
A Linear Parallel Algorithm to Compute
Bisimulation and Relational Coarsest

Partitions

Jan Martens1(B) , Jan Friso Groote1 , Lars van den Haak1 ,
Pieter Hijma1,2 , and Anton Wijs1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{j.j.m.martens,j.f.groote,l.b.v.d.haak,a.j.wijs}@tue.nl
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

pieter@cs.vu.nl

Abstract. The most efficient way to calculate strong bisimilarity is
by finding the relational coarsest partition of a transition system. We
provide the first linear-time algorithm to calculate strong bisimulation
using parallel random access machines (PRAMs). More precisely, with n
states, m transitions and |Act | ≤ m action labels, we provide an algo-
rithm for max(n, m) processors that calculates strong bisimulation in
time O(n + |Act |) and space O(n + m). The best-known PRAM algo-
rithm has time complexity O(n log n) on a smaller number of processors
making it less suitable for massive parallel devices such as GPUs. An
implementation on a GPU shows that the linear time-bound is achiev-
able on contemporary hardware.

1 Introduction

The notion of bisimilarity for Kripke structures and Labelled Transition Sys-
tems (LTSs) is commonly used to define behavioural equivalence. Deciding this
behavioural equivalence is important in the field of modelling and verifying con-
current and multi-component systems [4,15]. Kanellakis and Smolka proposed a
partition refinement algorithm for obtaining the bisimilarity relation for Kripke
structures [11]. The proposed algorithm has a run time complexity of O(nm)
where n is the number of states and m is the number of transitions of the input.
Later, a more sophisticated refinement algorithm running in O(m log n) steps
was proposed by Paige and Tarjan [16].

In recent years the increase in the speed of sequential chip designs has stag-
nated due to a multitude of factors such as energy consumption and heat genera-
tion. In contrast, parallel devices such as graphics processing units (GPUs) keep
increasing rapidly in computational power. In order to profit from the accelera-
tion of these devices, we require algorithms with massive parallelism. The article
“There’s plenty of room at the Top: What will drive computer performance after

This work is carried out in the context of the NWO AVVA project 612.001751 and the
NWO TTW ChEOPS project 17249.

c© The Author(s) 2021
G. Salaün and A. Wijs (Eds.): FACS 2021, LNCS 13077, pp. 115–133, 2021.
https://doi.org/10.1007/978-3-030-90636-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90636-8_7&domain=pdf
http://orcid.org/0000-0003-4797-7735
http://orcid.org/0000-0003-2196-6587
http://orcid.org/0000-0002-0330-5016
http://orcid.org/0000-0002-5716-1118
http://orcid.org/0000-0002-2071-9624
https://doi.org/10.1007/978-3-030-90636-8_7

116 J. Martens et al.

Moore’s law” by Leierson et al. [13] indicates that the advance in computational
performance will come from software and algorithms that can employ hardware
structures with a massive number of simple, parallel processors, such as GPUs.
In this paper, we propose such an algorithm to decide bisimilarity.

Deciding bisimilarity is P -complete [1], which suggests that bisimilarity is an
inherently sequential problem. This fact has not withheld the community from
searching for efficient parallel algorithms for deciding bisimilarity of Kripke struc-
tures. In particular, Lee and Rajasekaran [12,17] proposed a parallel algorithm
based on the Paige Tarjan algorithm that works in O(n log n) time complexity
using m

log n log log n Concurrent, Read Concurrent Write (CRCW) processors,
and one using only m

n log n Concurrent Read Exclusive Write (CREW) pro-
cessors. Jeong et al. [10] presented a linear time parallel algorithm, but it is
probabilistic in the sense that it has a non-zero chance to output the wrong
result. Furthermore, Wijs [22] presented a GPU implementation of an algorithm
to solve the strong and branching bisimulation partition refinement problems.
In a distributed setting, Blom and Orzan studied algorithms for refinement [2].
Those algorithms use message passing as a way of communication between dif-
ferent workers in a network and rely on a small number of processors. Therefore,
they are very different in nature than our algorithm. Those algorithms were
extended and optimized for branching bisimulation [3].

In this work, we improve on the best known theoretical bound for PRAM
algorithms using a higher degree of parallelism. The proposed algorithm improves
the run time complexity to O(n) on max(n,m) processors and is based on the
sequential algorithm of Kanellakis and Smolka [11]. The larger number of pro-
cessors used in this algorithm favours the increasingly parallel design of con-
temporary and future hardware. In addition, the algorithm is optimal w.r.t.
the sequential Kanellakis-Smolka algorithm, meaning that overall, it does not
perform more work than its sequential counterpart.

We first present our algorithm on Kripke structures where transitions are
unlabelled. However, as labelled transition systems (LTSs) are commonly used,
and labels are not straightforward to incorporate in an efficient way (cf. for
instance [21]), we discuss how our algorithm can be extended to take action
labels into account. This leads to an algorithm with a run time complexity of
O(n + |Act |), with Act the set of action labels.

Our algorithm has been designed for and can be analyzed with the CRCW
PRAM model, following notations from [20]. This model is an extension of the
normal RAM model, allowing multiple processors to work with shared memory.
In the CRCW PRAM model, parallel algorithms can be described in a straight-
forward and elegant way. In reality, no device exists that completely adheres
to this PRAM model, but with recent advancements, hardware gets better and
better at approximating the model since the number of parallel threads keeps
growing. We demonstrate this by translating the PRAM algorithm to GPU code.
We straightforwardly implemented our algorithm in CUDA and experimented
with an NVIDIA Titan RTX, showing that our algorithm performs mostly in
line with what our PRAM algorithm predicts.

A Linear Parallel Algorithm to Compute Bisimulation 117

The paper is structured as follows: In Sect. 2, we recall the necessary prelimi-
naries on the CRCW PRAM model and state the partition refinement problems
this paper focuses on. In Sect. 3, we propose a parallel algorithm to compute
bisimulation for Kripke structures, which is also called the Relational Coarsest
Partition Problem (RCPP). In this section, we also prove the correctness of the
algorithm and provide a complexity analysis. In Sect. 4, we discuss the details
for an implementation with multiple action labels, thereby supporting LTSs,
which forms the Bisimulation Coarsest Refinement Problem (BCRP). In Sect. 5
we discuss the results of the implementation and in Sect. 6 we draw conclusions.

