
treatment.

Current implementations of RPC for decryption mix nets, in partic-
ular for real-world secure e-voting, should adopt our changes to improve
their security.

Structure of the paper. We discuss the relation between our new optimal
RPC protocol and the other techniques for verifiable mix nets from the
literature in Sec. 2. In Sec. 3, we explain how a decryption mix net works
at a conceptual level, and in Sec. 4, we describe how it can be extended by
the original RPC protocol. In Sec. 5, we recall the pitfalls of the original
RPC protocol and how they can be exploited to attack it. In Sec. 6, we
propose our new RPC protocol for decryption mix nets. In Sec. 7, we
state that our new RPC protocol is indeed optimal. The complete formal
analysis is provided in App. A. We conclude in Sec. 8.

2 Related Work

Many verifiable mix nets have been proposed in the literature. According
to a recent systemization-of-knowledge [13], the underlying verifiability
techniques can be classified as follows: message tracing [18,22], verification
codes [18,21], original RPC [15], trip wires [2,16], message replication [16],
and proofs of shuffle (e.g., [1, 11, 14, 23]). Optimal RPC and the other
verifiability techniques relate as follows.3 We will provide more details on
the relation between original and optimal RPC in the subsequent sections.

Let us first elaborate on the verifiability tolerances, i.e., the proba-
bility that manipulating more than k messages remains undetected, of
the different techniques and their relationships. Together with the mes-
sage tracing, verification codes, original RPC, and trip wires technique,
the optimal RPC technique belongs to a class of verifiability techniques
which have a verifiability tolerance of the form fk+1 where f is some
linear function. Compared to original RPC for which f = 3

4 holds true,

3 Since the optimal RPC technique proposed in this paper is tailored to decryption
mix nets, we restrict our attention to verifiability techniques for these mix nets in
what follows and refer to [13] for further details.

4

we have f = 1
2 for optimal RPC. This shows that, on the one hand,

the verifiability tolerance of the original and the new RPC protocol are
asymptotically equivalent, but on the other hand, our new version signifi-
cantly improves the “Achilles heel” of RPC, i.e., the range of small values
of k, where some cheating may remain undetected with non-negligible
probability (see Fig. 1). Compared to the remaining techniques in this
class, f is constant both for optimal and original RPC. This property
is, typically, superior to the verifiability tolerance of the message tracing
and verification codes technique for which the base f = (1 − p) depends
on the senders’ individual, and thus uncertain, verification probability p.
Compared to the trip wire technique for which the base f = nhS/(n

h
S+ntw)

can be decreased by increasing the number of trip wire messages ntw for
a given number of honest senders nhS, the verifiability tolerance of orig-
inal and optimal RPC is inferior. However, tripwires unlike RPC allows
manipulation of dishonest senders’ messages without detection which is
unacceptable in many circumstances.

Both original and optimal RPC for decryption mix nets employ moder-
ate cryptographic primitives (black-box NIZKP of correct decryption), re-
quire a (temporarily) trusted auditor whose role can easily be distributed,
and guarantee individual accountability (i.e., each misbehaving mix server
can be identified individually).

3 Decryption Mix Nets

A decryption mix net [6] consists of a sequence of mix servers, denoted
by M1, . . . ,MnMS

. Each mix server Mj holds a public/private key pair
(pkj , skj) of an IND-CCA2-secure public key encryption scheme E =
(KeyGen,Enc,Dec). Each sender S encrypts her message m under the
mix servers’ public keys in reverse order:

c = Enc(pk1,Enc(. . .Enc(pknMS
,m))).

The first mix server M1 takes as input the senders’ nested input ci-
phertexts, decrypts them using its secret key sk1, permutes the result
uniformly at random, and forwards the shuffled list to M2. The remain-
ing mix servers M2, . . . ,MnMS

repeat the same steps using their secret keys
sk2, . . . , sknMS

. Eventually, the last mix server MnMS
returns the senders’

original plain input messages in randomly permuted order.

The main purpose of a mix net is to ensure message privacy by “break-
ing” the individual links between the senders and their plain messages.

5

To this end, at least one mix server should not be corrupted but keep its
secret key as well as its internal permutation secret.

Note that if a number of senders were dishonest and aimed for break-
ing message privacy of some honest sender, then the dishonest senders
could simply duplicate the honest sender’s input ciphertext multiple times.
By this, the targeted honest sender’s message would be amplified in the
final outcome. This means that an honest sender’s message privacy could
be undermined even if all mix servers are perfectly honest. In order to
protect against such replay attacks, each mix server removes all duplicates
(except for one per duplicate group) from its input vector.

4 Original RPC

We recall the general idea of the original RPC protocol for decryption
mix nets as proposed by Jakobsson, Juels, and Rivest [15].

Fig. 2. Examplified illustration of RPC : The left box shows the internal view of mix
server Mj during the mixing process. The right box shows the public view of the links
revealed by Mj during RPC for challenge αj = (1,−1, 1,−1).

If at least one mix server in a “plain” decryption mix net (as described
in Sec. 3) is corrupted and actively deviates from its protocol specification,
then it is not possible to verify (without further means) whether the final
outcome consists of the senders’ original messages. In order to extend a
“plain” decryption mix net so that the correctness of the final outcome
can publicly be verified, Jakobsson, Juels, and Rivest [15] proposed the
concept of randomized partial checking (RPC).

6

The main idea of RPC is to challenge each mix server Mj as follows.
After the mixing phase, an auditor A chooses a fraction of Mj ’s input
ciphertexts uniformly at random. For each chosen ciphertext c, the mix
server has to “open” the link between c and its decryption c′ in its output.
For this purpose, the mix server Mj generates a non-interactive zero-
knowledge proof (NIZKP) which proves the respective decryption relation
w.r.t. Mj ’s public key pkj . Then, the auditor (and everybody else) can
verify the NIZKPs returned by Mj . If the check for one of the chosen
ciphertexts fails, then Mj is held accountable and the final outcome is
rejected. Because the mix server does not know in advance which links
it needs to open during audit, the probability that the mix server can
manipulate some messages undetectably decreases with the number of
links to be opened.

Typically, pairs of mix servers are audited to ensure that traces through
the mix net are not revealed completely.4 We will therefore assume that
each mix server Mj has two public/private key pairs (pk1j , sk

1
j), (pk

2
j , sk

2
j)

and performs two mixing steps. We denote Mj ’s input by c0j , its interme-

diate ciphertext vector by c1j , and its output by c2j . Now, the idea is that

for any randomly chosen intermediate ciphertext c1 ∈ c1j , the mix server

has to open either its link to c0 ∈ c0j or its link to c2 ∈ c2j . In this way,

one of c1’s links, the one to c0 or the one to c2, remains secret. We denote
the auditor’s challenge vector for Mj by αj , where αj [i] = −1 if the left
link of c1j [i], αj [i] = 1 if the right link of c1j [i], and αj [i] = 0 if none of

the links of c1j [i] is supposed to be opened. We illustrate this approach in
Fig. 2.

