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Abstract. Choreography automata are a model of choreographies envisaging high-level
views of the behaviour of communicating systems as finite-state automata. The behaviour
of each participant of a choreography can be obtained via a projection operation from
a choreography automaton. The system of participants obtained by projection is well-
behaved if the choreography automaton satisfies some well-formedness conditions. We
present Corinne, a tool allowing one to render, compute projections of and compose
choreography automata, as well as to check well-formedness conditions.

1 Introduction

Programming and understanding distributed systems is notoriously difficult due to the need to
reason on multiple flows of execution and many possible behaviours; yet distributed systems are
fundamental nowadays. Indeed most of our systems, from social networks to apps, from games to
scientific software, are distributed. A main challenge when programming distributed systems, in
particular multiparty ones, is how to define communication protocols avoiding subtle bugs such
as deadlocks.

In order to reason on the correctness and properties of multiparty communication protocols,
dedicated models such as conversation protocols [24], choreographies [11,28,31], global graphs [35],
and multiparty session types [12,26,27] have been proposed. Their common trait is to provide
global descriptions of the behaviour of a distributed system, and to allow one to ensure desirable
properties such as deadlock freedom by checking some structural conditions on the model. Also,
they provide an operation, called projection, to extract from the global specification a description
of the (local) behaviour that each participant has to follow in order to implement the desired
global behaviour.

In this paper we focus on choreography automata (c-automata) [4], which are an automata
model belonging to the family described above. Essentially, c-automata are finite-state automata
whose transitions are labelled by interactions representing point-to-point communications between
a sender and a receiver. Despite its simplicity, manually performing the constructions and analysis
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(such as the ones in [4]) on c-automata is tedious, error prone even for simple cases, and its
complexity increases with the size of c-automata to the point that it becomes practically impossible
even on moderately large instances.

Thus, we decided to automate the main constructions and analysis on c-automata in a
prototype tool called Corinne. This tool allows us to experiment with c-automata. We illustrate
the usefulness of Corinne by applying it to the examples in [4,3]. This exercise allowed us to spot
a couple of (minor) errors in [4]. We will come back to this when describing the tool. It is worth
noticing that the definitions of choreography automaton and of its projection are independent of
the chosen communication model (synchronous or asynchronous). Indeed, this choice affects only
the definition of well-formedness conditions.

After reviewing the main constructions and operations of c-automata (§ 2), we introduce
Corinne (§ 3). We will conclude the paper (§ 4) with some final remarks.

Corinne is available at [14] (under the open-source MIT license), together with all the examples
discussed in this paper.

2 Choreography Automata

This section surveys choreography automata (c-automata) borrowing definitions and concepts
from [4,5]; for full details about this formalism we refer the reader to [4,5]. C-automata (ranged over
by CA, CB, etc.) are Finite-State Automata (FSAs) whose transitions are labelled by interactions
of the form A−→B : m; such interaction represents a communication between participants A and B
where the former sends a message (of type) m to the latter, which is supposed to receive m. We
let λ range over the set Lint of interactions.

Definition 2.1 (Choreography automata). A choreography automaton (c-automaton) is an
FSA on the alphabet Lint, namely a tuple 〈Q, q0,Lint,−→〉 where Q is a finite set of states, q0 the

initial state, and −→⊆ Q× Lint ×Q the transition relation. We write q
λ−→ q′ when (q, λ, q′) ∈−→.

Given a c-automaton, the projection operation builds the corresponding communicating system
consisting of the set of projections of the c-automaton on each participant. Each projection is
an FSA as well, on the alphabet Lact of actions, which have the form AB!m,AB?m. The former
denotes the action of sending message m from A to B, the latter the corresponding receiving
action. Such FSAs are called Communicating Finite State Machines (CFSMs) [10]. Hereafter,
PCA denotes the set of participants of a c-automaton CA; note that PCA is necessarily finite.