2 Preliminaries

2.1 The PRAM Model

The Parallel Random Access Machine (PRAM) is a natural extension of the
normal Random Access Machine (RAM), where an arbitrary number of parallel
processors can access the memory. Following the definitions of [20] we use a
version of PRAM that is able to Concurrently Read and Concurrently Write
(CRCW PRAM). It differs from the model introduced in [6] in which the PRAM
model was only allowed to concurrently read from the same memory address,
but concurrent writes (to the same address) could not happen.

A CRCW PRAM consists of a sequence of numbered processors P0, P1,
These processors have all the natural instructions of a normal RAM such as
addition, subtraction, and conditional branching based on the equality and less-
than operators. There is an infinite amount of common memory the processors
have access to. The processors have instructions to read from and write to the
common memory. In addition, a processor Pi has an instruction to obtain its
unique index i. A PRAM also has a function P : N → N which defines a bound
on the number of processors given the size of the input.

All the processors have the same program and run synchronized in a sin-
gle instruction, multiple data (SIMD) fashion. In other words, all processors
execute the program in lock-step. Parallelism is achieved by distributing the
data elements over the processors and having the processors apply the program
instructions on ‘their’ data elements.

Initially, given input consisting of n data elements, the CRCW PRAM
assumes that the input is stored in the first n registers of the common memory,
and starts the first P(n) processors P0, P1, . . . , PP(n)−1.

Whenever a concurrent write happens to the same memory cell, we assume
that one arbitrary write will succeed. This is called the arbitrary CRCW PRAM.

A parallel program for a PRAM is called optimal w.r.t. a sequential algorithm
if the total work done by the program does not exceed the work done by the
sequential algorithm. More precisely, if T is the parallel run time and P the
number of processors used, then the algorithm is optimal w.r.t. a sequential
algorithm running in S steps if P · T ∈ O(S).

118 J. Martens et al.

2.2 Strong Bisimulation

To formalise concurrent system behaviour, we use LTSs.

Definition 1 (Labeled Transition System). A Labeled Transition System
(LTS) is a three-tuple A = (S,Act,→) where S is a finite set of states, Act a
finite set of action labels, and →⊆ S × Act × S the transition relation.

Let A = (S,Act,→) be an LTS. Then, for any two states s, t ∈ S and a ∈ Act,
we write s

a−→ t iff (s, a, t) ∈ →.
Kripke structures differ from LTSs in the fact that the states are labelled

as opposed to the transitions. In the current paper, for convenience, instead of
using Kripke structures where appropriate, we reason about LTSs with a single
action label, i.e., |Act | = 1. Computing the coarsest partition of such an LTS
can be done in the same way as for Kripke structures, apart from the fact that
in the latter case, a different initial partition is computed that is based on the
state labels (see, for instance, [8,9]).

Definition 2 (Strong bisimulation). On an LTS A = (S,Act,→) a relation
R ⊆ S × S is called a strong bisimulation relation if and only if it is symmetric
and for all s, t ∈ S with sRt and for all a ∈ Act with s

a−→ s′, we have:

∃t′ ∈ S.t
a−→ t′ ∧ s′Rt′

Whenever we refer to bisimulation we mean strong bisimulation. Two states
s, t ∈ S in an LTS A are called bisimilar, denoted by s � t, iff there is some
bisimulation relation R for A that relates s and t.

A partition π of a finite set of states S is a set of subsets that are pairwise
disjoint and whose union is equal to S, i.e.,

⋃
B∈π B = S. Every element B ∈ π

of this partition π is called a block.
We call partition π′ a refinement of π iff for every block B′ ∈ π′ there is a

block B ∈ π such that B′ ⊆ B. We say a partition π of a finite set S induces the
relation Rπ = {(s, t) | ∃B ∈ π.s ∈ B ∧ t ∈ B}. This is an equivalence relation of
which the blocks of π are the equivalence classes.

Given an LTS A = (S,Act,→) and two states s, t ∈ S we say that s reaches t
with action a ∈ Act iff s

a−→ t. A state s reaches a set U ⊆ S with an action a iff
there is a state t ∈ U such that s reaches t with action a. A set of states V ⊆ S
is called stable under a set of states U ⊆ S iff for all actions a either all states
in V reach U with a, or no state in V reaches U with a. A partition π is stable
under a set of states U iff each block B ∈ π is stable under U . The partition π
is called stable iff it is stable under all its own blocks B ∈ π.

Fact 1. [16] Stability is inherited under refinement, i.e. given a partition π of S
and a refinement π′ of π, then if π is stable under U ⊆ S, then π′ is also stable
under U .

The main problem we focus on in this work is called the bisimulation refine-
ment problem (BCRP). It is defined as follows:

A Linear Parallel Algorithm to Compute Bisimulation 119

Input: An LTS M = (S,Act,→).
Output: The partition π of S which is the coarsest partition, i.e., has the

smallest number of blocks, that forms a bisimulation relation.
In a Kripke structure, the transition relation forms a single binary relation,

since the transitions are unlabelled. This is also the case when an LTS has a
single action label. In that case, the problem is called the Relational Coarsest
Partition Problem (RCPP) [11,12,16]. This problem is defined as follows:

Input: A set S, a binary relation →: S × S and an initial partition π0

Output: The partition π which is the coarsest refinement of π0 and which
is a bisimulation relation.

It is known that BCRP is not significantly harder than RCPP as there are
intuitive translations from LTSs to Kripke structures [5, Dfn. 4.1]. However,
some non-trivial modifications can speed-up the algorithm for some cases, hence
we discuss both problems separately. In Sect. 3, we discuss the basic parallel
algorithm for RCPP, and in Sect. 4, we discuss the modifications required to
efficiently solve the BCRP problem for LTSs with multiple action labels.

3 Relational Coarsest Partition Problem

In this section, we discuss a sequential algorithm based on the one of Kanellakis
and Smolka [11] for RCPP (Sect. 3.1). This is the basic algorithm that we adapt
to the parallel PRAM algorithm (Sect. 3.2). The algorithm starts with an input
partition π0 and refines all blocks until a stable partition is reached. This stable
partition will be the coarsest refinement that defines a bisimulation relation.

3.1 The Sequential Algorithm

The sequential algorithm, Algorithm 1, works as follows. Given are a set S, a
transition relation →⊆ S ×S, and an initial partition π0 of S. Initially, we mark
the partition as not necessarily stable under all blocks by putting these blocks
in a set Unstable. In any iteration of the algorithm, if a block B of the current
partition is not in Unstable, then the current partition is stable under B. If
Unstable is empty, the partition is stable under all its blocks, and the partition
represents the required bisimulation.