5 Attacks on Original RPC

Jakobsson, Juels, and Rivest [15] claimed that the original RPC technique
(Sec. 4) provides the following verifiability guarantee (if always the left
or the right link of an intermediate ciphertext is supposed to be opened).

Claim ([15]). Suppose that the adversary alters elements in the mix net
such that the observed election tally differs by k votes from the honest
one. Then the probability that the adversary goes undetected is ≤ (12)k.

This claim was disproven subsequently. Khazaei and Wikström [17] as
well as Küsters, Truderung, and Vogt [20] discovered attacks on original

4 This could happen if the links of an input ciphertext need to be opened for each
mix server. In this case, the sender’s message privacy would be broken.

7

RPC which allow for manipulating k messages in such a way that the
tampering remains undetected with probability (34)k.

In this work, we describe for the first time how to do RPC protocol
such that optimal verifiability tolerance (12)k is achieved. Our RPC pro-
tocol solves the vulnerabilities of the original RPC protocol that allow for
the attacks mentioned above. In this way, not only these specific but all
possible attacks are prevented that would go undetected with probabil-
ity > (12)k. To illustrate our solution, we recall the two attacks with full
technical details in what follows.

Fig. 3. Cheating of the last mix server : The left box shows the correct execution of
mix server MnMS . The right box shows an attack of MnMS where the first two output
messages are identical but the second one is replaced by a different output message.
The remaining output message is linked to both ciphertexts of the identical output
messages. By this, the second output message is effectively dropped. The attack is
detected if and only if αnMS = (1, 1, ?, ?).

Cheating of the last mix server. This attack by [20] is illustrated in Fig. 3.
Recall that the final outcome c2nMS

is returned by the last mix server MnMS
.

Assume that the adversary controls the last mix server MnMS
and, say,

favors candidate A over candidate B. If there are two distinct ciphertexts
c1nMS

[i], c1nMS
[i′] in the intermediate ciphertext vector c1nMS

which both de-

crypt to candidate B under sk2nMS
, then the malicious mix server MnMS

replaces one of them by candidate B in its output c2nMS
. If the mix server

is supposed to open the right link of c1nMS
[i] or c1nMS

[i′], then it opens the
link to B in both cases. Effectively, MnMS

’s manipulation is detected if

8

Fig. 4. Cheating of an arbitrary mix server : The left box shows the correct execution
of mix server Mj . The right box shows an attack of Mj where the first intermediate
ciphertext is replaced by a duplicate of the third intermediate ciphertext. In the clean-
ing phase of the next mix server Mj+1, one of these two duplicates will be removed.
By this, the message contained in the first intermediate ciphertext vector is effectively
dropped. The attack is detected if and only if αj = (−1, ?,−1, ?).

and only if the right links of both c1nMS
[i] and c1nMS

[i′] are to be opened.
The probability of this event is 1

2 ·
1
2 = 1

4 . Hence, the attack remains
undetected with probability 3

4 .

Cheating of an arbitrary mix server. This attack by [17] is illustrated
in Fig. 4. Assume that the adversary controls an arbitrary mix server
Mj . Let c0j [i] and c0j [i

′] be two arbitrary elements of Mj ’s input vector

c0j . Assume that c0j [i] decrypts to c̃1 under sk1j and that c̃1 decrypts to

c̃2 under sk2j . Assume that c0j [i
′] decrypts to c1 under sk1j and that c1

decrypts to c2 under sk2j . Now, the malicious mix server Mj replaces
c̃1 by c1 in its intermediate ciphertext vector c1j , and c̃2 by c2 in its

output ciphertext vector c2j . In this way, the choice in c̃0 is effectively

dropped. The choice in c0 is temporarily copied but one of these copies
will be removed again due to the duplicate removal of the next mix server
Mj+1. If Mj is supposed to open the left link of one of the two identical
intermediate ciphertexts c1 ∈ c1j , then in both cases it opens the link to

c0. By this, Mj ’s manipulation is detected if and only if the left links
of both copies of c1 are to be opened. The probability of this event is
1
2 ·

1
2 = 1

4 . Hence, the attack remains undetected with probability 3
4 .

9

6 Optimal RPC

We propose an RPC protocol for decryption mix nets which achieves
optimal verifiability tolerance (12)k. We first explain the general idea of
our solution (Sec. 6.1) and then describe the optimal RPC protocol with
full technical details (Sec. 6.2).

6.1 Idea

Recall that the attacks described in Sec. 5 exploit the following two prop-
erties of the original RPC protocol:

1. It is possible that there exist duplicate plaintext messages in the final
outcome c2nMS

.
2. If a duplicate ciphertext appears during mixing, then this ciphertext

is removed but it is not necessarily checked whether it was injected
by a malicious mix server.

Based on these observations, we designed a new RPC protocol which
extends the original RPC protocol as follows:

1. Adding innermost encryption layer :5 The auditor A creates a pub-
lic/secret key pair (pkA, skA). Each sender S encrypts her message m
first under the auditor’s public key pkA and afterwards under the mix
servers’ public keys. By this, the mixing is performed over encrypted
rather than plain messages. Due to the IND-CCA2-security of the
PKE scheme, the probability that there exist (honestly generated)
duplicate entries in the outcome of the mixing phase c2nMS

is negligi-
ble. Once the auditing phase succeeded, the auditor reveals its secret
key skA so that all ciphertexts in c2nMS

can be decrypted (publicly).6

2. Opening duplicate links: If during the mixing of an arbitrary mix server
Mj , a duplicate ciphertext appears, then Mj explicitly opens the com-
plete local trace of the two (or more) identical ciphertexts through its
mix. All duplicate ciphertexts are removed and not taken into account
for the RPC in the auditing phase. In this way, we ensure that, in con-
trast to the original RPC protocol, the (deterministic) mixing func-
tion is bijective. As a result, for each intermediate ciphertext c1 ∈ c1j ,

5 Even though this idea was already mentioned in prior work [20], it was dismissed
because it does not improve verifiability/accountability by itself.

6 Not releasing the secret key until after auditing provides an extra degree of privacy
protection if any mixer server was dishonest but the secrecy of the key is not required
for integrity.

10

there exists exactly one correct link to an element in c0j and exactly

one correct link to an element in c2j .

Due to these two extensions, the resulting RPC decryption mix net
achieves optimal verifiability tolerance without affecting privacy.