Definition 2.2 (Automata projection). The projection on A of a transition t = q
λ−→ q′ of a

c-automaton, written t↓A, is defined by:

t↓A =


q

A B!m−−−→ q′ if λ = A−→B : m

q
B A?m−−−→ q′ if λ = B−→A : m

q
ε−→ q′ otherwise

The projection of a c-automaton CA = 〈Q, q0,Lint,→〉 on a participant A ∈ PCA, denoted CA↓A,
is obtained by determinising1 up-to-language equivalence the intermediate automaton

AA = 〈Q, q0,Lact ∪ { ε }, { (q
λ−→ q′)↓A | q

λ−→ q′ }〉

The projection of CA, written CA↓, is the communicating system (CA↓A)A∈PCA .

1 In [4] also minimisation is performed, but this is not needed for the correctness of the constructions,
and it is not currently performed by Corinne.
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The projection of c-automata is essentially obtained by transferring projections of global
specifications present in several choreography-based approaches such as, e.g., [12,26,13,27,35].
A composition operation on c-automata has been recently proposed by the last three authors
in [5]. The idea is to lift at the choreographic level a version of the composition of systems of
CFSMs described in [2] and applied in a multiparty session type setting in [3]. This technique
enables to overcome the fact that in choreographic approaches systems are usually intended to be
closed. Actually, it is instead possible to look at any system as an open one (so enabling modular
development) by looking at any of its participants as a possible interface. Hence, the composition
of systems is essentially obtained by taking two systems, selecting two of their participants (one
per system) provided that they meet some compatibility conditions, and removing them while
redirecting communications to them towards the other system. More precisely, if a message is sent
by some participant A to the chosen interface of the system it belongs to, compatibility conditions
require the interface of the other system to send an identical message to some participant B. In
the composed system A sends the message directly to B. This way of composing systems can be
obtained by applying one after the other two operations:

1. the product of c-automata, building a c-automaton corresponding to the concurrent execution
of the two original c-automata; and

2. a blending operation that, given two participants (the chosen interfaces) of a same c-automaton,
removes them and adjusts the c-automaton as described above.

The formalisation of these operations can be found in [5], while an example will be discussed in
the next section (Fig. 3).

3 Corinne

The operations of projection and composition of c-automata described in § 2 are implemented in
Corinne [14]. The tool is written in python3 and works on c-automata represented as particular
directed graphs in the DOT format [23]. Rendering of DOT files is performed using the graphviz
library [25]. Other formats can be used as input of Corinne; more precisely the tool also parses
regular expressions used as the syntax of global graphs [35] in ChorGram [15,17], or the DOT
representation [23] of global graphs produced by Domitilla [22]. We remark that only global graphs
with no parallel composition correspond to c-automata and can thus be imported. All parsers are
defined using ANTLR4 [32].

Users interact with Corinne through a graphical interface based on the tkinter package [34].
The GUI of Corinne displays FSAs that are either c-automata or CFSMs obtained via projection.
As shown in the screenshot in Fig. 1, each FSA appears in a separate tab. The tab also reports
basic information on the FSA (e.g., number of states and of edges) as well as a graphical rendering
of the FSA itself.

Besides utility menus File and Help, Corinne has two menus to work on c-automata. Menu
Transformations allows one to compute projections2 on a given participant, the product of
two c-automata as well as the blending (synchronisation) operation via interfaces following the
approach described in [5].

Menu Properties instead allows one to check the well-formedness conditions discussed in [4]
ensuring that the language of the c-automaton coincides with the one of the (synchronous) system
obtained via projection, and that the latter is live, lock-free, and deadlock-free (we refer to [4] for

2 Determinisation required for projection is computed using the classical subset construction for FSAs
with ε-transitions.
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Fig. 1. Corinne screenshot

the definition of these properties in the context of c-automata as well as for formal statements
and proofs of the results hinted at above).