As long as some blocks are in Unstable (line 3), a single block B ∈ π is taken
from this set (line 4) and we split the current partition such that it becomes
stable under B. Therefore, we refer to this block as the splitter. The set S′ =
{s ∈ S | ∃t ∈ B.s → t} is the reverse image of B (line 6). This set consists of
all states that can reach B, and we use S′ to define our new blocks. All blocks
B′ that have a non-empty intersection with S′, i.e., B′ ∩ S′ �= ∅, and are not a
subset of S′, i.e., B′ ∩ S′ �= B′ (line 7), are split in the subset of states in S′

and the subset of states that are not in S′ (lines 8–9). These two new blocks are
added to the set of Unstable blocks (line 10). The number of states is finite, and
blocks can be split only a finite number of times. Hence, blocks are only finitely
often put in Unstable, and so the algorithm terminates.

120 J. Martens et al.

Algorithm 1: Sequential algorithm based on Kanellakis-Smolka
1 π := π0;
2 Unstable := π;
3 while Unstable �= ∅ do
4 foreach B ∈ Unstable do
5 Unstable := Unstable \ {B};
6 S′ := {s ∈ S | ∃t ∈ B.s −→ t};
7 foreach B′ ∈ π with ∅ ⊂ B′ ∩ S′ ⊂ B′ do

// Split B′ into B′ ∩ S′ and B′ \ S′

8 π := π \ {B};
9 π := π ∪ {B′ ∩ S′, B′ \ S′};

10 Unstable := Unstable ∪ {B′ ∩ S′, B′ \ S′};

11 end

12 end

13 end

3.2 The PRAM Algorithm

Next, we describe a PRAM algorithm to solve RCPP that is based on the sequen-
tial algorithm given in Algorithm 1.

Block Representation. Given an LTS A = (S,Act,→) with |A| = 1 and |S| =
n states, we assume that the states are labeled with unique indices 0, . . . , n − 1.
A partition π in the PRAM algorithm is represented by assigning a block label
from a set of block labels LB to every state. The number of blocks can never be
larger than the number of states, hence, we use the indices of the states as block
labels: LB = S. We exploit this in the PRAM algorithm to efficiently select a
new block label whenever a new block is created. We select the block label of a
new block by electing one of its states to be the leader of that block and using
the index of that state as the block label. By doing so, we maintain an invariant
that the leader of a block is also a member of the block.

In a partition π, whenever a block B ∈ π is split into two blocks B′ and B′′,
the leader s of B which is part of B′ becomes the leader of B′, and for B′′, a new
state t ∈ B′′ is elected to be the leader of this new block. Since the new leader
is not part of any other block, the label of t is fresh with respect to the block
labels that are used for the other blocks. This method of using state leaders to
represent subsets was first proposed in [22,23].

Data Structures. The common memory contains the following information:

1. n : N, the number of states of the input.
2. m : N, the number of transitions of the input relation.
3. The input, a fixed numbered list of transitions. For every index 0 ≤ i < m of a

transition, a source sourcei ∈ S and target targeti ∈ S are given, representing
the transition sourcei → targeti.

A Linear Parallel Algorithm to Compute Bisimulation 121

4. C : LB ∪ {⊥}, the label of the current block that is used as a splitter; ⊥
indicates that no splitter has been selected.

5. The following is stored in lists of size n, for each state with index i:
(a) mark i : B, a mark indicating whether state i is able to reach the splitter.
(b) block i : LB , the block of which state i is a member.

6. The following is stored in lists of size n, for each potential block with block
label i:
(a) new leader i : LB the leader of the new block when a split is performed.
(b) unstablei : B indicating whether π is possibly unstable w.r.t. the block.

As input, we assume that each state with index i has an input variable
Ii ∈ LB that is the initial block label. In other words, the values of the Ii

variables together encode π0. Using this input, the initial values of the block
label blocki variables are calculated to conform to our block representation with
leaders. Furthermore in the initialization, unstablei = false for all i that are not
used as block label, and true otherwise.

The Algorithm. We provide our first PRAM algorithm in Algorithm 2. The
PRAM is started with max(n,m) processors. These processors are dually used
for transitions and states.

The algorithm performs initialisation (lines 1–6), after which each block has
selected a new leader (lines 3–4), ensuring that the leader is one of its own states,
and the initial blocks are set to unstable. Subsequently, the algorithm enters a
single loop that can be explained in three separate parts.

Splitter selection (lines 8–14), executed by n processors. Every variable
marki is set to false. After this, every processor with index i will check
unstablei. If block i is marked unstable the processor tries to write i in
the variable C. If multiple write accesses to C happen concurrently in this
iteration, then according to the arbitrary PRAM model (see Sect. 2), only
one process j will succeed in writing, setting C := j as splitter in this
iteration.

Mark states (lines 15–17), executed by m processors. Every processor
i is responsible for the transition si −→ ti and checks if ti (target i) is in the
current block C (line 15). If this is the case the processor writes true to
marksourcei

where sourcei is si. This mark now indicates that si reaches
block C.

Performing splits (lines 18–26), executed by n processors. Every pro-
cessor i compares the mark of state i, i.e., mark i, with the mark of the
leader of the block in which state i resides, i.e., markblocki

(line 20). If the
marking is different, state i has to be split from block i into a new block. At
line 21, a new leader is elected among the states that form the newly created
block. The index of this leader is stored in new leaderblocki

. The instability
of block block i is set to true (line 22). After that, all involved processors
update the block index for their state (line 23) and update the stability of
the new block (line 24).

122 J. Martens et al.

s1

s4

s2

s5

s3

Bs1

Bs4

Step 1: Select current block:= Bs4

s1

s4

s2

s5

s3

Bs1

Bs4

Step 2: Mark nodes s1, s2

s1

s4

s2

s5

s3

Bs1 Bs3

Bs4

Step 3: Split Bs1 into Bs1 , Bs3

Fig. 1. One iteration of Algorithm 2

The steps of the program are illustrated in Fig. 1. The notation Bsi
refers

to a block containing all states that have state si as their block leader. In the
figure on the left, we have two blocks Bs1 and Bs4 , of which at least Bs4 is
marked unstable. Block Bs4 is selected to be splitter, i.e., C = Bs4 at line 12
of Algorithm 2. In the figure in the middle, mark i is set to true for each state
i that can reach Bs4 (line 16). Finally, block Bs4 is set to stable (line 19), all
states compare their mark with the leader’s mark, and the processor working on
state s3 discovers that the mark of s3 is different from the mark of s1, so s3 is
elected as leader of the new block Bs3 at line 21 of Algorithm 2. Both Bs1 and
Bs3 are set to unstable (lines 22 and 24).

The algorithm repeats execution of the while-loop until all blocks are marked
stable.