Impact on verifiability. Our formal verifiability analysis (Sec. A) will
demonstrate that these two modifications in combination protect against
all possible attacks for manipulating k messages that would remain un-
detected with probability > (12)k. While it is easy to see that the two
attacks described in Sec. 5 are prevented by the two modifications above,
proving that this holds true for all possible attacks of the same kind is
more challenging (see App. A.4).

Impact on privacy. At a first sight, one may think that opening the local
links of all identical ciphertexts undermines privacy of honest senders.
That is, in collaboration with a dishonest mix server, a dishonest sender
could simply duplicate an honest sender’s intermediate ciphertext. In this
way, the honest sender’s local link would be revealed. However, observe
that for privacy to be guaranteed, all mix nets assume that at least one
mix server is honest. Due to the IND-CCA2-security of the underlying
PKE scheme, a dishonest sender can only duplicate honest ciphertexts
outside the honest mix server’s encryption layer. In such a case, the local
link of an honest sender’s ciphertext trace may only be revealed prior to
the honest mixing phase. This argument demonstrates that privacy of the
original RPC protocol is preserved.

6.2 Protocol

We describe the optimal RPC protocol with full technical details.

Remark. Due to the IND-CCA2-security of the underlying public-key en-
cryption scheme, permuting the decrypted ciphertexts uniformly at ran-
dom is equivalent from a privacy perspective to sorting them lexicograph-
ically. Unlike the original RPC protocol, we chose the latter version be-
cause it makes commitments dispensable. This will simplify the protocol
description without affecting security.

Parameters and algorithms. We use the following parameters and algo-
rithms:

11

– p ∈ (0, 1]: probability for opening either a left or right link (as opposed
to opening neither of them).

– λ > 1: security parameter.
– Algorithm App: Takes as input a vector c and element c. Appends

element c to vector c.
– Algorithm Ins: Takes as input a lexicographically sorted vector c and

element c. Inserts element c into vector c according to its lexicographic
position.

Cryptographic primitives. We use the following cryptographic primitives:

– An IND-CCA2-secure public-key encryption scheme E = (KeyGen,Enc,
Dec).

– A NIZKP proof of correct decryption (Prove,Verify) for E . The under-
lying relation is

R = {((c,m, pk), sk) : m = Dec(sk, c)∧
(∃r : (pk, sk) = KeyGen(r))}.

To instantiate these primitives, one can combine for example the IND-
CCA2-secure PKE by Cramer-Shoup [10] with the NIZKP by Camenisch-
Shoup [4].

Protocol participants. The protocol is run among the following partici-
pants:

– Bulletin board B (append-only).
– Senders S1, . . . , SnS

.
– Mix servers M1, . . . ,MnMS

.
– Auditor A.7

We assume that there exist mutually authenticated channels between
the bulletin board B and all other participants.

Setup phase. Each mix server Mj creates two public/secret key pairs as
follows:

1. (pk1j , sk
1
j)← KeyGen(1λ)

7 The role of the auditor can easily be distributed. For example, each auditor could
first commit to its randomness (using a non-malleable commitment scheme), and
once all auditors have published their commitments, they open them and combine
the results using XOR. For the sake of simplicity, we consider a single auditor only.

12

2. (pk2j , sk
2
j)← KeyGen(1λ)

3. Send (pk1j , pk
2
j) to B

The auditor A creates a public/secret key pair as well:

1. (pkA, skA)← KeyGen(1λ)
2. Send pkA to B

Submission phase. Each sender S takes as input the mix servers’ public
keys (pk1j , pk

2
j)
nMS
j=1 as well as the auditor’s public key pkA and iteratively

encrypts m as follows

1. c2nMS
← Enc(pkA,m)

2. for j = nMS to 1:
(a) c1j ← Enc(pk2j , c

2
j)

(b) c2j−1 ← Enc(pk1j , c
1
j)

3. Send c20 to B

We denote the (initially empty) vector of input ciphertexts by c20. For
each incoming ciphertext c20 from some sender S, the bulletin board B
performs the following steps to ensure that S can neither submit multiple
nor duplicated inputs:

1. if S already submitted c ∈ c20, then abort
2. elseif c20 ∈ c20, then abort
3. else c20 ← App(c20, c

2
0)

The ciphertext vector c20 is the senders’ joint input to the subsequent
mixing phase.

Mixing phase. Starting with M1, each mix server Mj takes c2j−1 as input

and decrypts these input ciphertexts first under sk1j and then under sk2j .
The main idea of the optimal RPC protocol is the following one: If, during
the mixing process, a mix server Mj decrypts a ciphertext to a duplicate
message, then the mix server explicitly opens the complete local links (i.e.,
the left and right side) of both identical messages. These opened links are
stored in dj and the duplicate message is discarded. Similarly, the mix
server also opens the links of all invalid messages, stores the opened links
in ij , and discards the invalid message.

In what follows, c0j , c
1
j , c

2
j denote the (initially empty) ciphertext vec-

tors, pj denotes the (initially empty) list of local traces, ij denotes the
(initially empty) list of invalid messages, and dj denotes the (initially
empty) list of duplicate messages. Now, each mix server Mj executes the
following steps for all c0 ∈ c2j−1:

13

1. Decrypt :
(a) c1 ← Dec(sk1j , c

0)

(b) c2 ← Dec(sk2j , c
1)

2. Open invalids: if c1 = ⊥ or c2 = ⊥ then
(a) π1 ← Prove((pk1j , sk

1
j), c

0, c1)

(b) π2 ← Prove((pk2j , sk
2
j), c

1, c2)
(c) ij ← App(ij , (c

0, c1, c2, π1, π2))
3. Open intermediate duplicates: elseif c1 ∈ c1j then

(a) π1 ← Prove((pk1j , sk
1
j), c

0, c1)

(b) π2 ← Prove((pk2j , sk
2
j), c

1, c2)
(c) c̃0, c̃2 s.t. (c̃0, c1, c̃2) ∈ pj
(d) π̃1 ← Prove((pk1j , sk

1
j), c̃

0, c1)

(e) π̃2 ← Prove((pk2j , sk
2
j), c

1, c̃2)
(f) dj ← App(dj , ((c

0, c1, c2, π1, π2), (c̃0, c1, c̃2, π̃1, π̃2)))
4. Open outcome duplicates: elseif c2 ∈ c2j then

(a) π1 ← Prove((pk1j , sk
1
j), c

0, c1)

(b) π2 ← Prove((pk2j , sk
2
j), c

1, c2)
(c) c̃0, c̃1 s.t. (c̃0, c̃1, c2) ∈ pj
(d) π̃1 ← Prove((pk1j , sk

1
j), c̃

0, c̃1)

(e) π̃2 ← Prove((pk2j , sk
2
j), c̃

1, c2)
(f) dj ← App(dj , ((c

0, c1, c2, π1, π2), (c̃0, c̃1, c2, π̃1, π̃2)))
5. Store links and insert : else

(a) pj ← App(pj , (c
0, c1, c2))

(b) c0j ← Ins(c0j , c
0)

(c) c1j ← Ins(c1j , c
1)

(d) c2j ← Ins(c2j , c
2)

Eventually, Mj sends (c0j , c
1
j , c

2
j , ij ,dj) to B. Observe that, in con-

trast to the original RPC protocol, the elements in the final mix server’s
ciphertext vector c2nMS

are still encrypted under the auditor’s public key
pkA. If all checks in the subsequent auditing phase are successful, then
A publishes its secret key skA on the bulletin board so that c2nMS

can be
decrypted publicly.

