Skip to main content

A Canonical Algebra of Open Transition Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 13077))

Abstract

Feedback and state are closely interrelated concepts. Categories with feedback, originally proposed by Katis, Sabadini and Walters, are a weakening of the notion of traced monoidal categories, with several pertinent applications in computer science. The construction of the free such categories has appeared in several different contexts, and can be considered as state bootstrapping. We show that a categorical algebra for open transition systems, \(\mathbf {Span}(\mathbf {Graph})_*\), also due to Katis, Sabadini and Walters, is the free category with feedback over \(\mathbf {Span}(\mathbf {Set})\). This algebra of transition systems is obtained by adding state to an algebra of predicates, and therefore \(\mathbf {Span}(\mathbf {Graph})_*\) is the canonical such algebra.

Di Lavore, Román and Sobociński were supported by the European Union through the ESF funded Estonian IT Academy research measure (2014-2020.4.05.19-0001). This work was also supported by the Estonian Research Council grant PRG1210.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In its original description: “the relay is designed to produce a large and permanent change in the current flowing in an electrical circuit by means of a small electrical stimulus received from the outside” ([12], emphasis added).

  2. 2.

    In other words, traces are used to talk about processes in equilibrium, processes that have reached a fixed point. A theorem by Hasegawa [22] and Hyland [5] corroborates this interpretation: a trace in a cartesian category corresponds to a fixpoint operator.

  3. 3.

    This is the \(\mathbf {Int}\) construction from [24].

  4. 4.

    As in Sect. 2, \(\partial _{A} = \mathsf {fbk}(\sigma _{A,A})\).

References

  1. Abramsky, S.: What are the fundamental structures of concurrency? We still don’t know! CoRR abs/1401.4973 (2014). http://arxiv.org/abs/1401.4973

  2. Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput. Sci. 2(5) (2006). https://doi.org/10.2168/LMCS-2(5:4)2006

  3. Baez, J.C., Courser, K.: Structured cospans. CoRR abs/1911.04630 (2019)

    Google Scholar 

  4. Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar. LNM, vol. 47, pp. 1–77. Springer, Heidelberg (1967). https://doi.org/10.1007/BFb0074299

    Chapter  MATH  Google Scholar 

  5. Benton, N., Hyland, M.: Traced premonoidal categories. RAIRO Theor. Inform. Appl. 37(4), 273–299 (2003). https://doi.org/10.1051/ita:2003020

    Article  MathSciNet  MATH  Google Scholar 

  6. Bloom, S.L., Ésik, Z.: Iteration Theories - The Equational Logic of Iterative Processes. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-78034-9

  7. Bonchi, F., Holland, J., Piedeleu, R., Sobociński, P., Zanasi, F.: Diagrammatic algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL), 25:1–25:28 (2019). https://doi.org/10.1145/3290338

  8. Bonchi, F., Sobociński, P., Zanasi, F.: The calculus of signal flow diagrams I: linear relations on streams. Inf. Comput. 252, 2–29 (2017). https://doi.org/10.1016/j.ic.2016.03.002

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_21

    Chapter  Google Scholar 

  10. Carboni, A., Walters, R.F.C.: Cartesian bicategories I. J. Pure Appl. Algebra 49(1–2), 11–32 (1987)

    Article  MathSciNet  Google Scholar 

  11. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: Programming and reasoning with guarded recursion for coinductive types. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 407–421. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0_26

    Chapter  MATH  Google Scholar 

  12. Eccles, W.H., Jordan, F.W.: Improvements in ionic relays. British patent number: GB 148582 (1918)

    Google Scholar 

  13. Elgot, C.C.: Monadic computation and iterative algebraic theories. In: Studies in Logic and the Foundations of Mathematics, vol. 80, pp. 175–230. Elsevier (1975)

    Google Scholar 

  14. Fong, B.: Decorated cospans. Theory Appl. Categories 30(33), 1096–1120 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Gianola, A., Kasangian, S., Manicardi, D., Sabadini, N., Schiavio, F., Tini, S.: CospanSpan(Graph): a compositional description of the heart system. Fundam. Informaticae 171(1–4), 221–237 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Gianola, A., Kasangian, S., Manicardi, D., Sabadini, N., Tini, S.: Compositional modeling of biological systems in CospanSpan(Graph). In: Proceedings of ICTCS 2020. CEUR-WS (2020, to appear)

    Google Scholar 

  17. Gianola, A., Kasangian, S., Sabadini, N.: Cospan/Span(Graph): an algebra for open, reconfigurable automata networks. In: Bonchi, F., König, B. (eds.) 7th Conference on Algebra and Coalgebra in Computer Science, CALCO 2017, Ljubljana, Slovenia, 12–16 June 2017. LIPIcs, vol. 72, pp. 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.CALCO.2017.2