3.3 Correctness

The block i list in the common memory at the start of iteration k defines a
partition πk where states s ∈ S with equal block labels block i form the blocks:

πk = {{s ∈ S | blocks = s′} | s′ ∈ S} \ {∅}
A run of the program produces a sequence π0, π1, . . . of partitions. Partition

πk is a refinement of every partition π0, π1, . . . , πk−1, since blocks are only split
and never merged.

A partition π induces a relation of which the blocks are the equivalence
classes. For an input partition π0 we call the relation induced by the coarsest
refinement of π0 that is a bisimulation relation �π0 .

We now prove that Algorithm 2 indeed solves RCPP. We first introduce
Lemma 1 which is invariant throughout the execution and expresses that states
which are related by �π0 are never split into different blocks. This lemma implies
that if a refinement forms a bisimulation relation, it is the coarsest.

Lemma 1. Let S be the input set of states, →: S × S the input relation and
π0 the input partition. Let π1, π2, . . . be the sequence of partitions produced by

A Linear Parallel Algorithm to Compute Bisimulation 123

Algorithm 2: The algorithm for RCPP for each processor Pi in the PRAM
1 if i < n then
2 unstablei := false;
3 new leaderIi := i;
4 block i := new leaderIi ;
5 unstableblocki := true;

6 end
7 do
8 C := ⊥;
9 if i < n then

10 mark i := false;
11 if unstablei then
12 C := i;
13 end

14 end
15 if i < m and block targeti = C then
16 mark sourcei := true;
17 end
18 if i < n and C �= ⊥ then
19 unstableC := false;
20 if mark i �= markblocki then
21 new leaderblocki := i;
22 unstableblocki := true;
23 block i := new leaderblocki ;
24 unstableblocki := true;

25 end

26 end

27 while C �= ⊥;

Algorithm 2, then for all initial blocks B ∈ π0, states s, t ∈ B and iterations
k ∈ N:

s �π0 t =⇒ ∃B ∈ πk.s, t ∈ B

Proof. This is proven by induction on k. In the base case, π0, this is true by
default. Now assume for a particular k ∈ N that the property holds. We know
that the partition πk+1 is obtained by splitting with respect to a block C ∈ πk.
For two states s, t ∈ S with s �π0 t we know that s and t are in the same block in
πk. In the case that both s and t do not reach C, then marks = markt = false.
Since they were in the same block, they will be in the same block in πk+1.

Now consider the case that at least one of the states is able to reach C.
Without loss of generality say that s is able to reach C. Then there is a transition
s → s′ with s′ ∈ C. By Definition 2, there exists a t′ ∈ S such that t → t′ and
s′

�π0 t′. By the induction hypothesis we know that since s′
�π0 t′, s′ and t′

must be in the same block in πk, i.e., t′ is in C. This witnesses that t is also able
to reach C and we must have marks = mark t = true. Since the states s and t

124 J. Martens et al.

are both marked and are in the same block in πk, they will remain in the same
block in πk+1.

Lemma 2. Let S be the input set of states with →: S × S, LB = S the block
labels, and πn the partition stored in the memory after the termination of Algo-
rithm 2. Then the relation induced by πn is a bisimulation relation.

Proof. Since the program finished, we know that for all block indices i ∈ LB we
have unstablei = false. For a block index i ∈ LB , unstablei is set to false if the
partition πk, after iteration k, is stable under the block with index i and set to
true if it is split. So, by Fact 1, we know πn is stable under every block B, hence
stable. Next, we prove that a stable partition is a bisimulation relation.

We show that the relation R induced by πn is a bisimulation relation. Assume
states s, t ∈ S with sRt are in block B ∈ πn. Consider a transition s → s′ with
s′ ∈ S. State s′ is in some block B′ ∈ πn, and since the partition is stable under
block B′, and s is able to reach B′, by the definition of stability, we know that t
is also able to reach B′. Therefore, there must be a state t′ ∈ B′ such that t → t′

and s′Rt′. Finally, by the fact that R is an equivalence relation we know that R
is also symmetric, therefore it is a bisimulation relation.

Theorem 1. The partition resulting from executing Algorithm 2 forms the
coarsest relational partition for a set of states S and a transition relation
→: S × S, solving RCPP.

Proof. By Lemma 2, the resulting partition is a bisimulation relation. Lemma 1
implies that it is the coarsest refinement which is a bisimulation.

3.4 Complexity Analysis

Every step in the body of the while-loop can be executed in constant time. So
the asymptotic complexity of this algorithm is given by the number of iterations.

Theorem 2. RCPP on an input with m transitions and n states is solved by
Algorithm 2 in O(n) time using max(n,m) CRCW PRAM processors.

Proof. In iteration k ∈ N of the algorithm, let us call the total number of blocks
Nk ∈ N and the number of unstable blocks Uk ∈ N. Initially, N0 = U0 = |π0|. In
every iteration k, a number of blocks lk ∈ N is split, resulting in lk new blocks,
so the new total number of blocks at the end of iteration k is Nk+1 = Nk + lk.

First the current block C in iteration k which was unstable is set to stable
which causes the number of unstable blocks to decrease by one. In this iteration
k the lk blocks B1, . . . , Blk are split, resulting in lk newly created blocks. These
lk blocks are all unstable. A number of blocks l′k ≤ lk of the blocks B1, . . . Blk ,
were stable and are set to unstable again. The block C which was set to stable is
possibly one of these l′k blocks which were stable and set to unstable again. The
total number of unstable blocks at the end of iteration k is Uk+1 = Uk+lk+l′k−1.

For all k ∈ N, in iteration k we calculate the total number of blocks Nk =
|π0| +

∑k−1
i=0 (li) and unstable blocks Uk = |π0| − k +

∑k−1
i=0 (li + l′i). The number

A Linear Parallel Algorithm to Compute Bisimulation 125

of iterations is given by k =
∑k−1

i=0 (li + l′i) − Uk + |π0|. By definition, l′i ≤ li,
and the total number of newly created blocks is

∑k−1
i=0 (li) = Nk − |π0|, hence

∑k−1
i=0 (li + l′i) ≤ 2

∑k−1
i=0 (li) ≤ 2Nk − 2|π0|. The number of unstable blocks is

always positive, i.e., Uk ≥ 0, and the total number of blocks can never be larger
than the number of states, i.e., Nk ≤ n, so the total number of iterations z is
bounded by z ≤ 2Nz − |π0| ≤ 2n − |π0|.