Auditing phase. For each mix server Mj , the auditor A checks whether
invalid and duplicate messages were correctly discarded and whether the
respective links were opened correctly. Precisely, A runs the following
program:

1. Initialize:

14

(a) b← 1
2. Verify :

(a) Consistency :
i. if ¬(|c0j | = |c1j | = |c2j |), then b← 0

ii. if c2j−1 6= c0j ∪ (c0)(c0,...)∈ij ∪ (c0)((c0,...),...)∈dj
as multisets, then

b← 0
(b) Invalids removal :

i. if ⊥ ∈ c1j , then b← 0

ii. if ⊥ ∈ c2j , then b← 0
(c) Duplicate removal :

i. if ∃i 6= i′ : c1j [i] = c1j [i
′], then b← 0

ii. if ∃i 6= i′ : c2j [i] = c2j [i
′], then b← 0

(d) Invalids links: for all (c0, c1, c2, π1, π2) ∈ ij :
i. if c1 6= ⊥ and c2 6= ⊥, then b← 0
ii. if Verify(pk1j , c

0, c1, π1) = 0, then b← 0

iii. if Verify(pk2j , c
1, c2, π2) = 0, then b← 0

(e) Duplicate links: for all ((c0, c1, c2, π1, π2), (c̃0, c̃1, c̃2, π̃1, π̃2)) ∈ dj :
i. if c1 /∈ c1j and c2 /∈ c2j , then b← 0

ii. if c1 6= c̃1 and c2 6= c̃2, then b← 0
iii. if Verify(pk1j , c

0, c1, π1) = 0, then b← 0

iv. if Verify(pk2j , c
1, c2, π2) = 0, then b← 0

v. if Verify(pk1j , c̃
0, c̃1, π̃1) = 0, then b← 0

vi. if Verify(pk2j , c̃
1, c̃2, π̃2) = 0, then b← 0

3. Return b

The remaining part of the auditing phase (i.e., generating the chal-
lenges αj , creating the proofs πj , and verifying them) works as in the
original RPC. If all of these checks are successful, then A publishes its
secret key skA on the bulletin board so that the mix net’s outcome ci-
phertext vector c2nMS

can be decrypted publicly. Otherwise, if one of the
previously described checks fails, then the auditor outputs dis(Mj) to
state that Mj misbehaved.

7 Formal Verifiability Analysis

We formally analyze verifiability of the optimal RPC protocol (Sec. 6)
using the same generic verifiability framework [19] that was previously
applied by Küsters, Truderung, and Vogt [20] to analyze the original
RPC protocol (Sec. 4). We summarize our formal result in what follows
and refer to App. A for full details and our formal proof.

15

Assumptions. We make the following assumptions:

(V1) The public-key encryption scheme E is IND-CPA-secure.8

(V2) (Prove,Verify) is a non-interactive proof (NIP) of correct decryp-
tion.9

(V3) The bulletin board B and the auditor are honest.

Note that these assumptions are the same as for the original RPC
protocol.

Result. Under the assumptions above, we obtain the following verifiability
result for the optimal RPC protocol. We refer to Theorem 2 (App. A) for
the completely formal statement.

Theorem 1 (Verifiability (informal)). Under the assumptions (V1)
to (V3) stated above, the probability that in a run of the optimal RPC pro-
tocol with verification probability p more than k inputs of honest senders
have been manipulated but the auditing procedure is nevertheless success-
full is bounded by (1− p

2)k+1.

8 Conclusion

We proposed a new RPC protocol for decryption mix nets. We proved
that our new version improves the verifiability level of the original RPC
protocol from (34)k down to (12)k which is optimal for RPC. By this,
we improve the “Achilles heel” of RPC, i.e., the range of small values
of k, where some cheating may remain undetected with non-negligible
probability. Current implementations of RPC for decryption mix nets,
in particular for real-world secure e-voting, should adopt our changes to
improve their security.

Acknowledgements

Thomas Haines was supported by Research Council of Norway and the
Luxembourg National Research Fund (FNR), under the joint INTER
project SURCVS (INTER/RCN/17/11747298/SURCVS/Ryan). Johannes
Mueller was supported by the Luxembourg National Research Fund (FNR),
under the CORE Junior project FP2 (C20/IS/14698166/FP2/Mueller).

8 For verifiability/accountability, IND-CPA-security is sufficient. For privacy, we need
the stronger notion of IND-CCA-security.

9 The zero-knowledge property is necessary for privacy but not for verifiabil-
ity/accountability.

16

References

1. S. Bayer and J. Groth. Efficient Zero-Knowledge Argument for Correctness of a
Shuffle. In D. Pointcheval and T. Johansson, editors, Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, volume 7237 of Lecture Notes in Com-
puter Science, pages 263–280. Springer, 2012.

2. X. Boyen, T. Haines, and J. Müller. A Verifiable and Practical Lattice-Based
Decryption Mix Net with External Auditing. In L. Chen, N. Li, K. Liang, and
S. A. Schneider, editors, Computer Security - ESORICS 2020 - 25th European
Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK,
September 14-18, 2020, Proceedings, Part II, volume 12309 of Lecture Notes in
Computer Science, pages 336–356. Springer, 2020.

3. C. Burton, C. Culnane, J. Heather, T. Peacock, P. Y. Ryan, S. Schneider, S. Srini-
vasan, V. Teague, R. Wen, and Z. Xia. Using Prêt à Voter in Victorian State
elections. In Proc. USENIX EVT/WoTE, 2012.

4. J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In CRYPTO 2003, Proceedings, volume 2729 of LNCS, pages
126–144. Springer, 2003.

5. R. Carback, D. Chaum, J. Clark, J. Conway, A. Essex, P. S. Herrnson, T. Mayberry,
S. Popoveniuc, R. L. Rivest, E. Shen, A. T. Sherman, and P. L. Vora. Scantegrity
II Municipal Election at Takoma Park: The First E2E Binding Governmental Elec-
tion with Ballot Privacy. In 19th USENIX Security Symposium, Washington, DC,
USA, August 11-13, 2010, Proceedings, pages 291–306. USENIX Association, 2010.