The screenshot in Fig. 1 depicts the c-automaton Cref used in [4, Introduction] as a running
example. Cref specifies the coordination among participants C, S, and L whereby a request req
from client C is served by server S which replies with a message (of type) res and logs some
meta-information cnt on a service L (e.g., for billing purposes). Client C may acknowledge a
response of S (i) with an ok message to restart the protocol, or (ii) by requiring a refinement of
the response with a ref message, or else (iii) by ending the protocol with a bye message which S
forwards to L. In the second case, S sends C either a noRef message, if no refinement is possible,
or another res (with the corresponding cnt to L). Using Corinne we can generate the projections
of Cref. Fig. 2 contrasts the projection on participant S returned by Corinne and the one in [4,
Example 3.4], manually computed. The two CFSMs differ on the labels of the transition from state
4 to 6 and {5} to {6}, respectively from the left and the right CFSM, which should correspond to
each other. In fact, the label SC!bye on the transition from {5} to {6} is wrong.

We can also check the well-formedness of Cref, which is the conjunction of two conditions,
well-branchedness and well-sequencedness. Intuitively, well-branchedness requires that all the
participants are aware of which branch is taken in a choice, if they have to behave differently on
the available branches. Well-sequencedness instead requires concurrency (due to communications
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Fig. 2. Projections of Cref on S from Corinne (left) and [4] (right)

involving disjoint sets of participants) to be explicitly represented as commuting diamonds. As
expected Corinne reports Cref to be well-sequenced. Unexpectedly, the check of well-branchedness
fails. This is shown in the message in the bottom part of Fig. 1. The message means that the
third condition in [4, Definition 4.6] fails on the pair of paths 3-0-1-2-3 and 3-4-3 because of
participant L. The reason is that L occurs in the former but not in the latter. This implies that, in
case the system reaches state 3 and participant C keeps on choosing indefinitely to send message
ref to S, participant L will never be aware of what is going on. So L gets stuck waiting for a
message bye that will never arrive. We refer to [4] for further details on well-formedness conditions.
We conjecture that Cref is nevertheless well-behaved under suitable fairness assumptions, but the
theory in [4] needs to be generalised to prove it.

We now demonstrate the composition operation relying on the running example of [3], where
(referring to the UML representations) the diagrams in [3, Fig. 5] and [3, Fig. 6] are composed
to derive the one in [3, Fig. 8]. Fig. 3 shows the two c-automata involved and the result of the
composition. The top-left c-automaton (let’s dub it CA1) represents the global behaviour of a
system with participants P, Q, and H interacting according to the following protocol. Participant
P keeps on sending text messages to Q, which has to deliver them to H. Participant P can send
a new message only if H has ascertained the propriety of language of the previous one, i.e if
the latter does not contain, say, rude or offensive words. Participant H acknowledges to Q the
propriety of language of a received text by means of the message ack. In such a case, Q sends to
P an ok message so that P can proceed by sending a further message. If the message does not
passes the check, then H sends a nack message to inform Q that the text has not the required
propriety of language. In such a case, Q produces transf (a semantically invariant reformulation
of the text), sends it back to H and so that it can be checked. Before doing that, Q informs P
(through the notyet message) that the text has not been accepted yet and a reformulation has
been requested. After receiving a message, H may also decide to stop the interaction, sending a
stop message to inform Q that no more text will be accepted. In such a case, Q informs P of that.

The bottom-left c-automaton (let’s dub it CA2), instead describes a system formed by
participants K, R, and S interacting according to the following protocol. Participant K sends text
messages to R and S in an alternating way, starting with R. Participants R and S inform K that a
text has been accepted or refused by sending back, respectively, either ack or nack. In the former
case, it is the other receiver’s turn to receive the text: a message go is exchanged between R and S
to signal this case. In case nack is sent back, the sender has to resend the text until it is accepted.
Meanwhile, the participant currently selected by K asks the other one to wait, since the previous
message is being resent in a transformed form.