4 Bisimulation Coarsest Refinement Problem

In this section we extend our algorithm to the Bisimulation Coarsest Refinement
Problem (BCRP), i.e., to LTSs with multiple action labels.

Solving BCRP can in principle be done by translating an LTS to a Kripke
structure, for instance by using the method described in [18]. This translation
introduces a new state for every transition, resulting in a Kripke structure with
n+m states. If the number of transitions is significantly larger than the number
of states, then the number of iterations of our algorithm increases undesirably.

4.1 The PRAM Algorithm

Instead of introducing more states, we introduce multiple marks per state, but
in total we have no more than m marks. For each state s, we use a mark variable
for each different outgoing action label relevant for s, i.e., for each a for which
there is a transition s

a−→ t to some state t. Each state may have a different
set of outgoing action labels and thus a different set of marks. Therefore, we
first perform a preprocessing procedure in which we group together states that
have the same set of outgoing action labels. This is valid, since two bisimilar
states must have the same outgoing actions. That two states of the same block
have the same set of action labels is then an invariant of the algorithm, since
in the sequence of produced partitions, each partition is a refinement of the
previous one. For the extended algorithm, we need to maintain extra information
in addition to the information needed for Algorithm 2. For an input LTS A =
(S,Act,−→) with n states and m transitions the extra information is:

1. Each action label has an index a ∈ {0, . . . , |Act| − 1}.
2. The following is stored in lists of size m, for each transition s

a−→ t with
transition index i ∈ {0, . . . , m − 1}:
(a) ai := a
(b) order i : N, the order of this action label, with respect to the source state

s. E.g., if a state s has the list [1, 3, 6] of outgoing action labels, and
transition i has label 3, then order i is 1 (we start counting from 0).

3. mark : [B], a list of up to m marks, in which there is a mark for every state,
action pair for which it holds that the state has at least one outgoing transition
labelled with that action. This list can be interpreted as the concatenation
of sublists, where each sublist contains all the marks for one state. For each
state s ∈ S we have:

126 J. Martens et al.

(a) off (s) : N, the offset to access the beginning of the sublist of the marks of
the state s in mark . The positions markoff (s) up to markoff (s+1) contain
the sublist of marks for state s. E.g., if state s has outgoing transitions
with 3 distinct action labels, we know that off (s+1) ≡ off (s)+3, and we
have 3 marks for state s. We write markoff (s)+orderi

to access the mark
for transition i which has source state s.

4. mark length: The length of the mark list. This allows us to reset all marks in
constant time using mark length processors. This number is not larger than
the number of transitions (mark length ≤ m).

5. In a list of size n, we store for each state s ∈ S a variable splits : B. This
indicates if the state will be split off from its block.

With this extra information, we can alter Algorithm 2 to work with labels.
The new version is given in Algorithm 3. The changes involve the following:

1. Lines 7–9: Reset the mark list.
2. Line 11: Reset the split list.
3. Line 17: When marking the transitions, we do this for the correct action label,

using order i. Note the indexing into mark . It involves the offset for the state
sourcei, and order i.

4. Lines 19–21: We tag a state to be split when it differs for any action from the
block leader.

5. Line 24: If a state was tagged to be split in the previous step, it should split
from its leader.

6. Line 29: If any block was split, the partition may not be stable w.r.t. the
splitter.

To use Algorithm 3, we need to do two preprocessing steps. First, we need
to partition the states w.r.t. their set of outgoing action labels. This can be
done with an altered version of Algorithm 2, which does one iteration for each
action label. For the second preprocessing step, we need to gather the extra
information that is needed in Algorithm 3. This is done via sorting the action
labels and subsequently performing some parallel segmented (prefix) sums [19].
In total the preprocessing takes O(|Act| + log m) time. For details how this is
implemented see the full version of this paper [14].

4.2 Complexity and Correctness

For Algorithm 3, we need to prove why it takes a linear number of steps to
construct the final partition. This is subtle, as an iteration of the algorithm does
not necessarily produce a stable block.

Theorem 3. Algorithm 3 on an input LTS with n states and m transitions will
terminate in O(n + |Act|) steps.

Proof. The total preprocessing takes O(|Act| + log m) steps, after which the
while-loop will be executed on a partitioning π0 which was the result of the

A Linear Parallel Algorithm to Compute Bisimulation 127

Algorithm 3: The algorithm for BCRP, the highlighted lines differ from
Algorithm 2.
1 if i < n then
2 unstablei := false;
3 unstableblocki := true;

4 end
5 do
6 C := ⊥;
7 if i < mark length then
8 marki := false;
9 end

10 if i < n then
11 spliti := false;
12 if unstablei then
13 C := i;
14 end

15 end
16 if i<m and block targeti = C then
17 markoff (sourcei)+orderi := true;
18 end
19 if i<m and markoff (sourcei)+orderi �= markoff (blocksourcei

)+orderi then

20 splitsourcei := true;

21 end
22 if i < n & C �= ⊥ then
23 unstableC := false;
24 if split i then
25 new leaderblocki := i;
26 unstableblocki := true;
27 block i := new leaderblocki ;
28 unstableblocki := true;
29 unstableC := true;

30 end

31 end

32 while C �= ⊥;

preprocessing on the partition {S}. Every iteration of the while-loop is still
executed in constant time. Using the structure of the proof of Theorem 2, we
derive a bound on the number of iterations.

At the start of iteration k ∈ N the total number of blocks and unstable blocks
are Nk, Uk ∈ N, initially U0 = N0 = |π0|. In iteration k, a number lk of blocks
is split in two blocks, resulting in lk new blocks, meaning that Nk+1 = Nk + lk.
All new lk blocks are unstable and a number l′k ≤ lk of the old blocks that are
split were stable at the start of iteration k and are now unstable. If lk = l′k = 0
there are no blocks split and the current block C becomes stable. We indicate
this with a variable ck: ck = 1 if lk = 0, and ck = 0, otherwise. The total number

128 J. Martens et al.

of iterations up to iteration k in which no block is split is given by
∑k−1

i=0 ci. The
number of iterations in which at least one block is split is given by k − ∑k−1

i=0 ci.
If in an iteration k at least one block is split, the total number of blocks

at the end of iteration k is strictly higher than at the beginning, hence for all
k ∈ N, Nk ≥ k − ∑k−1

i=0 ci. Hence, Nk +
∑k−1

i=0 ci is an upper bound for k.
We derive an upper bound for the number of iterations in which no blocks

are split using the total number of unstable blocks. In iteration k there are
Uk =

∑k−1
i=0 (li + l′i) − ∑k−1

i=0 ci + |π0| unstable blocks. Since the sum of newly
created blocks

∑k−1
i=0 (li) = Nk − |π0| and l′i ≤ li, the number of unstable blocks

Uk is bounded by 2Nk − ∑k−1
i=0 ci − |π0|. Since Uk ≥ 0 we have the bound

∑k−1
i=0 ci ≤ 2Nk − |π0|. This gives the bound on the total number of iterations

z ≤ 3Nz − |π0| ≤ 3n − |π0|.
With the time for preprocessing this makes the run time complexity O(n +

|Act| + log m). Since the number of transitions m is bounded by |Act| × n2, this
simplifies to O(n + |Act|).