6. D. Chaum. Untraceable Mail, Return Addresses and Digital Pseudonyms. Com-
munications of the ACM, 24(2):84–88, 1981.

7. D. Chaum, P. Y. A. Ryan, and S. A. Schneider. A Practical Voter-Verifiable
Election Scheme. In S. D. C. di Vimercati, P. F. Syverson, and D. Gollmann,
editors, ESORICS, volume 3679 of Lecture Notes in Computer Science, pages 118–
139. Springer, 2005.

8. M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a Secure Voting
System. In 2008 IEEE Symposium on Security and Privacy (S&P 2008), 18-21
May 2008, Oakland, California, USA, pages 354–368. IEEE Computer Society,
2008.

9. V. Cortier, D. Galindo, R. Küsters, J. Müller, and T. Truderung. SoK: Verifiability
Notions for E-Voting Protocols. In IEEE Symposium on Security and Privacy, SP
2016, San Jose, CA, USA, May 22-26, 2016, pages 779–798. IEEE Computer
Society, 2016.

10. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In CRYPTO, volume 1462 of Lecture
Notes in Computer Science, pages 13–25. Springer, 1998.

11. P. Fauzi, H. Lipmaa, J. Siim, and M. Zajac. An Efficient Pairing-Based Shuffle
Argument. In Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information Secu-
rity, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, pages 97–127,
2017.

12. T. Haines, S. J. Lewis, O. Pereira, and V. Teague. How Not to Prove Your Election
Outcome. In 2020 IEEE SP 2020, pages 644–660. IEEE, 2020.

13. T. Haines and J. Müller. SoK: Techniques for Verifiable Mix Nets. In 33rd IEEE
Computer Security Foundations Symposium, CSF 2020, Boston, MA, USA, June
22-26, 2020, pages 49–64. IEEE, 2020.

17

14. C. Hébant, D. H. Phan, and D. Pointcheval. Linearly-Homomorphic Signatures
and Scalable Mix-Nets. In Public-Key Cryptography - PKC 2020 - International
Conference on Practice and Theory in Public-Key Cryptography, 2020. Proceed-
ings., 2020.

15. M. Jakobsson, A. Juels, and R. L. Rivest. Making Mix Nets Robust for Electronic
Voting by Randomized Partial Checking. In USENIX Security Symposium, pages
339–353. USENIX, 2002.

16. S. Khazaei, T. Moran, and D. Wikström. A Mix-Net from Any CCA2 Secure
Cryptosystem. In X. Wang and K. Sako, editors, Advances in Cryptology - ASI-
ACRYPT 2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, Proceedings, volume 7658 of Lecture Notes
in Computer Science, pages 607–625. Springer, 2012.

17. S. Khazaei and D. Wikström. Randomized Partial Checking Revisited. In CT-
RSA, volume 7779 of Lecture Notes in Computer Science, pages 115–128. Springer,
2013.

18. R. Küsters, J. Müller, E. Scapin, and T. Truderung. sElect: A Lightweight Verifi-
able Remote Voting System. In IEEE 29th Computer Security Foundations Sym-
posium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 341–354, 2016.

19. R. Küsters, T. Truderung, and A. Vogt. Accountability: Definition and Relation-
ship to Verifiability. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors,
Proceedings of the 17th ACM Conference on Computer and Communications Secu-
rity, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010, pages 526–535. ACM,
2010.

20. R. Küsters, T. Truderung, and A. Vogt. Formal Analysis of Chaumian Mix Nets
with Randomized Partial Checking. In 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 343–358, 2014.

21. B. Schneier. Applied Cryptography - Protocols, Algorithms, and Source Code in C,
2nd Edition. Wiley, 1996.

22. D. Wikström. A Sender Verifiable Mix-Net and a New Proof of a Shuffle. In
Advances in Cryptology - ASIACRYPT 2005, 11th International Conference on the
Theory and Application of Cryptology and Information Security, Chennai, India,
December 4-8, 2005, Proceedings, pages 273–292, 2005.

23. D. Wikström. A Commitment-Consistent Proof of a Shuffle. In Information Secu-
rity and Privacy, 14th Australasian Conference, ACISP 2009, Brisbane, Australia,
July 1-3, 2009, Proceedings, pages 407–421, 2009.

A Formal Verifiability Analysis

In this section, we state and prove our verifiability result of the opti-
mal RPC protocol with full details. In what follows, we describe the
computational model of our verifiability analysis (App. A.1), and then
recall the verifiability framework that we will use (App. A.2). After that,
we will state the formal verifiability result of the optimal RPC protocol
(App. A.3) and prove it formally (App. A.4).

18

A.1 Computational model

We start by formally modeling RPC using a general and established com-
putational framework (see, e.g., [9, 19]) that we use for analyzing verifia-
bility. The computational model introduces the notion of a process which
can be used to model protocols. Essentially, a process π̂P modeling some
protocol P is a set of interacting ppt Turing machines which capture
the honest behavior of protocol participants. The protocol P runs along-
side an adversary A, modeled via another process πA, which controls the
network and may corrupt protocol participants; here we assume static
corruption. We write π = (π̂P ‖πA) for the combined process.

In what follows, we explain the computational model for our verifia-
bility analysis (Section A) in more detail.

Process. A process is a set of probabilistic polynomial-time interactive
Turing machines (ITMs, also called programs) which are connected via
named tapes (also called channels). Two programs with a channel of the
same name but opposite directions (input/output) are connected by this
channel. A process may have external input/output channels, those that
are not connected internally. At any time of a process run, one program is
active only. The active program may send a message to another program
via a channel. This program then becomes active and after some compu-
tation can send a message to another program, and so on. Each process
contains a master program, which is the first program to be activated
and which is activated if the active program did not produce output (and
hence, did not activate another program). If the master program is active
but does not produce output, a run stops.

We write a process π as π = p1‖ · · · ‖pl, where p1, . . . , pl are programs.
If π1 and π2 are processes, then π1‖π2 is a process, provided that the
processes are connectible: two processes are connectible if common exter-
nal channels, i.e., channels with the same name, have opposite directions
(input/output); internal channels are renamed, if necessary. A process π
where all programs are given the security parameter 1` is denoted by π(`).
In the processes we consider, the length of a run is always polynomially
bounded in `. Clearly, a run is uniquely determined by the random coins
used by the programs in π.

Protocol. A protocol P is modeled via a process, where different partic-
ipants and components are represented via one ITM each. Typically, a
protocol contains a scheduler S as one of its participants which acts as
the master program of the protocol process (see below). The task of the

19

scheduler is to trigger the protocol participants and the adversary in the
appropriate order.