6

Fig. 3. Composition of c-automata in Corinne

In the composition, participants H and K in, respectively, CA1 and CA2 of Fig. 3 are chosen
as interfaces. This means that, e.g., when participant Q sends a text, it will send it alternatively to
R and S. This can be thought somehow as if CA1 invokes CA2 for sending the message. However,
w.r.t. choreographies with procedure invocations such as [20,19], our approach on the one hand
allows a complex interaction between caller and callee choreographies but, on the other hand,
does not allow for parameter passing in the invocation. Notice that the interfaces H and K are
compatible; specifically, the languages of CA1↓H and CA2↓K are dual to each other if we disregard
the name of participants other than H and K in the input/output actions (duality corresponds to
the exchange of ‘!’ with ‘?’ and vice versa in the actions). Compatibility, roughly, enables the
composition not to modify in an essential way the behaviour of participants other than H and
K. To obtain in Corinne the composition of CA1 and CA2 via the chosen interfaces H and K, we
need first to apply Product on the two c-automata and then to apply Synch on H and K on the
result. The only relevant difference between the composition performed by Corinne and the one
in [3] is that the synchronisation in [3] transforms H and K into gateways while our composition
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drops them. Actually, our composition precisely corresponds to the direct composition in [3], but
there is no example in [3] of this form of composition. We can obtain our result from the one
in [3] by transforming sequences of communications A-H-K-B into A-B and B-K-H-A into B-A for
any A and B. We also remark that the representation as c-automata highlights concurrency as
commuting diamonds, e.g., the one at states (4,3),(5,3),(4,4),(5,4). Both the component
c-automata and their composition can be checked to be both well-sequenced and well-branched.
However, the check of well-branchedness on the composition is quite heavy.

4 Conclusion, Related Work, and Future Work

We refer to [4] for a comparison between c-automata and related models, while here we focus on
the relations between Corinne and the most related tools.

Possibly Corinne’s closest sibling is ChorGram, a tool chain based on global graphs to support
choreographic development of message-oriented applications [17,29]. Global graphs are not directly
comparable with c-automata: on the one hand they are more general since they allow one to specify
parallelism, but on the other hand they require structured interactions. As a result, global graphs
without parallel composition correspond to a strict subset of c-automata. In a sense, ChorGram
complements Corinne’s functionalities; for instance, it supports different semantics of global graphs
and some experimental ideas on choreography amendment or model-driven testing of message
passing applications [18]. While Corinne can already take as input global graphs without parallel
composition produced by ChorGram, we plan to further integrate the two tools in the future. We
are currently considering to encode the parallel composition of global graphs as interleaving of
independent transitions. We also plan to extend ChorGram so that it imports c-automata produced
by Corinne. This paves the way to extensions of Corinne with features to import models based,
e.g., on multiparty session types such as [33,21] once proper mappings to c-automata are defined.
We remark that this might not be simple for models relying on asynchronous communications
such as [30,13] for Corinne’s semantics is synchronous.

Another toolkit close to Corinne is CAT, a tool introduced in [6] to support the verification of
communication protocols expressed as contract automata via the analysis of agreement properties.
Contract automata are a versatile model of automata featuring the synthesis of controllers
for communicating components; a thorough analysis based on CAT of the relations between
choreographic- and orchestration-based controllers (initiated in [7]) has been recently developed
in [9]. This suggests a possible entanglement of the complementary features of Corinne and CAT
also in the light of the recent refactoring of the latter tool [8]. In fact, recently this model is
being applied to choreography automata; Corinne could be useful in this context to validate
choreography automata synthesised with contract automata.

We believe that Corinne is useful to experiment with c-automata, yet a number of improvements
are desirable. First, right now the complexity of the check for well-branchedness is too high. We
believe this can be reduced, at least in the average case, by avoiding checking multiple times
analogous choices which are repeated in many states due to concurrency. Also, other functionalities
would be useful, such as performing composition via gateways as described in [3] or checking
well-formedness conditions also for the asynchronous semantics [4].
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