5 Experimental Results

In this section we discuss the results of our implementation of Algorithm 3 from
Sect. 4. Note that this implementation is not optimized for the specific hardware
it runs on, since the goal of this paper is to provide a generic parallel algorithm.
This implementation is purely a proof of concept, to show that our algorithm
can be mapped to contemporary hardware and to understand how the algorithm
scales with the size of the input.

The implementation targets GPUs since a GPU closely resembles a PRAM
and supports a large amount of parallelism. The algorithm is implemented in
CUDA version 11.1 with use of the Thrust library.1 As input, we chose all bench-
marks of the VLTS benchmark suite2 for which the implementation produced a
result within 10 min. The VLTS benchmarks are LTSs that have been derived
from real concurrent system models.

The experiments were run on an NVIDIA Titan RTX with 24 GB memory
and 72 Streaming Multiprocessors, each supporting up to 1,024 threads in flight.
Although this GPU supports 73,728 threads in flight, it is very common to launch
a GPU program with one or even several orders of magnitude more threads, in
particular to achieve load balancing between the Streaming Multiprocessors and
to hide memory latencies. In fact, the performance of a GPU program usually
relies on that many threads being launched.

The left-hand side of Table 1 shows the results of the experiments we con-
ducted. The |Act | column corresponds to the number of different action labels.
The |Blocks| column indicates the number of different blocks at the end of the
algorithm, where each block contains only bisimilar states. With #It we refer
to the number of while-loop iterations that were executed (see Algorithm 3),

1 The source code can be found at https://github.com/sakehl/gpu-bisimulation.
2 https://cadp.inria.fr/resources/vlts/.

https://github.com/sakehl/gpu-bisimulation
https://cadp.inria.fr/resources/vlts/

A Linear Parallel Algorithm to Compute Bisimulation 129

Table 1. Benchmark results for Par-BCRP (Algorithm 3) on a GPU, times (T) are in
ms. The right-hand side compares the total times from the different algorithms.

Benchmark name |Act| |Blocks| #It Tpre Talg #It/n #It/ |Blocks| TPar-BCRP/n Talg/#It TPar-BCRP TLR TWss TWms

Vasy 0 1 2 9 16 0.50 0.37 0.06 1.78 0.003 0.023 0.87 2.29 0.49 0.45

Cwi 1 2 26 1,132 2,786 0.63 56.5 1.43 2.46 0.029 0.020 57.1 17 18.8 21.8

Vasy 1 4 6 28 45 0.56 1.01 0.04 1.61 0.001 0.022 1.58 4.78 1.68 0.62

Cwi 3 14 2 62 122 0.63 2.68 0.03 1.97 0.001 0.022 3.30 60 3.80 3.72

Vasy 5 9 31 145 193 0.84 4.22 0.04 1.33 0.001 0.022 5.06 134 35.3 3.45

Vasy 8 24 11 416 664 0.70 13.9 0.07 1.59 0.002 0.021 15 277 31.5 3.03

Vasy 8 38 81 219 319 1.12 6.64 0.04 1.46 0.001 0.021 7.76 127 35.1 5.94

Vasy 10 56 12 2,112 3,970 0.73 82.0 0.37 1.88 0.008 0.021 82.7 860 40.9 4.6(0.2)

Vasy 18 73 17 4,087 6,882 1.01 142 0.37 1.68 0.008 0.021 143 1,354 211 21.7

Vasy 25 25 25,216 25,217 25,218 159 519 1.00 1.00 0.027 0.021 678 21,960 t.o 416

Vasy 40 60 3 40,006 87,823 0.87 1,810 2.20 2.20 0.045 0.021 1,811 17,710 1,290 1,230

Vasy 52 318 17 8,142 15,985 2.52 338 0.31 1.96 0.007 0.021 340 11,855 368 152(20)

Vasy 65 2621 72 65,536 98,730 12.2 10,050 1.51 1.51 0.154 0.102 10,060 t.o 27,000 1,230

Vasy 66 1302 81 66,929 91,120 6.70 5,745 1.36 1.36 0.086 0.063 5,752 480,600 20,450 240(20)

Vasy 69 520 135 69,754 113,246 4.13 3,780 1.62 1.62 0.054 0.033 3,780 94,800 16,090 35.4

Vasy 83 325 211 83,436 148,012 4.41 3,093 1.77 1.77 0.037 0.021 3,097 57,190 21,500 5,880

Vasy 116 368 21 116,456 210,537 2.50 5,900 1.81 1.81 0.051 0.028 5,900 80,900 6,360 2,930

Cwi 142 925 7 3,410 5,118 4.85 238 0.04 1.50 0.002 0.047 243 3,363 220(30) 140(20)

Vasy 157 297 235 4,289 9,682 4.58 201 0.06 2.26 0.001 0.021 206 1,058 1,240 579

Vasy 164 1619 37 1,136 1,630 8.34 125 0.01 1.43 0.001 0.077 134 8,173 470(30) 46.8

Vasy 166 651 211 83,436 145,029 6.13 5,710 0.87 1.74 0.034 0.039 5,720 80,210 29,660 9,560

Cwi 214 684 5 77,292 149,198 3.58 6,948 0.70 1.93 0.032 0.047 6,952 19,250 440(30) 450(50)

Cwi 371 641 61 33,994 85,858 4.72 4,050 0.23 2.53 0.011 0.047 4,050 26,940 6,970 1,548

Vasy 386 1171 73 113 199 7.38 14.0 0.00 1.76 0.000 0.070 21 334 30.6 34.8

Cwi 566 3984 11 15,518 23,774 16.0 3,707 0.04 1.53 0.007 0.156 3,723 98,200 6,700 2,200(200)

Vasy 574 13561 141 3,577 5,860 71.5 3,770 0.01 1.64 0.007 0.643 3,841 144,810 11,700 1,853

Vasy 720 390 49 3,292 3,782 3.97 143 0.01 1.15 0.0002 0.038 147 2,454 1,633 183

Vasy 1112 5290 23 265 365 24.0 99.3 0.0003 1.38 0.0001 0.272 123 4,570 293 36.8

Cwi 2165 8723 26 31,906 66,132 37.0 23,660 0.03 2.07 0.011 0.358 23,700 140,170 9,700 1,965

Cwi 2416 17605 15 95,610 152,099 64.1 96,400 0.06 1.59 0.040 0.634 96,500 257,200 16,300(1100) 15,300

Vasy 6020 19353 511 7,168 12,262 221 11,690 0.002 1.71 0.002 0.954 11,910 107,900 34,000(2000) 19,230

Vasy 6120 11031 125 5,199 10,014 74.0 6,763 0.002 1.93 0.001 0.675 6,837 55,750 7,010 1,280

Vasy 8082 42933 211 408 660 281 1,149 0.0001 1.62 0.0002 1.739 1,429 17,272 5,530 2,030

before all blocks became stable. The number of states and transitions can be
derived from the benchmark name. In the benchmark ‘X N M ’, N ∗ 1000 is the
number states and M ∗ 1000 is the number of transitions. The Tpre give the pre-
processing times in milliseconds, which includes doing the memory transfers to
the GPU, sorting the transitions and partitioning. The Talg give the times of the
core algorithm, in milliseconds. The TPar-BCRP is the sum of the preprocessing
and the algorithm, in milliseconds. We have not included the loading times for
the files and the first CUDA API call that initializes the device. We ran each
benchmark 10 times and took the averages. The standard deviation of the total
times varied between 0% and 3% of the average, thus 10 runs are sufficient. All
the times are rounded with respect to the standard error of the mean.

We see that the bound as proven in Sect. 4.2 (k ≤ 3n) is indeed respected,
#It/n is at most 2.20, and most of the time below that. The number of itera-
tions is tightly related to the number of blocks that the final partition has, the
#It/|Blocks| column varies between 1.00 and 2.53. This can be understood by
the fact that each iteration either splits one or more blocks or marks a block
as stable, and all blocks must be checked on stability at least once. This also
means that for certain LTSs the algorithm scales better than linearly in n. The
preprocessing often takes the same amount of time (about a few milliseconds).
Exceptions are those cases with a large number of actions and/or transitions.

130 J. Martens et al.

Concerning the run times, it is not true that each iteration takes the same
amount of time. A GPU is not a perfect PRAM machine. There are two key
differences. Firstly, we suspect that the algorithm is memory bound since it is
performing a limited amount of computations. The memory accesses are irregu-
lar, i.e., random, which caches can partially compensate, but for sufficiently large
n and m, the caches cannot contain all the data. This means that as the LTSs
become larger, memory accesses become relatively slower. Secondly, at a certain
moment, the maximum number of threads that a GPU can run in parallel is
achieved, and adding more threads will mean more run time. These two effects
can best be seen in the Talg/#It column, which corresponds to the time per
iteration. The values are around 0.02 up to 300, 000 transitions, but for a larger
number of states and transitions, the amount of time per iteration increases.

5.1 Experimental Comparison

We compared our implementation (Par-BCRP) with an implementation of the
algorithm by Lee and Rajasekaran (LR) [12] on GPUs, and the optimized GPU
implementation by Wijs based on signature-based bisimilarity checking [2], with
multi-way splitting (Wms) and with single-way splitting (Wss) [22]. Multi-way
splitting indicates that a block is split in multiple blocks at once, which is
achieved by computing a signature for each state in every partition refinement
iteration, and splitting each block off into sets of states, each containing all the
states with the same signature. The signature of a state is derived from the
labels of the blocks that this state can reach in the current partition. Note that
we are not including comparisons with CPU bisimulation checking tools; the
fact that those tools run on completely different hardware makes a comparison
problematic, and such a comparison does not serve the purpose of evaluating
the feasibility of implementing Algorithm 3. Optimising our implementation to
make it competitive with CPU tools is planned for future work.

The running times of the different algorithms can be found in the right-hand
side of Table 1. Similarly to our previous benchmarks, the algorithms were run 10
times on the same machine using the same VLTS benchmark suite with a time-
out of 10 min. In some cases, the non-deterministic behaviour of the algorithms
Wms and Wss led to high variations in the runs. In cases where the standard
error of the mean was more than 5% of the mean value, we have added the
standard error in Table 1 in between parentheses. Furthermore, all the results
are rounded with respect to the standard error of the mean. As a pre-processing
step for the LR, Wms and Wss algorithms the input LTSs need to be sorted.
We did not include this in the times, nor the reading of files and the first CUDA
API call (which initializes the GPU).

This comparison confirms the expectation that our algorithm in all cases
(except one small LTS) out-performs LR. This confirms our expectation that
LR is not suitable for massive parallel devices such as GPUs.

Furthermore, the comparison demonstrates that in most cases our algorithm
(Par-BCRP) outperforms Wss. In some benchmarks (Cwi 1 2, Cwi 214 684,
Cwi 2165 8723 and Cwi 2416 17605) Wss is more than twice as fast, but in 16

A Linear Parallel Algorithm to Compute Bisimulation 131

other cases our algorithm is more than twice as fast. The last comparison shows
us that our algorithm does not out-perform Wms. Wms employs multi-way split-
ting which is known to be very effective in practice. Furthermore, contrary to
our implementation, Wms is optimized for GPUs while the focus of the current
work is to improve the theoretical bounds and describe a general algorithm.

Fig. 2. Run times of Par-BCRP and Wms on the LTS Fan outn.

In order to understand the difference between Wms and our algorithm bet-
ter, we analysed the complexity of Wms [22]. In general this algorithm is
quadratic in time, and the linearity claim in [22] depends on the assumption
that the fan-out of ‘practical’ transition systems is bounded, i.e., every state has
no more than c outgoing transitions for c a (low) constant. We designed the
transition systems Fan outn for n ∈ N

+ to illustrate the difference. The LTS
Fan outn = (S, {a, b},−→) has n states: S = {0, . . . , n − 1}. The transition func-
tion contains i

a−→ i + 1 for all states 1 < i < n − 1. Additionally, from state 0
and 1 there are transitions to every state: 0 b−→ i, 1 b−→ i for all i ∈ S. This LTS
has n states, 3n − 3 transitions and a maximum out degree of n transitions.

Figure 2 shows the results of calculating the bisimulation equivalence classes
for Fan outn, with Wms and Par-BCRP. It is clear that the run time for Wms
increases quadratically as the number of states grows linearly, already becoming
untenable for a small amount of states. On the other hand, in conformance with
our analysis, our algorithm scales linearly.

6 Conclusion

We proposed and implemented an algorithm for RCPP and BCRP. We proved
that the algorithm stops in O(n + |Act|) steps on max(n,m) CRCW PRAM
processors. We implemented the algorithm for BCRP in CUDA, and conducted
experiments that show the potential to compute bisimulation in practice in linear
time. Further advances in parallel hardware will make this more feasible.

For future work, it is interesting to investigate whether RCPP can be solved
in sublinear time, that is O(nε) for a ε < 1, as requested in [12]. It is also intrigu-
ing whether the practical effectiveness of the algorithm in [22] by splitting blocks

132 J. Martens et al.

simultaneously can be combined with our algorithm, while preserving the lin-
ear time upperbound. Furthermore, it remains an open question whether our
algorithm can be generalised for weaker bisimulations, such as weak and branch-
ing bisimulation [7,9]. The main challenge here is that the transitive closure of
so-called internal steps needs to be taken into account.

References

1. Balcázar, J., Gabarro, J., Santha, M.: Deciding bisimilarity is P-complete. Formal
Aspects Comput. 4(1), 638–648 (1992). https://doi.org/10.1007/BF03180566

2. Blom, S., Orzan, S.: Distributed branching bisimulation reduction of state spaces.
Electr. Notes Theoret. Comput. Sci. 89(1), 99–113 (2003). https://doi.org/10.
1016/S1571-0661(05)80099-4

3. Blom, S., van de Pol, J.: Distributed branching bisimulation minimization by induc-
tive signatures. In: Brim, L., van de Pol, J. (eds.) Proceedings 8th International
Workshop on Parallel and Distributed Methods in verification, PDMC 2009, Eind-
hoven, The Netherlands, 4th November 2009, EPTCS, vol. 14, pp. 32–46 (2009).
https://doi.org/10.4204/EPTCS.14.3

4. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

5. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

6. Fortune, S., Wyllie, J.: Parallelism in random access machines. In: Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, pp. 114–118 (1978).
https://doi.org/10.1145/800133.804339

7. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimu-
lation semantics. J. ACM 43(3), 555–600 (1996). https://doi.org/10.1145/233551.
233556

8. Groote, J.F., Wijs, A.: An O(m log n) algorithm for stuttering equivalence and
branching bisimulation. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 607–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 40

9. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.: An O(m log n) algorithm
for branching bisimilarity on labelled transition systems. In: TACAS 2020. LNCS,
vol. 12079, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45237-7 1

10. Jeong, C., Kim, Y., Oh, Y., Kim, H.: A faster parallel implementation of Kanellakis-
Smolka algorithm for bisimilarity checking. In: Proceedings of the International
Computer Symposium. Citeseer (1998)

11. Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three prob-
lems of equivalence. Inf. Comput. 86(1), 43–68 (1990). https://doi.org/10.1016/
0890-5401(90)90025-D

12. Lee, I., Rajasekaran, S.: A parallel algorithm for relational coarsest partition prob-
lems and its implementation. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp.
404–414. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58179-0 71

13. Leiserson, C.E., et al.: There’s plenty of room at the top: what will drive com-
puter performance after Moore’s law? Science 368(6495) (2020). https://doi.org/
10.1126/science.aam9744

https://doi.org/10.1007/BF03180566
https://doi.org/10.1016/S1571-0661(05)80099-4
https://doi.org/10.1016/S1571-0661(05)80099-4
https://doi.org/10.4204/EPTCS.14.3
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1145/800133.804339
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1007/3-540-58179-0_71
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744

A Linear Parallel Algorithm to Compute Bisimulation 133

14. Martens, J., Groote, J., Haak, L.v.d., Hijma, P., Wijs, A.: A linear parallel algo-
rithm to compute bisimulation and relational coarsest partitions. arXiv preprint
arXiv:2105.11788 (2021)

15. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

16. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987). https://doi.org/10.1137/0216062

17. Rajasekaran, S., Lee, I.: Parallel algorithms for relational coarsest partition prob-
lems. IEEE Trans. Parallel Distrib. Syst. 9(7), 687–699 (1998). https://doi.org/10.
1109/71.707548

18. Reniers, M.A., Schoren, R., Willemse, T.: Results on embeddings between state-
based and event-based systems. Comput. J. 57(1), 73–92 (2014). https://doi.org/
10.1093/comjnl/bxs156

19. Sengupta, S., Harris, M., Garland, M., Owens, J.: Efficient parallel scan algorithms
for GPUs. In: Scientific Computing with Multicore and Accelerators, chap. 19, pp.
413–442. Taylor & Francis (2011)

20. Stockmeyer, L., Vishkin, U.: Simulation of parallel random access machines by cir-
cuits. SIAM J. Comput. 13(2), 409–422 (1984). https://doi.org/10.1137/0213027

21. Valmari, A.: Simple bisimilarity minimization in O(m log n) time. Fundam. Infor-
maticae 105(3), 319–339 (2010). https://doi.org/10.3233/FI-2010-369

22. Wijs, A.: GPU accelerated strong and branching bisimilarity checking. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 368–383. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46681-0 29

23. Wijs, A., Katoen, J.-P., Bošnački, D.: Efficient GPU algorithms for parallel decom-
position of graphs into strongly connected and maximal end components. Formal
Methods Syst. Des. 48(3), 274–300 (2016). https://doi.org/10.1007/s10703-016-
0246-7

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2105.11788
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1137/0216062
https://doi.org/10.1109/71.707548
https://doi.org/10.1109/71.707548
https://doi.org/10.1093/comjnl/bxs156
https://doi.org/10.1093/comjnl/bxs156
https://doi.org/10.1137/0213027
https://doi.org/10.3233/FI-2010-369
https://doi.org/10.1007/978-3-662-46681-0_29
https://doi.org/10.1007/s10703-016-0246-7
https://doi.org/10.1007/s10703-016-0246-7
http://creativecommons.org/licenses/by/4.0/

	A Linear Parallel Algorithm to Compute Bisimulation and Relational Coarsest Partitions
	1 Introduction
	2 Preliminaries
	2.1 The PRAM Model
	2.2 Strong Bisimulation

	3 Relational Coarsest Partition Problem
	3.1 The Sequential Algorithm
	3.2 The PRAM Algorithm
	3.3 Correctness
	3.4 Complexity Analysis

	4 Bisimulation Coarsest Refinement Problem
	4.1 The PRAM Algorithm
	4.2 Complexity and Correctness

	5 Experimental Results
	5.1 Experimental Comparison

	6 Conclusion
	References