The honest programs of the agents of P are typically specified in
such a way that the adversary A can corrupt the programs by sending
the special message corrupt. Upon receiving such a message, the agent
reveals all or some of its internal state to the adversary and from then on
is controlled by the adversary. Some agents, such as the scheduler, will
typically not be corruptible, i.e., they would ignore corrupt messages. Also,
agents might only accept corrupt messages upon initialization, modeling
static corruption. This is the case for our security analysis of RPC.

We say that an agent a is honest in a protocol run r if the agent has
not been corrupted in this run, i.e., has not accepted a corrupt message
throughout the run. We say that an agent a is honest if for all adversarial
programs πA the agent is honest in all runs of π̂P ‖πA, i.e., a always ignores
all corrupt messages.

Property. A property γ of P is a subset of the set of all runs of P .10 By
¬γ we denote the complement of γ.

A.2 Verifiability framework

We recall the verifiability framework by Küsters, Truderung, and Vogt [19]
that we use to analyze the optimal RPC protocol.

Intuitively, a mix net is verifiable if an incorrect final outcome is ac-
cepted only with small probability δ ∈ [0, 1].

Judge. To model whether the final outcome of a protocol run should be
accepted, the verifiability definition by Küsters, Truderung, and Vogt as-
sumes an additional protocol participant J , called the judge. The judge
can be thought of as a “virtual” entity; in reality, the program of J can
be carried out by any party, including external observers or the senders
themselves, since its input is merely public information. On a high level,
the judge performs certain checks to ensure the correctness of the final
outcome (e.g., verifying all NIZKPs). Typically, the program of J fol-
lows immediately from the protocol description. In the case of RPC, the
judge performs the auditor’s checks. Formally, to either accept or reject
a protocol run, the judge writes accept or reject on a dedicated channel.

10 Recall that the description of a run r of P contains the description of the process
π̂P ‖πA (and hence, in particular the adversary) from which r originates. Therefore,
γ can be formulated independently of a specific adversary.

20

Goal. To specify which runs are “correct” in some protocol-specific sense,
Küsters, Truderung, and Vogt use the notion of a goal γ. Formally, a goal
γ is simply a set of protocol runs. For mix nets, γ would contain those runs
where the announced mix net result corresponds to the actual messages
of the senders.

In what follows, we describe the goal γ(k, ϕ) that we use to analyze
all the different mix nets. This goal was previously applied to analyze
and compare all verifiable mix nets from the literature (see [13] for a sys-
tematic overview). The parameter ϕ is a Boolean formula that describes
which protocol participants are assumed to be honest in a run, i.e., not
corrupted by the adversary. On a high level, the parameter k denotes the
maximum number of messages submitted by the honest senders that the
adversary is allowed to manipulate. So, roughly speaking, the goal γ(k, ϕ)
consists of those runs of a mix net protocol P where either ϕ is false, or ϕ
holds true and the adversary manipulated at most k messages of honest
senders. More formally, the goal γ(k, ϕ) is defined as follows.

Definition 1 (Goal γ(k, ϕ)). Let P be a mix net protocol with nS senders.
Let π be an instance of P , and let r be a run of π. Let S1, . . . , Snh

S
be those

senders that are honest in r. Let m = m1, . . . ,mnh
S

be the plaintext inputs

of these senders in r. Then, γ(k, ϕ) is satisfied in r if either (a) the trust
assumption ϕ does not hold true in r, or if (b) ϕ holds true in r and
there exist messages m̃1, . . . , m̃nS

(including ⊥) such that the following
conditions hold true:

– The multiset {m̃1, . . . , m̃nS
} contains at least nhS − k elements of the

multiset {m1, . . . ,mnh
S
}.

– The mix net outcome as published in r (if any) equals to a permutation
of {m̃1, . . . , m̃nS

}.

If ϕ does not hold true in r and no outcome is published in r, then
γ(k, ϕ) is not satistied in r.

Verifiability. Now, the idea behind the verifiability definition is simple.
The judge J should accept a protocol run only if the goal γ is met: as
discussed, if we use the goal γ(k, ϕ), then this essentially means that the
published mix net result corresponds to the actual messages of the senders
up to k messages of honest senders. More precisely, the definition requires
that the probability (over the set of all protocol runs) that the goal γ is
not satisfied but the judge nevertheless accepts the run is δ-bounded.11

11 A function f is δ-bounded if, for every c > 0, there exists `0 such that f(`) ≤ δ+ `−c

for all ` > `0.

21

Certainly, δ = 0 would be desirable but this perfect tolerance cannot
be achieved by any known verifiable decryption mix net (see [13]). The
parameter δ is called the verifiability tolerance of the protocol.

To define this notion formally, we denote by Pr[π(`) 7→ ¬γ, (J : accept)]
the probability that π, with security parameter 1`, produces a run which
is not in γ but nevertheless accepted by J . Now, we formally define veri-
fiability as follows.

Definition 2 (Verifiability). Let P be a protocol with the set of agents
Σ. Let δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and γ be a
goal. Then, we say that the protocol P is (γ, δ)-verifiable by the judge
J if for all adversaries πA and π = (π̂P ‖πA), the probability Pr[π(`) 7→
¬γ, (J : accept)] is δ-bounded as a function of `.

We note that the original definition in [19] also captures soundness: if
the protocol runs with a benign adversary, which, in particular, would not
corrupt parties, then the judge accepts all runs. This kind of soundness
can be considered to be a sanity check of the protocol, including the judg-
ing procedure, and is typically easy to check. For brevity of presentation,
we omit this condition here.

A.3 Formal result

We are now able to precisely state the verifiability property of the optimal
RPC protocol according to Definition 2. We prove the verifiability result
for the goal γ(k, ϕ) (Definition 1).

Assumptions. We make the following assumptions:

(V1) The public-key encryption scheme E is IND-CPA-secure.12

(V2) (Prove,Verify) is a non-interactive proof (NIP) of correct decryp-
tion.13

(V3) The bulletin board B, the judge J , and the auditor are honest, i.e.,
ϕ = hon(J) ∧ hon(B) ∧ hon(A).

Note that these assumptions are the same as for the original RPC
protocol.

12 For verifiability/accountability, IND-CPA-security is sufficient. For privacy, we need
the stronger notion of IND-CCA-security.

13 The zero-knowledge property is necessary for privacy but not for verifiabil-
ity/accountability.

22

Result. Let p ∈ (0, 1] be the probability for opening either a left or right
link (as opposed to opening neither of them). Now, intuitively, the fol-
lowing theorem states that the probability that in a run of the optimal
RPC protocol with verification probability p more than k inputs of honest
senders have been manipulated but the judge J nevertheless accepts the
run is bounded by (1− p

2)k+1.

Theorem 2 (Verifiability). Under the assumptions (V1) to (V3) stated
above, the decryption mix net protocol with optimal RPC is (γ(k, ϕ), δk(p))-
verifiable by the judge J , where

δk(p) =
(

1− p

2

)k+1
.

Our proof will demonstrate that, just as the original RPC protocol,
our optimal RPC version even provides the stronger notion of (individual)
accountability [19] but with tighter tolerance δk(p). Individual account-
ability not only guarantees that the correctness of the mix net’s outcome
can be verified but also that misbehaving mix servers (if any) can be
identified and thus held accountable.

Proof sketch. Our complete formal proof of Theorem 2 is provided in
App. A.4. In what follows, we describe its high-level idea.

We first observe that it is not possible to undetectably “drop” an
honest sender’s input ciphertext by claiming that it was invalid. More
precisely, the probability that an honest sender S outputs a ciphertext
trace for which (c0j , . . .) ∈ ij holds true but the auditor nevertheless does
not output dis(Mj) is negligible. This follows from the correctness of the
PKE scheme, the soundness of the NIP scheme, and the fact that honest
senders run the (correct) encryption algorithm of the PKE scheme.

Since the ciphertext traces of two distinct honest senders “clash” only
with at most negligible probability, it follows that an honest sender’s plain
input message cannot be “dropped” by claiming that it was a duplicate.
More precisely, if an honest sender S outputs a ciphertext trace for which
((c̃0j , c̃

1
j , c̃

2
j , . . .), (c

0
j , c

1
j , c

2
j , . . .)) ∈ dj holds true, then the remaining cipher-

text c̃2j is part of a dishonest sender’s ciphertext trace and c̃2j contains
the honest sender’s plain input message. This follows (with overwhelm-
ing probability) from the IND-CPA-security of the PKE scheme (which
guarantees that ciphertexts equal with at most negligible probability),
the soundness of the NIP scheme, and the fact that honest senders run
the (correct) encryption algorithm of the PKE scheme.

23

In combination, these two observations yield that all honest senders’
plain input messages are contained in the input RPC vector c01. Therefore,
if an adversary wants to manipulate an honest sender’s input message,
then the adversary has to manipulate at least one RPC vector c1j or c2j
of a malicious mix server Mj .

However, if the auditor does not output dis(Mj), then we have that
each of the RPC vectors c0j , c

1
j , and c2j contains distinct ciphertext ele-

ments. Due to the soundness of the NIP, for each intermediate element
c1 ∈ c1j , there exists at most one element c0 ∈ c0j for which Mj can prove

that c0 decrypts to c1; analogously for each element c2 ∈ c2j . Furthermore,

if the auditor does not output dis(Mj), then |c0j | = |c1j | holds true. There-

fore, if the decryption c1 of some c0 ∈ c0j is missing in c1j , then there exists

c̃1 ∈ c1j for which there does not exist c̃0 ∈ c0j so that Mj can provide

a valid proof that c̃0 decrypts to c̃1. This remains undetected only if the
left link of c̃1 is not supposed to be opened. The probability of the latter
event is bounded (1− p

2), where p is the probability that either the left or
right link of a given intermediate ciphertext is to be opened. Analogously
for the case that an expected c2 is missing in c2j .

Since all elements in c0j , c
1
j , and c2j are distinct if the auditor does not

output dis(Mj), we can repeat the above argument independently k times
for the case that more than k expected elements are missing in c1j or c2j .

The probability of this event is therefore bounded by (1− p
2)k+1.

Now, in combination with the observation above that all honest senders’
inputs are contained in c01, we can conclude that manipulating more than
k honest plain input messages remains undetected with probability at
most (1− p

2)k+1. Furthermore, since the auditor also checks for each mix
server Mj whether |c0j | = |c1j | = |c2j | holds true, it is not possible to
undetectably “stuff” dishonest input messages. Altogether, we can con-
clude that the probability of the event that γ(k, ϕ) does not hold true in
a run r of an arbitrary instance π of the optimal RPC protocol (where
assumptions (V1) to (V3) are satisfied) but the auditor nevertheless does
not output dis(Mj) for some Mj is bounded by (1 − p

2)k+1. This proves
Theorem 2.

A.4 Proof

We provide a formal proof of Theorem 2 which establishes the verifiability
result of the new RPC protocol described in Sec. 6.2.

We will first show that it is not possible to undetectably “drop” an
honest sender’s input ciphertext by claiming that it was invalid.

24

Lemma 1. Let r be an arbitrary run of π in which the auditor does
not output dis(M). Then there does not exist an honest sender S which
outputs ciphertext c0 such that (c0, . . .) ∈ i holds true (with overwhelming
probability).

Proof. Assume that i 6= ∅. Let (c0, c1, c2, π1, π2) ∈ i be an arbitrary entry
of i.

Since the auditor does not output dis(M), we have that

– Verify(pk1, c0, c1, π1) = 1, and
– Verify(pk1, c1, c2, π2) = 1

hold true.
Due to the soundness of the non-interactive proof, we have that with

overwhelming probability

– c1 ∈ Enc(pk1, c0), and
– c2 ∈ Enc(pk2, c1)

hold true, and that there exist sk1, sk2 such that

– (pk1, sk1) ∈ KeyGen(1λ), and
– (pk2, sk2) ∈ KeyGen(1λ)

hold true as well.
Since the auditor does not output dis(M), we have that c1 = ⊥ or

c2 = ⊥ hold true.
Now, assume that there exists an honest sender S which output c0.

Then, there exists a message m such that

– ⊥ ∈ Enc(pkA,m), or
– ⊥ ∈ Enc(pk2,Enc(pkA,m))

hold true. This would be a contradiction to the correctness of the public-
key encryption scheme since there exist sk2, skA such that

– (pk2, sk2) ∈ KeyGen(1λ), and
– (pkA, skA) ∈ KeyGen(1λ)

hold true.

We now observe that the traces of two honest senders “clash” only
with at most negligible probability.

Lemma 2. Let r be an arbitrary run of π. The probability that two honest
senders S and S̃ generate ciphertext traces (c0, c1, c2) and (c̃0, c̃1, c̃2) such
that

25

– c0 = c̃0, or

– c1 = c̃1, or

– c2 = c̃2

holds true is negligible.

Proof. This follows from the IND-CPA-security of the PKE scheme.

The following result states that an honest sender’s plain input message
cannot be “dropped” by claiming that it was a duplicate.

Lemma 3. Let r be an arbitrary run of π in which the auditor does not
output dis(M) and d 6= ∅. Let ((c0, c1, c2, π1, π2), (c̃0, c̃1, c2, π̃1, π̃2)) ∈ d be
an arbitrary entry of d. If there exist an honest sender S̃ which output c̃0,
then there exists a dishonest sender S which output c0 (with overwhelming
probability).

Proof. Since the auditor does not output dis(M), we have that

– Verify(pk1, c0, c1, π1) = 1, and

– Verify(pk2, c1, c2, π2) = 1, and

– Verify(pk1, c̃0, c̃1, π̃1) = 1, and

– Verify(pk2, c̃1, c̃2, π̃2) = 1

hold true.

Due to the soundness of the non-interactive proof, we have that with
overwhelming probability

– c0 ∈ Enc(pk1, c1), and

– c1 ∈ Enc(pk2, c2), and

– c̃0 ∈ Enc(pk1, c̃1), and

– c̃1 ∈ Enc(pk2, c̃2)

hold true, and that there exist sk1, sk2 such that

– (pk1, sk1) ∈ KeyGen(1λ), and

– (pk2, sk2) ∈ KeyGen(1λ)

hold true as well.

Since the auditor does not output dis(M), we have that

– c1 = c̃1, or

– c2 = c̃2

26

hold true.

Hence, there exist senders S and S̃ with ciphertext traces (c0, c1, c2)
and (c̃0, c̃1, c̃2). If S̃ is honest in r, then it follows from Lemma 2 that
sender S is dishonest.

The following result states that all honest senders’ plain input mes-
sages are contained in the input RPC vector c0.

Lemma 4. Let r be an arbitrary run of π in which the auditor does not
output dis(M). Let (Si)i∈Ih be the honest senders in r and (mi)i∈Ih be
their plain input messages. Then, for each i ∈ Ih, there exists a unique
c0i ∈ c0 such that

c0i ∈ Enc(pk2,Enc(pk1,Enc(pkA,mi)))

holds true (with overwhelming probability).

Proof. Since the auditor does not output dis(M), we have that

c20 = c0 ∪ (c0)(c0,...)∈i ∪ (c0)((c0,...),...)∈d

as multisets holds true.

If an honest sender’s input ciphertext c0 ∈ c20 is in c0, then the claim
is trivial.

If an honest input ciphertext c0 ∈ c20 (for some plain message m) is
not in c0, then it follows from Lemma 1 and Lemma 3 that there exists
a unique dishonest sender S̃ with input ciphertext c̃0 ∈ c20 such that

– c̃0 ∈ c0, and

– (c̃0, . . .), (c0, . . .)) ∈ d

hold true. In this case, the claim follows for c0i = c̃0.

We now define an honest sender’s valid ciphertext trace through the
(local) mix as either the one that the sender create itself (in case the
sender’s input ciphertext is in c0) or the one of the associated dishonest
sender (in case the sender’s input ciphertext is not in c0).

Definition 3 (Valid traces). Let r be an arbitrary run of π in which
the auditor does not output dis(M). Let S be an honest sender in r. Let
c0, c1, c2 be the ciphertexts created by S during the submission phase for
plain input message m. Then, we define the valid trace of S through the
(local) mix as

27

– (c0, c1, c2) if c0 ∈ c0, and
– (c̃0, c̃1, c̃2) if c0 /∈ c0 where ((c̃0, c̃1, c̃2, . . .), (c0, c1, c2, . . .)) ∈ d as in

Lemma 4.

Due to Lemma 2, each honest sender’s valid trace is unique in both
cases. Furthermore, we have that in both cases, the final ciphertext of the
sender’s valid trace decrypts to m under skA.

We now observe that manipulating a single honest sender’s valid trace
remains undetected with probability at most (1− p

2), where p is the ver-
ification probability of the optimal RPC protocol.

Lemma 5. Let r be an arbitrary run of π in which the auditor does not
output dis(M). Let S be an arbitrary honest sender in r with valid trace
(c0, c1, c2). Then, the probability that c2 /∈ c2 holds true is bounded by
(1− p

2).

Proof. If (. . . , (c0, c1, c2, . . .)) ∈ d, then c2 ∈ c2 with overwhelming prob-
ability because the auditor does not output dis(M).

Now, assume that (. . . , (c0, c1, c2, . . .)) /∈ d. We first consider the case
c1 /∈ c1:

Since the auditor does not output dis(M), it follows from the proof
of Lemma 1 that there exists sk1 such that (pk1, sk1) ∈ KeyGen(1λ). We
denote by c1exp the result of decrypting (and then sorting) all ciphertexts

in c0 under sk1.
Since the auditor does not output dis(M), we have that |c0j | = |c1j |

holds true. Therefore, there exists c̃1 ∈ c1 such that

– c̃1 6= c1 and
– c1 \ c̃1 = c1exp \ c1

hold true.
Since the auditor does not output dis(M), we have that

c1j [i] 6= c1j [i
′]

holds true for all i 6= i′. Due to the correctness of the PKE scheme
E and the soundness of the NIZKP (Prove,Verify), there does not exist
c̃0 ∈ c0 and proof π1 such that Verify(pk1, c̃0, c̃1, π1) = 1 holds true.

Hence, the probability of the event that c1 /∈ c1 holds true and the
auditor does not output dis(M) is bounded by the probability that the
left link of c̃1 is not to be opened.

The case c2 /∈ c2 is analogous.

28

We now state that (valid) traces are unique.

Lemma 6. Let r be an arbitrary run of π in which the auditor does not
output dis(M). Then, for each c0 ∈ c0, there exists at most one c1 ∈
c1 and at most one c2 ∈ c2 such that there exists proofs π1, π2 so that
Verify(pk1, c0, c1, π1) = 1 and Verify(pk2, c1, c2, π2) = 1 hold true.

Proof. Since the auditor does not output dis(M), we have that

– ∀i 6= i′ : c1[i] 6= c1[i′], and
– ∀i 6= i′ : c2[i] 6= c2[i′]

hold true. Due to the correctness of the PKE scheme E and the soundness
of the non-interactive proof (Prove,Verify), the claim follows.

The following result states that manipulating the valid traces of more
than k honest senders remains undetected with probability at most (1−
p
2)k+1.

Lemma 7. Let r be an arbitrary run of π in which the auditor does not
output dis(M). Let (Si)i∈Ih be the honest senders in r with valid traces
(c0i , c

1
i , c

2
i)i∈Ih. Then, the probability that c2i /∈ c2 holds true for more than

k honest senders Si is bounded by (1− p
2)k+1.

Proof. This follows from a combination of Lemma 6 and Lemma 5.

From Lemma 7 and the fact that the auditor checks whether

|c0| = |c1| = |c2|

holds true (which guarantees that no dishonest messages can be “stuffed”),
we can conclude that if the goal γ(k, ϕ) is violated in a run r of an arbi-
trary instance π of the optimal RPC protocol (where assumptions (V1)
to (V3) are satisfied), then the auditor does not output dis(M) with prob-
ability at most (1− p

2)k+1. This proves Theorem 2.

29