  18. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/10.1016/0304-3975(87)90045-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Girard, J.Y.: Towards a geometry of interaction. Contemp. Math. 92(69–108), 6 (1989)

    MathSciNet  Google Scholar 

  20. Goncharov, S., Schröder, L.: Guarded traced categories. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 313–330. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_17

    Chapter  Google Scholar 

  21. Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and models of cyclic lambda calculi. In: de Groote, P., Roger Hindley, J. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 196–213. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62688-3_37

    Chapter  MATH  Google Scholar 

  22. Hasegawa, M.: The uniformity principle on traced monoidal categories. In: Blute, R., Selinger, P. (eds.) Category Theory and Computer Science, CTCS 2002, Ottawa, Canada, 15–17 August 2002. Electronic Notes in Theoretical Computer Science, vol. 69, pp. 137–155. Elsevier (2002). https://doi.org/10.1016/S1571-0661(04)80563-2

  23. Hoshino, N., Muroya, K., Hasuo, I.: Memoryful geometry of interaction: from coalgebraic components to algebraic effects. In: Henzinger, T.A., Miller, D. (eds.) Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS 2014, Vienna, Austria, 14–18 July 2014, pp. 52:1–52:10. ACM (2014). https://doi.org/10.1145/2603088.2603124

  24. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cambridge Philos. Soc. 119, 447–468 (1996). https://doi.org/10.1017/S0305004100074338

  25. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory, vol. 1. McGraw-Hill, New York (1969)

    Google Scholar 

  26. Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of processes. J. Pure Appl. Algebra 115(2), 141–178 (1997)

    Article  MathSciNet  Google Scholar 

  27. Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): a categorical algebra of transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–321. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0000479

    Chapter  Google Scholar 

  28. Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of feedback and systems with boundary. In: Rendiconti del Seminario Matematico di Palermo (1999)

    Google Scholar 

  29. Katis, P., Sabadini, N., Walters, R.F.C.: A formalization of the IWIM model. In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 267–283. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45263-X_17

    Chapter  Google Scholar 

  30. Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics. RAIRO-Theor. Inform. Appl. 36(2), 181–194 (2002). https://doi.org/10.1051/ita:2002009

    Article  MathSciNet  MATH  Google Scholar 

  31. Katis, P., Sabadini, N., Walters, R.F.C.: A process algebra for the Span(Graph) model of concurrency. arXiv preprint arXiv:0904.3964 (2009)

  32. Lack, S.: Composing PROPs. Theory Appl. Categories 13(9), 147–163 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, Springer, New York (1978). https://doi.org/10.1007/978-1-4757-4721-8

  34. Mason, S.J.: Feedback theory - some properties of signal flow graphs. Proc. Inst. Radio Eng. 41(9), 1144–1156 (1953). https://doi.org/10.1109/JRPROC.1953.274449

    Article  Google Scholar 

  35. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–1079 (1955)

    Article  MathSciNet  Google Scholar 

  36. Milius, S., Litak, T.: Guard your daggers and traces: properties of guarded (co-) recursion. Fund. Inform. 150(3–4), 407–449 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Generic commutative separable algebras and cospans of graphs. Theory Appl. Categories 15(6), 164–177 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Sabadini, N., Schiavio, F., Walters, R.F.C.: On the geometry and algebra of networks with state. Theor. Comput. Sci. 664, 144–163 (2017)

    Article  MathSciNet  Google Scholar 

  39. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke B. (ed.) New Structures for Physics, vol. 813, pp. 289–355. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12821-9_4

  40. Shannon, C.E.: The Theory and Design of Linear Differential Equation Machines. Bell Telephone Laboratories (1942)

    Google Scholar 

  41. Sobociński, P.: A non-interleaving process calculus for multi-party synchronisation. In: 2nd Interaction and Concurrency Experience: Structured Interactions, (ICE 2009). EPTCS, vol. 12 (2009). https://doi.org/10.4204/eptcs.12.6. http://users.ecs.soton.ac.uk/ps/papers/ice09.pdf

  42. Sobociński, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_38

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Lavore, E., Gianola, A., Román, M., Sabadini, N., Sobociński, P. (2021). A Canonical Algebra of Open Transition Systems. In: Salaün, G., Wijs, A. (eds) Formal Aspects of Component Software. FACS 2021. Lecture Notes in Computer Science(), vol 13077. Springer, Cham. https://doi.org/10.1007/978-3-030-90636-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90636-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90635-1

  • Online ISBN: 978-3-030-90636-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics