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Abstract. This paper addresses the online monitoring of distributed component-based systems with multi-party inter-
actions against user-provided properties expressed in linear-temporal logic and referring to global states. We consider
intrinsically independent components whose interactions are partitioned on distributed controllers. In this context, the
problem that arises is that a global state of the system is not available to the monitor. Instead, we attach local controllers
to schedulers to retrieve the concurrent local traces. Local traces are sent to a global observer which reconstructs the
set of global traces that are compatible with the local ones, in a concurrency-preserving fashion. In this context, the
reconstruction of the global traces is done on-the-fly using a lattice of partial states encoding the global traces com-
patible with the locally-observed traces. We implemented our monitoring approach in a prototype tool called RVDIST.
RVDIST executes in parallel with the distributed model and takes as input the events generated from each scheduler and
outputs the evaluated computation lattice. Our experiments show that, thanks to the optimisation applied in the online
monitoring algorithm, i) the size of the constructed computation lattice is insensitive to the the number of received
events, (ii) the lattice size is kept reasonable and (iii) the overhead of the monitoring process is cheap.

1 Introduction

Runtime Verification Runtime Verification (RV) [32,18,21,11,41,2,10] is a lightweight and effective technique to
ensure the correctness of a system at runtime, that is whether or not the system respects or meets a desirable behavior.
It can be used in numerous application domains, and more particularly when integrating together unreliable software
components. Runtime verification complements exhaustive verification methods such as model checking [6,31], and
theorem proving [19], as well as incomplete solutions such as testing [4] and debugging [39]. In RV, a run of the system
under inspection is analyzed incrementally using a decision procedure: a monitor. This monitor may be generated from
a user-provided high level specification (e.g., a temporal formula, an automaton). This monitor aims to detect violation
or satisfaction w.r.t. the given specification. Generally, it is a state machine processing an execution sequence (step
by step) of the monitored program, and producing a sequence of verdicts (truth-values taken from a truth-domain)
indicating specification fulfillment or violation. For a monitor to be able to observe the runs of the system, the system
should be instrumented in such a way that at runtime, the program sends relevant events that are consumed by the
monitor. Usually, one of the main challenges when designing an RV framework is its performance. That is, adding a
monitor in the system should not deteriorate executions of the initial system, time and memory wise.

Component-Based Systems with Multi-Party Interactions (CBSs) Component-based design consists in construct-
ing complex systems from given requirements using a set of predefined components [40]. Components are abstract
building blocks encapsulating behavior. Each component is defined as an atomic entity with some actions and inter-
faces. Components communicate and interact with each other through their interfaces. They can be composed in order to
build composite components. Their composition should be rigorously defined so that it is possible to infer the behavior
of composite components from the behavior of their constituents as well as global properties from the properties of indi-
vidual components and the interactions between them. Each multi-party interaction is a set of simultaneously-executed
actions of the existing components [5].
The execution of a CBS with multi-party interactions is carried on using schedulers (also known as processes or en-
gines) managing the interactions. In the distributed setting, the execution of interactions of a CBS is distributed among
several independent schedulers. In an implemented distributed CBS, schedulers and components are interconnected
(e.g., networked physical locations) and work together as a whole unit to meet some requirements. The execution of
a multi-party interaction is then achieved by sending/receiving messages between the scheduler in charge of the exe-
cution of the interaction and the components involved in the interaction [1]. In this setting, each scheduler along with
its associated components can be seen as a multi-threaded system, so that the computations of the components in the
scope of the scheduler are done concurrently. Moreover, the simultaneous execution of several interactions managed
by several schedulers is possible. Thus, the execution trace of a distributed system is a partial trace. Each scheduler is
aware of its execution trace, that is the locally observed partial-trace consisting of a sequence of the partial states of
components in the scope of the scheduler. A set of the local partial-traces of the schedulers represents the execution
trace of the system.

Challenges of Monitoring Distributed CBSs However, it is generally not possible to ensure or verify a desired
behavior of such systems using static verification techniques such as model-checking or static analysis, either because
of the state-space explosion problem or because the property can only be decided with information available at runtime
(e.g., from the user or the environment). In this paper, we are interested in complementary verification techniques for
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CBSs such as runtime verification. To this end, we propose techniques to runtime verify a component-based system
against properties referring to the global state of the system. This implies in particular that properties can not be pro-
jected and checked on individual components. In the following we point out the problems that one encounters when
monitoring CBSs at runtime.
The runtime monitoring of an asynchronous distributed system is a much more difficult task, because in the distributed
setting, (i) the execution of the system is more dynamic and parallel, in the sense that each scheduler executes its as-
sociated actions concurrently and we have a set of parallel executions, (ii) neither a global clock nor a shared memory
is used, hence, schedulers can have different processing speeds and can suffer from clock drifts, and (iii) since the exe-
cution of interactions is based on sending/receiving messages and delays in the reception of messages in asynchronous
communications are inevitable, the runtime monitor does not receive the events with the same order as they are actually
occurred. Therefore, events cannot be ordered based on time. The absence of ordering between the execution of the
interactions in different schedulers causes the main problem in the distributed setting that is (i) the global state of the
system does not exist, and (ii) the actual partial trace of the system is not observable.
For monitoring such systems, we avoid synchronization to take global snapshots, which would go against the parallelism
of the verified system. The monitoring problem is even more complicated because no component of the system can be
aware of the global trace and the monitor needs to reconstruct the global trace from the events emitted by schedulers at
runtime, and then reason about their correctness. Our goal is to provide methods that can be used for the verification of
such CBSs by applying instrumentation techniques to observe the global behavior of the systems while preserving their
performance and initial behavior. Consequently, the designed instrumentation technique should be defined formally and
its correctness formally proved.

Approach Overview We define a monitoring hypothesis based on the definition of an abstract semantic model of
CBS. The abstract semantic system is composed of a non-empty set of components B and their joint actions which
are managed by a non-empty set of scheduler S. Each component B ∈ B is endowed with a set of actions ActB .
Joint actions of component, aka multi-party interactions, involve the execution of actions on several components. An
interaction is a non-empty subset of {ActB | B ∈ B}, such that at most one action of each component is involved in
an interaction. In addition, to model concurrent behavior, each atomic component B ∈ B has internal actions which
we model as a unique action β, such that each action of B is followed by the internal action β. The set of interactions
in the system is distributed among a non-empty set of schedulers S. Schedulers coordinate the execution of interactions
and ensure that each multi-party interaction is jointly executed. Our monitoring hypothesis is that the behavior of
the monitored system complies to this model. We argue that this model is abstract enough to encompass a variety of
(component-based) systems, and serves the purpose of describing the knowledge needed on the verified system and
later guides their instrumentation. A property ϕ specifies the desired runtime behavior of the system (referring to the
global state of the system) which has to be evaluated while the system is running. In this context, each scheduler is
only aware of its local partial-trace, that is a set of ordered local events (i.e., actions which change the state of the
system). Moreover, events from different schedulers are not totally ordered. In order to evaluate the global behavior of
the system consisting of several schedulers, it is necessary to find i) a set of possible ordering among the events of all
schedulers, that is, the set of compatible partial traces that could possibly happen in the system, and ii) the set of global
traces corresponding to the compatible partial traces.
Intuitively, our method consists in two steps, (i) instrumentation of the abstract CBS to obtain system events and send
them to the monitor, and (ii) reconstruction of the compatible global trace(s) of the system and evaluate them on-the-fly
by the monitor. The instrumentation is done as follows:

– Each scheduler S ∈ S is composed with a controller. Each controller is in charge of detecting and sending the
events that occurred in the corresponding scheduler.

– A central monitor component (global observer) is added to the system. This new module receives the events which
occurred in schedulers and are sent by their associated controllers. The monitor works in parallel with the system
and applies an online monitoring algorithm upon the reception of each event.

– In the distributed setting where (i) we have more than one schedulers, (ii) we have possibly some shared compo-
nents (i.e., components in the scope of more than one scheduler), and (iii) schedulers do not communicate together
and only communicate with their own associated components, we compose each shared component with a con-
troller. The controller of a shared component only communicates with the controllers of the schedulers whenever
the shared components and the schedulers communicate. Indeed, in our abstract model, what makes the events
of different schedulers to be causally related is only the shared components which are involved in several multi-
party interactions managed by different schedulers. In other words, the executions of two actions managed by two
schedulers and involving a shared component are definitely causally related, because each execution requires the
termination of the other execution in order to release the shared component. To take into account these existing
causalities among the events, in the distributed setting, we employ vector clocks to define the ordering of events.
The controller of a shared component is used to resolve the ordering among the events involving the shared com-
ponent. Each event associated to the execution of a multi-party interaction is labeled by a vector clock. Ordering of
such events are defined based on their vector clocks. The monitor receives the partially-ordered events representing
the local partial-traces.

We propose an online monitoring method for distributed systems as follows:
In the distributed setting, the monitor is aware of the local partial-traces of the schedulers. The monitor computes all
the compatible partial traces of the system with respect to the partial ordering of the received events. Each compatible
partial trace could possibly happen in the system and would produce the same events. We introduce an online algorithm
to reconstruct the corresponding global trace for each partial trace. To represent the set of reconstructed compatible
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global traces we use the general notion of computation lattice. A computation lattice has |S| orthogonal axes, with one
axis for each scheduler. The direction of each axis represents the system state evolution with respect to the execution
of interactions managed by the associated scheduler. Each path in the lattice represents a compatible global trace of
the system. We define a novel on-the-fly monitoring technique to evaluate any Linear Temporal Logic (LTL) properties
over the computation lattice. To this end, we define a new structure of the computation lattice in which each node η
of the lattice is augmented by a set of formulas representing the evaluation of all the possible global traces from the
initial node of the lattice (i.e., initial state of the system) up to node η. We show that the constructed lattice is correct in
the sense that it encompasses all the compatible global traces (Proposition 3, and Proposition 4). The given formula is
monitored by progression over the constructed lattice, so that the frontier node of the lattice contains a set of formulas,
each of which corresponding to the evaluation of a compatible global trace (Theorem 1, p. 25, and Theorem 2, p. 25).
Furthermore, we introduce an optimization algorithm to keep the size of the constructed lattice small by removing the
unnecessary nodes. We show that such an optimization on the one hand does not affect the evaluation of the system and
on the other hand increases the performance of the monitoring process.
We present an implementation of our monitoring approach in a tool called RVDIST. RVDIST is a prototype tool
written in the C++ programming language. RVDIST takes as input an LTL formula and a sequence of events, then
constructs and evaluate the computation lattice against the given LTL property. Moreover, we present the evaluation of
our monitoring approach on several distributed systems carried out with RVDIST. Our experiments show that, thanks
to the optimization applied in the online monitoring algorithm, (i) the size of the constructed computation lattice is
insensitive to the the number of received events, (ii) the lattice size is kept reasonable and (iii) the overhead of the
monitoring process is cheap.

Outline. The remainder of this paper is organized as follows. Section 2 introduces some preliminary concepts. Sec-
tion 3 defines an original abstract model of distributed CBSs, suitable for monitoring purposes, and allowing to define
a monitoring hypothesis for the runtime verification of distributed CBSs. In Sec. 4, we present the instrumentation
used to generate the events of each scheduler which are aimed to be used in the construction of the global trace of a
distributed CBS. In Sec. 5, we construct the computation lattice by collecting the events from the different schedulers.
Runtime verification of distributed CBSs is presented in Sec. 6. Section 7 describes RVDIST, a C++ implementation of
the monitoring framework used to carry an evaluation of our approach described in Sec. 8. Section 9 presents related
work. Section 10 concludes and presents future work. Proofs of the propositions are in Appendix A.

2 Preliminaries and Notations

Sequences. Considering a finite set of elements E, we define notations about sequences of elements of E. A sequence
s containing elements of E is formally defined by a total function s : I → E where I is either the integer interval [0, n]
for some n ∈ N, or N itself (the set of natural numbers). Given a set of elements E, e1 · e2 · · · en is a sequence or a list
of length n over E, where ∀i ∈ [1, n] : ei ∈ E. The empty sequence is noted ε or [ ], depending on the context. The set
of (finite) sequences over E is noted E∗. E+ is defined as E∗ \ {ε}. The length of a sequence s is noted length(s). We
define s(i) as the ith element of s and s(i · · · j) as the factor of s from the ith to the jth element. s(i · · · j) = ε if i > j.
We also note pref(s), the set of non-empty prefixes of s, i.e., pref(s) = {s(1 · · · k) | 1 ≤ k ≤ length(s)}. Operator
pref is naturally extended to sets of sequences. We define function last : E+ → E as last(e) = s(length(s)). For an
infinite sequence s = e1 · e2 · e3 · · ·, we define s(i · · ·) = ei · ei+1 · · · as the suffix of sequence s from index i on.

Tuples. An n-tuple is an ordered list of n elements, where n is a strictly positive integer. By t[i] we denote ith element
of tuple t.

Labeled transition systems. Labeled Transition Systems (LTSs) are used to define the semantics of CBSs. An LTS
is defined over an alphabet Σ and is a 3-tuple (State,Lab,Trans) where State is a non-empty set of states, Lab is a
set of labels, and Trans ⊆ State × Lab × State is the transition relation. A transition (q, a, q′) ∈ Trans means that
the LTS can move from state q to state q′ by consuming label a. We abbreviate (q, a, q′) ∈ Trans by q a−→Trans q

′ or by
q
a−→ q′ when clear from context. Moreover, relation Trans is extended to its reflexive and transitive closure in the usual

way and we allow for regular expressions over Lab to label moves between states: if expr is a regular expression over
Lab (i.e., expr denotes a subset of Lab∗), q

expr−−→ q′ means that there exists one sequence of labels in Lab matching
expr such that the system can move from q to q′.

Observational equivalence and bi-simulation. The observational equivalence of two transition systems is based
on the usual definition of weak bisimilarity [26], where θ-transitions are considered to be unobservable. Given two
transition systems S1 = (Sta1,Lab∪{θ},→2) and S2 = (Sta2,Lab∪{θ},→2), system S1 weakly simulates system
S2, if there exists a relation R ⊆ Sta1 × Sta2 that contains the 2-tuple made of the initial states of S1 et S2 and such
that the two following conditions hold:

1. ∀(q1, q2) ∈ R, ∀a ∈ Lab : q1
a−→1 q

′
1 =⇒ ∃q′2 ∈ Sta2 :

(
(q′1, q

′
2) ∈ R ∧ q2

θ∗·a·θ∗−−−−−→2 q
′
2

)
, and

2. ∀(q1, q2) ∈ R :
(
∃q′1 ∈ Sta1 : q1

θ−→1 q
′
1

)
=⇒ ∃q′2 ∈ Sta2 :

(
(q′1, q

′
2) ∈ R ∧ q2

θ∗−→2 q
′
2

)
.

Equation 1. states that if a state q1 simulates a state q2 and if it is possible to perform a from q1 to end in a state q′1,
then there exists a state q′2 simulated by q′1 such that it is possible to go from q2 to q′2 by performing some unobservable
actions, the action a, and then some unobservable actions. Equation 2. states that if a state q1 simulates a state q2 and
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it is possible to perform an unobservable action from q1 to reach a state q′1, then it is possible to reach a state q′2 by a
sequence of unobservable actions such that q′1 simulates q′2. In that case, we say that relationR is a weak simulation over
S1 and S2 or equivalently that the states of S1 are (weakly) similar to the states of S2. Similarly, a weak bi-simulation
over S1 and S2 is a relation R such that R and R−1 = {(q2, q1) ∈ Sta2 × Sta1 | (q1, q2) ∈ R} are both weak
simulations. In this latter case, we say that S1 and S2 are observationally equivalent and we write S1 ∼ S2 to express
this formally.

Vector Clock. Lamport introduced logical clocks as a device to substitute for the global real time clock [20]. Logical
clocks are used to order events based on their relative logical dependencies rather than on a “time” in the common sense.
Mattern and Fidge’s vector clocks [15,25] are a more powerful extension (i.e., strongly consistent with the ordering of
events) of Lamport’s scalar logical clocks. In a distributed system with a set of schedulers {S1, . . . , Sm}, VC =
{(c1, . . . , cm) | j ∈ [1 ,m] ∧ cj ∈ N} is the set of vector clocks, such that vector clock vc ∈ VC is a tuple ofm scalar
(initially zero) values c1, . . . , cm locally stored in each scheduler Sj ∈ {S1, . . . , Sm} where ∀k ∈ [1 ,m] : vc[k] = ck
holds the latest (scalar) clock value scheduler Sj knows about scheduler Sk ∈ {S1, . . . , Sm}. Each event in the system
is associated to a unique vector clock. For two vector clocks vc1 and vc2, max(vc1, vc2) is a vector clock vc3 such that
∀k ∈ [1 ,m] : vc3[k] = max(vc1[k], vc2[k]). min(vc1, vc2) is defined in similar way. Moreover two vector clocks can
be compared together such that vc1 < vc2 ⇐⇒ ∀k ∈ [1 ,m] : vc1[k] ≤ vc2[k] ∧ ∃z ∈ [1 ,m] : vc1[z] < vc2[z].

Happened-before relation [20]. The relation� on the set of events of a system is the smallest relation satisfying
the following three conditions: (1) If a and b are events in the same scheduler, and a comes before b, then a� b. (2) If
a is the sending of a message by one scheduler and b is the reception of the same message by another scheduler, then
a� b. (3) If a� b and b� c then a� c. Two distinct events a and b are said to be concurrent if a 6� b and b 6� a.
Vector clocks are strongly consistent with happened-before relation. That is, for two events a and b with associated
vector clocks vca and vcb respectively, vca < vcb ⇐⇒ a� b.

Computation lattice [25]. The computation lattice of a distributed system is represented in the form of a directed
graph withm (i.e., number of schedulers that are executed in distributed manner) orthogonal axes. Each axis is dedicated
to the state evolution of a specific scheduler. A computation lattice expresses all the possible traces in a distributed
system. Each path in the lattice represents a global trace of the system that could possibly have happened. A computation
lattice L is a pair (N,�), whereN is the set of nodes (i.e., global states) and� is the set of happened-before relations
among the nodes.

Linear Temporal Logic (LTL) [30]. Linear temporal logic (LTL) is a formalism for specifying properties of systems.
An LTL formula is built over a set of atomic propositions AP . LTL formulas are written with the following grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ | ϕ1Uϕ2

where p ∈ AP is an atomic proposition. Note that we use only the X and U modalities for defining the valid formulas
in LTL. The other modalities such as F (eventually), G (globally), R (release), etc. in LTL can be defined using the X
and U modalities.
Let σ = q0 · q1 · q2 · · · be an infinite sequence of states and |= denotes the satisfaction relation. The semantics of LTL
is defined inductively as follows:

– σ |= p ⇐⇒ q0 |= p (i.e., p ∈ q0), for any p ∈ AP
– σ |= ¬ϕ ⇐⇒ σ 6|= ϕ

– σ |= ϕ1 ∨ ϕ2 ⇐⇒ σ |= ϕ1 ∨ σ |= ϕ2

– σ |= Xϕ ⇐⇒ σ(1 · · ·) |= ϕ

– σ |= ϕ1Uϕ2 ⇐⇒ ∃j > 0 : σ(j · · ·) |= ϕ2 ∧ σ(i · · ·) |= ϕ1, 0 6 i < j

An atomic proposition p is satisfied by σ when it is member of the first state of σ. σ satisfies formula ¬ϕ when it does
not satisfy ϕ. Disjunction of ϕ1 and ϕ2 is satisfied when either ϕ1 or ϕ2 is satisfied by σ. σ satisfies formula Xϕ when
the sequence of states starting from the next state of σ, that is, q1 satisfies ϕ. ϕ1Uϕ2 is satisfied when ϕ2 is satisfied at
some point and ϕ1 is satisfied until that point.

Pattern-matching. We shall use the mechanism of pattern-matching to concisely define some functions. We recall an
intuitive definition for the sake of completeness. Evaluating the expression:

match expression with
| pattern_1→ expression_1
| pattern_2→ expression_2
. . .
| pattern_n→ expression_n

consists in comparing successively expression with the patterns pattern_1, . . . , pattern_n in order. When a
pattern pattern_i fits expression, then the associated expression_i is returned.
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3 Distributed CBSs with Multi-Party Interactions

In the following, we describe our assumptions on the considered distributed component-based systems with multi-party
interactions. To this end, we assume a general semantics to define the behavior of the distributed system under scrutiny
in order to make our monitoring approach as general as possible. However, neither the exact model nor the behavior
of the system are known. How the behaviors of the components and the schedulers are obtained is irrelevant. Inspiring
from conformance-testing theory [43], we refer to this hypothesis as the monitoring hypothesis.
Consequently, our monitoring approach can be applied to (component-based) systems whose behavior can be mod-
eled as described in the sequel. The semantics of the following model is similar to and compatible with other models
for describing distributed computations (see Sec. 9 for a comparison with other models and possible translations be-
tween models). The remainder of this section is organized as follows. Subsection 3.1 defines an abstract distributed
component-based model. Subsection 3.2 defines the execution traces of the abstract model, later used for runtime veri-
fication.

3.1 Semantics of a Distributed CBS with Multi-Party Interactions

In the following, we present the architecture of our abstract semantic CBS which is used throughout this paper.

Architecture of the system. The system under scrutiny M is composed of components in a non-empty set B ={
B1, . . . , B|B|

}
and schedulers in a non-empty set S =

{
S1, . . . , S|S|

}
. Each component Bi is endowed with a set

of actions Act i. Joint actions of component, aka multi-party interactions, involve the execution of actions on several
components. An interaction is a non-empty subset of ∪|B|i=1Act i and we denote by Int the set of interactions in the
system. At most one action of each component is involved in an interaction: ∀a ∈ Int :|a ∩ Act i|≤ 1. In addition,
to model concurrent behavior, each atomic component Bi has internal actions which we model as a unique action βi,
such that each action of Bi is followed by the internal action βi. Schedulers coordinate the execution of interactions
and ensure that each multi-party interaction is jointly executed (see Definition 2).
Let us assume some auxiliary functions obtained from the architecture of the system.

– Function involved : Int → 2B \ {∅} indicates the components involved in an interaction. Moreover, we extend
function involved to internal actions by setting involved(βi) = i, for any βi ∈

{
β1, . . . , β|B|

}
. Interaction

a ∈ Int is a joint action if and only if |involved(a)|≥ 2.
– Function managed : Int → S indicates the scheduler managing an interaction: for an interaction a ∈ Int ,

managed(a) = Sj if a is managed by scheduler Sj .
– Function scope : S→ 2B \{∅} indicates the set of components in the scope of a scheduler such that scope(Sj) =⋃
a′∈{a∈Int | managed(a)=Sj}

involved(a′).

In the remainder, we describe the behavior of components, schedulers, and their composition.

Components. The behavior of an individual component is defined as follows.

Definition 1 (Behavior of a component). The behavior of a componentB is defined as an LTS (QB ,ActB∪{βB} ,→B

) such that:
– QB = Qr

B ∪Qb
B is the set of states, where Qr

B (resp. Qb
B) is the so-called set of ready (resp. busy) states,

– ActB is the set of actions, and βB is the internal action,
– →B⊆

(
Qr
B ×ActB ×Qb

B

)
∪
(
Qb
B × {βB} ×Qr

B

)
is the set of transitions.

Moreover, QB has a partition
{
Qr
B , Q

b
B

}
.

Intuitively, the set of ready (resp. busy) states Qr
B (resp. Qb

B) is the set of states such that the component is ready
(resp. not ready) to perform an action. Component B (i) has actions in set ActB which are possibly shared with some
of the other components, (ii) has an internal action βB such that βB 6∈ ActB which models internal computations of
component B, and (iii) alternates moving from a ready state to a busy state and from a busy state to a ready state, that
is component B does not have busy to busy or ready to ready move (as defined in the transition relation above).

Example 1 (Component). Figure 1 depicts a component Tank whose behavior is defined by the LTS (Qr ∪Qb,Act ∪
{β} ,→) such that:

– Qr = {d, f} is the set of ready states and Qb =
{
d⊥, f⊥

}
is the set of busy states,

– Act = {Drain,Fill} is the set of actions and β is the internal action,
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Fig. 2: Abstract representation of a distributed CBS

– →=
{

(d,Fill , d⊥), (d⊥, β, f), (f,Drain, f⊥), (f⊥, β, d)
}

is the set of transitions.
On the border, each • represents an action and provides an interface for the component to synchronize with actions of
other components in case of joint actions.

In the following, we assume that each component Bi ∈ B is defined by the LTS (QBi ,ActBi ∪ {βBi} ,→Bi) where
QBi has a partition

{
Qr
Bi
, Qb

Bi

}
of ready and busy states; as per Definition 1.

Schedulers. The behavior of a scheduler is defined as follows.

Definition 2 (Behavior of a scheduler). The behavior of a scheduler S is defined as an LTS (QS ,ActS ,→S) such
that:

– QS is the set of states,
– ActS = ActγS ∪ActβS is the set of actions, where ActγS = {a ∈ Int | managed(a) = S} and

ActβS = {βi | Bi ∈ scope(S)},
– →S⊆ QS ×ActS ×QS is the set of transitions.

ActγS ⊆ Int is the set of interactions managed by S, and ActβS is the set of internal actions of the components involved
in an action managed by S.
In the following, we assume that each scheduler Sj ∈ S is defined by the LTS (QSj ,ActSj ,→Sj ) where ActSj =

ActγS∪Act
β
S ; as per Definition 2. The coordination of interactions of the system i.e., the interactions in Int , is distributed

among schedulers. Actions of schedulers consist of interactions of the system. Nevertheless, each interaction of the
system is associated to exactly one scheduler (∀a ∈ Int , ∃!S ∈ S : a ∈ ActS). Consequently, schedulers manage
disjoint sets of interactions (i.e., ∀Si, Sj ∈ S : Si 6= Sj =⇒ ActγSi ∩ ActγSj = ∅). Intuitively, when a scheduler
executes an interaction, it triggers the execution of the associated actions on the involved components. Moreover, when a
component executes an internal action, it triggers the execution of the corresponding action on the associated schedulers
and also sends the updated state of the component to the associated schedulers, that is, the component sends a message
including its current state to the schedulers. Note, we assume that, by construction, schedulers are always ready to
receive such a state update.

Remark 1. Since components send their update states to the associated schedulers, we assume that the current state of
a scheduler contains the last state of each component in its scope.

Example 2 (Scheduler of distributed CBS). Figure 2 depicts a distributed component-based system consisting of three
components each of which is an instance of the component in Figure 1. The set of interactions is Int = {{Drain1} ,
Fill12,Drain23, {Fill3}} where Fill12 = {Fill1,Fill2} and Drain23 = {Drain2,Drain3} are joint actions. Two
schedulers S1 and S2 coordinate the execution of interactions such that managed({Drain1}) = managed(Fill12) =
S1 and managed({Fill3}) = managed(Drain23) = S2. For j ∈ [1, 2], scheduler Sj is defined as (QSj ,ActSj ,→Sj

) with:
– QSj = {l0, l1, l2, l3},
– ActγS1

= {{Drain1} ,Fill12}, ActβS1
= {β1, β2},

– ActγS2
= {Drain23, {Fill3}}, ActβS2

= {β2, β3},
– →S1= {(l0, β2, l0), (l1, β2, l1), (l1, β1, l0), (l2, β2, l1), (l3, β2, l0), (l2, β1, l3), (l3, {Drain1} , l2),

(l0, {Drain1} , l1), (l0,Fill12, l2)},
– →S2= {(l0, β2, l0), (l1, β2, l1), (l1, β3, l0), (l2, β2, l1), (l3, β2, l0), (l2, β3, l3), (l3, {Fill3} , l2),

(l0, {Fill3} , l1), (l0,Drain23, l2)}.
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Definition 3 (Shared component). The set of shared components is defined as

Bs = {B ∈ B | |{S ∈ S | B ∈ scope(S)} |≥ 2} .

A shared component B ∈ Bs is a component in the scope of more than one scheduler, and thus, the execution of the
actions of B are managed by more than one scheduler.

Example 3 (Shared component). In Figure 2, component Tank2 is a shared component because interaction Fill12,
which is a joint action of Fill1 and Fill2, is coordinated by scheduler S1 and interaction Drain23, which is a joint
action of Drain2 and Drain3, is coordinated by scheduler S2.

The global execution of the system can be described as the parallel execution of interactions managed by the schedulers.

Definition 4 (Global behavior). The global behavior of the system is the LTS (Q,GAct ,→) where:
– Q ⊆

⊗|B|
i=1Qi ×

⊗|S|
j=1QSj is the set of states consisting of the states of schedulers and components,

– GAct ⊆ 2Act ∪
⋃|B|
i=1{βi} \ {∅} is the set of possible global actions of the system consisting of either several

interactions and/or several internal actions (several interactions can be executed concurrently by the system),
– →⊆ Q×GAct ×Q is the transition relation defined as the smallest set abiding to the following rule.

A transition is a move from state (q1, . . . , q|B|, qs1 , . . . , qs|S|) to state (q′1, . . . , q
′
|B|, q

′
s1 , . . . , q

′
s|S|) on global

actions in set α∪β, where α ⊆ Int and β ⊆
⋃|B|
i=1 {βi}, noted (q1, . . . , q|B|, qs1 , . . . , qs|S|)

α∪β−−−→ (q′1, . . . , q
′
|B|,

q′s1 , . . . , q
′
s|S|), whenever the following conditions hold:

C1: ∀i ∈ [1, |B|] : |(α ∩Act i) ∪ ({βi} ∩ β) |≤ 1,

C2: ∀a ∈ α : (∃Sj ∈ S : managed(a) = Sj)⇒
(
qsj

a→Sj q
′
sj ∧ ∀Bi ∈ involved(a) : qi

a∩Acti−−−−→Bi q
′
i

)
,

C3: ∀βi ∈ β : qi
βi−→Bi q

′
i ∧ ∀Sj ∈ S : Bi ∈ scope(Sj) : qsj

βi−→Sj q
′
sj ,

C4: ∀Bi ∈ B \ involved(α ∪ β) : qi = q′i,
C5: ∀Sj ∈ S \managed(α) : qsj = q′sj .
where functions involved and managed are extended to sets of interactions and internal actions in the usual way.

The above rule allows the components of the system to execute independently according to the decisions of the sched-
ulers. It can intuitively be understood as follows:

– ConditionC1 states that a component can perform at most one execution step at a time. The executed global actions
(α ∪ β) contains at most one interaction involving each component of the system.

– Condition C2 states that whenever an interaction a managed by scheduler Sj is executed, Sj and all components
involved in this multi-party interaction must be ready to execute it.

– ConditionC3 states that internal actions are executed whenever the corresponding components are ready to execute
them. Moreover, schedulers are aware of internal actions of components in their scope. Note that, the awareness of
internal actions of a component results in transferring the updated state of the component to the schedulers.

– Conditions C4 and C5 state that the components and the schedulers not involved in an interaction remain in the
same state.

An example illustrating the global behavior of the system depicted in Figure 2 is provided later and described in terms
of execution traces (cf. Example 4).

Remark 2. The operational description of a distributed CBS has is usually more detailed. For instance, the execution
of conflicting interactions in schedulers needs first to be authorized by a conflict-resolution module which guarantees
that two conflicting interactions are not executed at the same time. Moreover, schedulers follow the (possible) priority
rules among the interactions, that is, in the case of two or more enabled interactions (interactions which are ready to be
executed by schedulers), those with higher priority are allowed to be executed. Since we only deal with the execution
traces of a distributed system, we assume that the obtained traces are correct with respect to the conflicts and priorities.
Therefore, defining the other modules is out of the scope of this work.

3.2 Traces of a Distributed CBS with Multi-Party Interactions

Definition 5 (Trace of a CBS). A trace of system M is a continuously-growing sequence (q01 , . . . , q
0
|B|) · (α0 ∪ β0) ·

(q11 , . . . , q
1
|B|) · · · (qk1 , . . . , qk|B|) · · ·, such that (q01 , . . . , q

0
|B|) = init is the initial state of the system where q01 , . . . , q

0
|B|

are the initial states of B1, . . . , B|B| respectively and ∀i ∈ [0 , k − 1] :(qi1, . . . , q
i
|B|)

αi∪βi−−−−→ (qi+1
1 , . . . , qi+1

|B| ), where
→ is the transition relation of the global behavior of the system and the states of schedulers are discarded.

The set of traces of system M is denoted by Tr(M). Since trace t ∈ Tr(M) has partial states where at least one
component is busy with its internal computation, trace t is referred to as a partial trace.

Example 4 (Trace). Two possible partial traces of the system in Example 2 (depicted in Figure 2) are:3

– t1 = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Drain1} , {Fill3}} · (⊥,⊥,⊥) · {β2} · (⊥, f2,⊥),
– t2 = (d1, d2, d3)·{Fill12, {Fill3}}·(⊥,⊥,⊥)·{β3}·(⊥,⊥, f3)·{β2}·(⊥, f2, f3)·{{Drain23} , β1}·(f1,⊥,⊥).

Traces t1 and t2 are obtained following the global behavior of the system (Definition 4).

3 To facilitate the description of the trace, we represent each busy state as ⊥.
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– In trace t1, the execution of interaction Fill12 represents the simultaneous execution of (i) action Fill12 in sched-
uler S1, (ii) action Fill1 in component Tank1, and (iii) action Fill2 in component Tank2. After interaction Fill12,
component Tank1 and Tank2 move to their busy state whereas the state of component Tank3 remains unchanged.
Moreover, the execution of internal action β2 in trace t1 represents the simultaneous execution of (i) internal action
β2 in component Tank2, (ii) action β2 in scheduler S1 and (iii) action β2 in scheduler S2. After the internal action
β2, component Tank2 goes to ready state f2.

– In trace t2, the execution of global action {Fill12, {Fill3}} represents the simultaneous execution of two interac-
tions Fill12 and {Fill3}, that is the simultaneous executions of (i) action Fill12 in scheduler S1, (ii) action Fill3 in
scheduler S2, (iii) action Fill1 in component Tank1, (iv) action Fill2 in component Tank2, and (v) action Fill3
in component Tank3. Trace t2 ends up with the simultaneous execution of interaction Drain23 and the internal
action of component Tank1.

Remark 3. The operational description of a CBS is usually more detailed. For instance, the execution of conflicting
interactions in schedulers needs first to be authorized by a conflict-resolution module which guarantees that two con-
flicting interactions are not executed at the same time. Moreover, schedulers follow the (possible) priority rules among
the interactions, that is, in the case of two or more enabled interactions (interactions which are ready to be executed by
schedulers), those with higher priority are allowed to be executed. Since we only deal with the execution traces of a
distributed system, we assume that the obtained traces are correct with respect to the conflicts and priorities. Therefore,
defining the other modules is out of the scope of this work.

Definition 6 (Monitoring hypothesis). The behavior of the CBS under scrutiny can be modeled as an LTS as per
Definition 4.

In the following we consider a partial trace t = (q01 , . . . , q
0
|B|) · (α0 ∪β0) · (q11 , . . . , q1|B|) · · ·, as per Definition 5. Each

scheduler Sj ∈ S for j ∈ [1 ,|S|], observes a local partial-trace sj(t) which consists in the sequence of the states of the
components in its scope and actions it manages.

Definition 7 (Locally observed partial-trace). The local partial-trace sj(t) observed by scheduler Sj is inductively
defined on the partial trace t as follows:

– sj
((
q01 , . . . , q

0
|B|
))

=
(
q01 , . . . , q

0
|B|
)
, and

– sj (t · (α ∪ β) · q) =

{
t if Sj /∈ managed(α) ∧ (involved(β) ∩ scope(Sj) = ∅)
t · θ · q′ otherwise

where
• q =

(
q1, . . . , q|B|

)
,

• θ = (α ∩ {a ∈ Int | managed(a) = Sj}) ∪ (β ∩ {βi | Bi ∈ scope(Sj)}),
• q′ = (q′1, . . . , q

′
|B|) with

q′i =

 last(sj(t))[i] if Bi ∈ involved(θ) ∩ scope(Sj),
qi if Bi ∈ involved(θ) ∩ scope(Sj),
? otherwise (Bi 6∈ scope(Sj)).

We assume that the initial state of the system, that is init =
(
q01 , . . . , q

0
|B|
)
, is observable by all schedulers. An

interaction a ∈ Int is observable by scheduler Sj if Sj manages the interaction (i.e., Sj ∈ managed(a)). Moreover,
an internal action βi, with i ∈ [1 ,|B|], is observable by scheduler Sj if Bi is in the scope of Sj (i.e., Bi ∈ scope(Sj)).
The state observed after an observable interaction or internal action consists of the states of components in the scope of
Sj , that is a state (q1, . . . , q|B|) where qi is the new state of component Bi if Bi ∈ scope(Sj) and ? otherwise.

Example 5 (Locally observed partial-trace). The associated locally observed partial-trace of t1 and t2 of Example 4
are:

– s1(t1) = (d1, d2, d3) · {Fill12} · (⊥,⊥, ? ) · {β1} · (f1,⊥, ? ) · {{Drain1}} · (⊥,⊥, ? ) · {β2} · (⊥, f2, ? ),
– s2(t1) = (d1, d2, d3) · {{Fill3}} · (? , d2,⊥) · {β2} · (? , f2,⊥),
– s1(t2) = (d1, d2, d3) · {Fill12} · (⊥,⊥, ? ) · {β2} · (⊥, f2, ? ) · {β1} · (f1, f2, ? ),
– s2(t2) = (d1, d2, d3) · {{Fill3}} · (? , d2,⊥) · {β3} · (? , d2, f3) · {β2} · (? , f2, f3) · {Drain23} · (? ,⊥,⊥).

For instance, the local partial-trace s1(t2) shows that scheduler S1 is aware of the execution of interaction Fill12 but
it is not aware of the occurrence of internal action β3 because component Tank3 is not in the scope of scheduler S1

and consequently the state of component Tank3 in the local partial-trace of scheduler S1 is denoted by ? (except for
the initial state). Moreover, scheduler S1 is aware of the occurrences of internal actions β2 and β1 but it is not aware of
action Drain23 because scheduler S1 does not manage action Drain23.

4 From Local Traces to Global Traces

We define a new component as a passive observer which runs in parallel with the system and collects local traces of
schedulers and reconstruct the set of possible global traces compatible with the local traces (Figure 3). The observer
is always ready to receive information from schedulers. We use the term passive for the observer since it does not
force schedulers to send data and thus does not modify the execution of the monitored system. We shall prove that
such observer does not violate the semantics nor the behavior of the distributed system, that is, the observed system is
observationally equivalent (see Sec. 2) to the initial system (cf. Property 1).
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Components

Schedulers

Observer

event

Local traces −→ Compatible Global traces

S1Cs1 S2Cs2 · · · S|S|Cs|S|

B1 B2 · · · Bi
shared

Cbi · · · B|B|

Fig. 3: Passive observer

For monitoring purposes, the observer should be able to order the execution of interactions from the received local traces
appropriately. In our abstract model, since schedulers do not interact directly together by sending/receiving messages,
the execution of an interaction by one scheduler seems to be concurrent with the execution of all interactions by other
schedulers. Nevertheless, if scheduler Sj manages interaction a and scheduler Sk manages interaction b such that a
shared component Bi ∈ Bs is involved in a and b, i.e., Bi ∈ involved(a) ∩ involved(b), as a matter of fact, the
execution of interactions a and b are causally related. In other words, there exists only one possible ordering of a and b
and they could not have been executed concurrently. Ignoring the actual ordering of a and b would result in retrieving
inconsistent global states (i.e., states that does not belong to the original system).
We instrument the system by adding controllers to the schedulers and to the shared components. The controllers of
schedulers and the controllers of shared components interact whenever the scheduler and the shared components interact
to transmit vector clocks and state update. Each time a scheduler executes an interaction, the associated controller
attaches a vector clock to this execution and notifies the observer. Hence, the local trace of each scheduler is augmented
by vector clocks and is then sent to the observer.
In the following, we define an instrumentation of abstract distributed systems to let schedulers send their local traces to
an observer.

4.1 Composing Schedulers and Shared Components with Controllers

We consider a distributed system consisting of a set of components B =
{
B1, . . . , B|B|

}
(as per Definition 1) and a

set of schedulers S =
{
S1, . . . , S|S|

}
where scheduler Sj = (QSj ,ActSj ,→sj ) manages the interactions in ActγSj

and is notified by internal actions in ActβSj , for Sj (as per Definition 2). We attach to Sj a local controller Csj in charge
of computing the vector clock and sending the local trace of Sj to the observer. Moreover, for each shared component
Bi ∈ S, we attach a local controller Cbi to communicate with the controllers of the schedulers that have Bi in their
scope.
In the following, we define the controllers (instrumentation code) and the composition ⊗ as instrumentation process.

Controllers of Schedulers Controller Csj is in charge of computing the correct vector clock of scheduler Sj (Def-
inition 8). It does so through the data exchange with the controllers of shared components, i.e., the controllers in the
set {

Cbi
∣∣∣ Sj ∈ S ∧Bi ∈ scope(Sj)

}
,

which are later defined in Definition 10.

Definition 8 (Controller of scheduler). Controller Csj is an LTS (QCsj ,RCsj ,→Cs
j
) such that:

– QCsj = 2[1,|B|] × VC is the set of states where 2[1,n] is the set of subsets of component indexes and VC is the set
of vector clocks;

– RCsj =
{(
β̂i, ∅

) ∣∣∣ Bi ∈ scope(Sj)
}⋃
{(−, {rcv ibvcc}) | Bi ∈ scope(Sj) ∩Bs ∧ vc ∈ VC}⋃{(

âbvcc, snd
) ∣∣∣ a ∈ ActγSj ∧ vc ∈ VC ∧ snd ⊆ {snd ibvcc | Bi ∈ scope(Sj) ∩Bs ∧ vc ∈ VC}

}
is the set of actions;

– →Cs
j
⊆ QCsj ×RCsj ×QCsj is the transition relation defined as:{

(I, vc)

(
âbvc′c,{sndibvc′c | i∈involved(a)∧Bi∈Bs}

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Cs

j
(I ∪ involved(a), vc′)

∣∣∣∣∣ a ∈ ActγSj ∧ vc′ = inc(vc, j)

}
⋃{

(I, vc)
(β̂i,∅)−−−−→Cs

j
(I \ {i} , vc)

∣∣∣∣∣ βi ∈ ActβSj

}
⋃{

(I, vc)
(−,{rcvibvc′c})−−−−−−−−−−→Cs

j
(I,max(vc, vc′)

∣∣∣∣∣ βi ∈ ActβSj ∧Bi ∈ Bs

}

where inc(vc, j) increments the jth element of vector clock vc.
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CONT-SCH1
a ∈ Int qs

a−→Sj q
′
s qc

(
âbvc′c,{sndibvc′c | i∈involved(a)∧Bi∈Bs}

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Cs

j
q′c

(qs, qc)

(
a,
(
âbvc′c,{sndibvc′c | i∈involved(a)∧Bi∈Bs}

))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→scj (q′s, q

′
c)

CONT-SCH2
i ∈ I qs

βi−→Sj q
′
s qc

(β̂i,∅)−−−−→Cs
j
q′c

(qs, qc)
(βi,(β̂i,∅))−−−−−−−→scj (q′s, q

′
c)

CONT-SCH3
i ∈ I qs

βi−→Sj q
′
s qc

(β̂i,∅)−−−−→Cs
j
q′c

(qs, qc)
(βi,(β̂i,∅))−−−−−−−→scj (q′s, q

′
c)

Fig. 4: Semantics rules defining the composition controller / scheduler

When the controller Csj is in state (I, vc), it means that (i) I is the set of busy components in the scope of scheduler Sj ,
(ii) the execution of their latest action has been managed by scheduler Sj , and (iii) vc is the current value of the vector
clock of scheduler Sj .
An action inRCsj is a pair (x, y) where x is associated to the actions which send information from the controller to the
observer and y is associated to the actions in which the controller sends/receives information to/from the controllers of
shared components, such that
x ∈

{
âbvcc

∣∣∣ a ∈ ActγSj ∧ vc ∈ VC
}
∪
{
β̂i

∣∣∣ i ∈ scope(j)
}
∪ {−}, and

y ⊆ {snd ibvcc, rcv ibvcc | Bi ∈ scope(Sj) ∩Bs ∧ vc ∈ VC} can be intuitively understood as follows,

– action âbvcc consists in notifying the observer about the execution of interaction a with vector clock vc attached.
– action β̂i consists in notifying the observer about the internal action of component Bi. The last state of component
Bi is also transmitted to the observer.

– action − is used in the case when the controller does not interact with the observer,
– action snd ibvcc consists in sending the value of the vector clock vc of the scheduler to the shared component Bi,
– action rcv ibvcc consists in receiving the value of the vector clock vc stored in the shared component Bi.

The set of transitions is obtained as the union of three sets which can be intuitively understood as follows:
– For each interaction a ∈ ActγSj managed by scheduler Sj , we include a transition with action(

âbvc′c,
{
snd ibvc′c

∣∣ Bi ∈ involved(a) ∩Bs

})
,

where âbvc′c is a notification to the observer about the execution of interaction a along with the value of vector
clock vc′, and actions in set {snd ibvc′c | Bi ∈ involved(a) ∩Bs} send the value of the vector clock vc′ to
the shared components involved in interaction a. Moreover, the set of indexes of the components involved in
interaction a (i.e., in involved(a)) is added to the set of busy components; and the current value of the vector clock
is incremented.

– For each action associated to the notification of the internal action of component Bi (that is, βi), we include a
transition labeled with action (β̂i, ∅) in the controller to send the updated state to the observer. Moreover, this
transition removes index i from the set of busy components.

– For each action associated to the notification of internal action of a shared components Bi ∈ Bs, we include a
transition labeled with action (−, {rcv ibvc′c}) in the controller to receive the value of the vector clock vc′ stored
in the shared component to update the vector clock of the scheduler by comparing the vector clock stored in the
scheduler and the received vector clock from the shared component.

Note that, to each shared component Bi ∈ Bs, we also attach a local controller in order to exchange the vector clock
among schedulers in the set {Sj ∈ S | Bi ∈ scope(Sj)}; see Definition 10.
Below, we define how a scheduler is composed with its controller. Intuitively, the controller of a scheduler ensures
sending/receiving information among the scheduler, associated shared components and the observer.

Definition 9 (Semantics of Sj ⊗s Csj). The composition of scheduler Sj and controller Csj , denoted by Sj ⊗s Csj , is
the LTS (QSj ×QCsj ,ActSj ×RCsj ,→scj ) where the transition relation→scj⊆ (QSj ×QCsj )× (ActSj ×RCsj )×
(QSj ×QCsj ) is defined by the semantics rules in Figure 4.

The semantics rules in Figure 4 can be intuitively be understood as follows:
– Rule CONT-SCH1. When the scheduler executes an interaction a ∈ Int , the controller (i) updates the vector clock

by increasing its local clock, (ii) updates the set of busy components, (iii) notifies the observer of the execution of
a along with the associated vector clock vc′, and (iv) sends vector clock vc′ to the shared components involved in
a.

– Rule CONT-SCH2. When the scheduler is notified of an internal action of component Bi where i ∈ I (that is, the
scheduler has managed the latest action of component Bi) through action βi, the controller transfers the updated
state of component Bi to the observer through action β̂i.

– Rule CONT-SCH3. When the scheduler is notified of an internal action of the shared component Bi where i 6∈ I
(that is, the scheduler has not managed the latest action of component Bi), the controller receives the vector clock
stored in component Bi and updates the vector clock.
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(D̂rain1, ∅)

(̂Fill12, {snd2})

(β̂2, ∅)

(−, {rcv2})
(β̂1, ∅)l1 l0 l2 l3

Fill12 β1

Drain1

β2
β1

β2

Drain1
β2

β2

Scheduler S1 Controller Cs1

Fig. 5: Controller attached to the scheduler

CONT-SHA1
a ∈ Int a ∩Act i =

{
a′
}

managed(a) = Sj qb
a′−→i q

′
b qc

{rcvjbvc′c}−−−−−−−→Cb
i
q′c

(qb, qc)
(a′,{rcvjbvc′c})−−−−−−−−−−−→bci (q′b, q

′
c)

CONT-SHA2
qb

βi−→i q
′
b J = {j ∈ [1,m] | Bi ∈ scope(Sj)} qc

{sndjbvcc | j∈J}−−−−−−−−−−−→Cb
i
q′c

(qb, qc)
(βi,{sndjbvcc | j∈J})−−−−−−−−−−−−−−→bci (q′b, q

′
c)

Fig. 6: Semantics rules defining the composition controller / shared component

Example 6 (Controller of scheduler). Figure 5 depicts the controller of scheduler S1 (depicted in Figure 2). Actions
(β̂1, ∅) and (β̂2, ∅) consist in sending the updated state to the observer. Actions (D̂rain1, ∅) and (̂Fill12, {snd2}) con-
sist in notifying the observer about the occurrence of interactions managed by the scheduler. Moreover, snd2 sends the
vector clock to the shared component Tank2. The controller receives the vector clock stored in the shared component
Tank2 through action (−, {rcv2}) and updates its vector clock. For the sake of simplicity, variables attached to the
transition labels are not shown.

Controllers of Shared Components Below, we define the controllers attached to shared components. Intuitively,
the controller of a shared component ensures data exchange among the shared component and the corresponding sched-
ulers. A scheduler sets it’s current clock in a shared component’s controller which can be used later by another scheduler.

Definition 10 (Controller of shared component). Local controller Cbi for a shared component Bi ∈ Bs with the
behavior (Qi,Act i ∪ {βi} ,→i) is the LTS (Qcbi

,Rcbi ,→Cb
i

), where
– Qcbi

= VC is the set of states,
– Rcbi ⊆ {snd jbvcc, rcv jbvcc | Sj ∈ S ∧Bi ∈ scope(Sj) ∧ vc ∈ VC} is the set of actions,
– →Cb

i
⊆ Qcbi ×Rcbi ×Qcbi is the transition relation defined as{

vc
{rcvjbvc′c}−−−−−−−→Cb

i
max(vc, vc′) | a ∈ Int ∧ a ∩Act i 6= ∅ ∧managed(a) = Sj

}
⋃{

vc
{sndjbvcc}−−−−−−−→Cb

i
vc

∣∣∣∣∣ Sj ∈ S ∧Bi ∈ scope(Sj)

}
.

The state of the controller Cbi is represented by its vector clock. Controller Cbi has two types of actions:
– action rcv jbvc′c consists in receiving the vector clock vc′ of scheduler Sj ,
– action snd jbvcc consists in sending the vector clock vc stored in the controller Cbi to scheduler Sj .

The two types of transitions can be understood as follow:
– For each action of component Bi, which is managed by scheduler Sj , we include a transition executing action

rcv jbvc′c to receive the vector clock vc′ of scheduler Sj and to update the vector clock stored in controller Cbi .
– We include a transition with a set of actions for all the schedulers that have component Bi in their scope, that is
{Sj ∈ S | Bi ∈ scope(Sj)}, to send the stored vector clock of controller Cbi to the controllers of the corresponding
schedulers, that is

{
Csj
∣∣ Sj ∈ S ∧Bi ∈ scope(Sj)

}
.

Definition 11 (Semantics of Bi ⊗b Cbi ). The composition of shared component Bi and controller Cbi , denoted by
Bi ⊗b Cbi , is the LTS (Qi × Qcbi , (Act i ∪ {βi}) × Rcbi ,→bci) where the transition relation→bci⊆ (Qi × Qcbi ) ×(

(Act i ∪ {βi})×Rcbi
)
× (Qi ×Qcbi ) is defined by the semantics rules in Figure 6.

The semantics rules in Figure 6 can be intuitively understood as follows:
– Rule CONT-SHA1. applies when the scheduler notifies the shared component to execute an action part of an in-

teraction. Controller Cbi receives the value of the vector clock of scheduler Sj from the associated controller Csj in
order to update the value of the vector clock stored in controller Cbi .

11
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Fig. 7: Controller of shared component Tank2

– Rule CONT-SHA2. applies when the shared component Bi finishes its computation by executing βi, and controller
Cbi notifies the controllers of the schedulers that have component Bi in their scope, through actions snd j , for
j ∈ J , which sends the vector clock stored in controller Cbi to controllers Csj with j ∈ J , where J is the set of
indexes of schedulers which have the shared component Bi in their scope.

Example 7 (Controller of shared component). Figure 7 depicts the controller of the shared component Tank2 (depicted
in Figure 2). Action rcv1 (resp. rcv2) consists in the reception and storage of the vector clock from scheduler S1 (resp.
S2 ) upon the execution of interaction Fill12 (resp. Drain23). Action {snd1, snd2} sends the stored vector clock to
the schedulers S1 and S2 when the component Tank2 performs its internal action β2.

4.2 Correctness of Instrumentation

Following the instrumentation defined in Section 4.1, one can obtain a transformed system whose execution at runtime
generates the associated events. Furthermore, we shall prove that such an instrumentation does not modify the initial
behavior of the original system.

Definition 12 (Instrumented system). For a CBS consisting of a set of components B =
{
B1, . . . , B|B|

}
whereBi =

(Qi,Act i ∪ {βi} ,→i) (as per Definition 1), a set of schedulers S =
{
S1, . . . , S|S|

}
where Sj = (QSj ,ActSj ,→sj )

(as per Definition 2), and with the global behavior (Q,GAct ,→) (as per Definition 4), the instrumented CBS is the set
of components {S1⊗s Cs1, . . . , S|S|⊗s Cs|S|, B′1, . . . , B′|B|} whereB′i = Bi⊗b Cbi ifBi ∈ Bs andB′i = Bi otherwise.
We define the behavior of the instrumented CBS as an LTS (Qc,GActc,→c) where:

– Qc ⊆
⊗|B|

i=1Q
′
i ×

⊗|S|
j=1(QSj × QCsj ) is the set of states consisting of the states of schedulers and components

with their controllers where Q′i = Qi ×Qcbi if Bi ∈ Bs and Q′i = Qi otherwise.
– GActc = GAct × {RCsj ,RCbi | Sj ∈ S ∧Bi ∈ Bs} is the set of actions,
– →c⊆ Qc ×GActc ×Qc is the transition relation.

Component Csj is the controller of scheduler Sj for j ∈ [1 ,|S|] as per Definition 8, and component Cbi is the controller
of shared component and Bi as per Definition 10. An action of the instrumented system consists of two synchronous
actions; an action of the original system and the action of the associated controllers to notify the observer about the
occurrence of the action and/or the action of the controllers to exchange vector clocks.

Proposition 1. (Q,GAct ,→) ∼ (Qc,GActc,→c).

Proposition 1 states that the LTS of the instrumented CBS (see Definition 12) is weakly bi-similar to the LTS of initial
CBS. Thus the composition of a set of controllers with schedulers and shared components defined in Section 4.1 does
not affect the semantics of the initial system.

Proof. The proof of Proposition 1 is in Appendix A.2 (p. 33).

4.3 Event Extraction from the Local Traces of the Instrumented System

According to Definitions 8 and 10, the first action in the semantics rules of a controlled scheduler or shared component
corresponds to an interaction of the initial system. Thus, the notion of trace is extended in the natural way by considering
the additional semantics rules. Elements of a trace are updated by including the new configurations and actions of
controlled schedulers and shared components.

Example 8 (Local traces of instrumented system). Consider Example 5, the local traces of the instrumented system for
two global traces t1 and t2 are:

– s1(t1) = (d1, d2, d3) ·
(
Fill12,

(
̂Fill12b(1, 0)c, snd2b(1, 0)c

))
· (⊥,⊥, ? ) ·

(
{β1} ,

(
{̂β1}, ∅

))
· (f1,⊥, ? ) ·(

{Drain1} , ̂{Drain1} b(2, 0)c)
)
· (⊥,⊥, ? ) ·

(
{β2} ,

(
{̂β2}, ∅

))
· (⊥, f2, ? ),

– s2(t1) = (d1, d2, d3) ·
(
{Fill3} , ̂{Fill3} b(0, 1)c

)
· (? , d2,⊥) · ({β2} , (−, rcv1b(1, 0)c)) · (? , f2,⊥),

– s1(t2) = (d1, d2, d3) ·
(
Fill12,

(
̂Fill12b(1, 0)c, snd2b(1, 0)c

))
· (⊥,⊥, ? ) ·

(
{β2} ,

(
{̂β2}, ∅

))
· (⊥, f2, ? ) ·(

{β1} ,
(
{̂β1}, ∅

))
· (f1, f2, ? ),

– s2(t2) = (d1, d2, d3) ·
(
{Fill3} , ̂{Fill3} b(0, 1)c

)
· (? , d2,⊥) ·

(
{β3} ,

(
{̂β3}, ∅

))
· (? , d2, f3)·

({β2} , (−, rcv1b(1, 0)c)) · (? , f2, f3) ·
(
Drain23,

(
̂Drain23b(1, 0)c, snd2b(1, 2)c

))
· (? ,⊥,⊥).
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In both traces, scheduler S2 is notified of the state update of component Tank2 (that is β2), but scheduler S2 does not
sent it to the observer. Indeed, following the semantics rules of composition of a scheduler and its controller (Defini-
tion 9), a scheduler only sends the received state from a component only if the execution of the latest action on this
component has been managed by this scheduler.

Definition 13 (Sequence of events). Let t be the global trace of the distributed system and sj(t) = q0 ·γ1 ·q1 · · · γk−1 ·
qk−1 · γk · qk, for j ∈ [1,m], be the local trace of scheduler Sj (as per Definition 7). The sequence of events of sj(t)
is inductively defined as follows:

– event(q0) = ε,

– event (sj(t) · γ · q) =


event(sj(t)) · (a, vc) if γ is of the form (∗, (âbvcc, ∗)) ,
event(sj(t)) · βi if γ is of the form (∗, (β̂i, ∗)) ,
event(sj(t)) otherwise.

Intuitively, any communication between the controller of scheduler Sj and the observer is defined as an event of sched-
uler Sj . According to the semantic rules of composition Sj ⊗ Csj (see Definition 9), controller Csj sends information to
the observer (actions denoted by ^ over them) when scheduler Sj (i) executes an interaction a ∈ Act , or (ii) is notified
by the internal action of a component which the execution of its latest action has been managed by scheduler Sj .

Example 9 (Sequence of events). The sequences of events of local traces in Example 8 are:
– event(s1(t1)) : (Fill12, (1, 0)) · β1 · (Drain1, (2, 0)) · β2,
– event(s2(t1)) : (Fill3, (0, 1)),
– event(s1(t2)) : (Fill12, (1, 0)) · β2 · β1,
– event(s2(t2)) : (Fill3, (0, 1)) · β3 · (Drain23, (1, 2)).

To interpret the state updates received by the observer, we use the notion of computation lattice, adapted to distributed
CBSs with multi-party interactions in the next section.

5 Computation Lattice of a Distributed CBS with Multi-party Interactions

In the previous section, we define how to instrument the system to have controllers generating events (i.e., local partial-
traces) sent to a central observer. In this section, we define how the central observer constructs on-the-fly a computation
lattice representing the possible global traces compatible with the local partial-traces received from the controllers of
schedulers.
In the distributed setting several schedulers execute actions concurrently so that it is not possible to extract the actual
partial trace of the system by only observing the local partial-traces. One can find a set of compatible partial traces, each
of which can be considered as the actual partial trace of the system with respect to the observed local partial-traces.
Intuitively, the projection of each compatible partial trace on a specific scheduler results the observed local partial-trace
of the scheduler. A naive monitoring solution is to construct the witness trace [28] of each compatible partial-trace using
the technique for the multi-threaded CBSs. Such a solution would result a huge computation process overhead, because
of the enormous number of compatible partial traces, specially for the distributed system with less number of shared
component and more concurrent events. Instead, we apply the global trace reconstruction on a computation lattice, that
is a multi-dimensional execution trace, and introduce a novel technique for the monitoring of the computation lattice
on-the-fly (see Section 6). Such a computation lattice encompasses all the compatible global trace of the system.

Computation Lattice The computation lattice is represented implicitly using vector clocks. The construction of the
lattice mainly performs the two following operations: (i) creations of new nodes and (ii) updates of existing nodes in
the lattice. Action events lead to the creation of new nodes in the direction of the scheduler emitting the event while
update events complete the information in the nodes of the lattice related to the state of the component related to the
event. The state of a nodes initially (after creation) is a partial state and by updating the lattice it becomes a global
state. Since the received events are not totally ordered (because of potential communication delay), we construct the
computation lattice based on the vector clocks attached to the received events. Note that we assume the events received
from a scheduler are totally ordered.
We first extend the notion of computation lattice.

Definition 14 (Extended Computation lattice). An extended computation lattice L is a tuple (N, Int , ), where
– N ⊆ Ql × VC is the set of nodes, with Ql =

⊗|B|
i=1

(
Qr
i

⋃{
⊥ji | Sj ∈ S ∧Bi ∈ scope(Sj)

})
and VC is the

set of vector clocks,
– Int is the set of multi-party interactions as defined in Section 3.1,
– =

{
(η, a, η′) ∈ N × Int ×N | a ∈ Int ∧ η� η′ ∧ η.state a−→ η′.state

}
,

where is the extended presentation of happened-before relation which is labeled by the set of multi-party interactions
and η.state referring to the state of node η.

We simply refer to extended computation lattice as computation lattice. Intuitively, a computation lattice consists of a
set of partially connected nodes, where each node is a pair, consisting of a state of the system and a vector clock. A
system state consists in the states of all components. The state of a component is either a ready state or a busy state (as
per Definition 1). In this context we represent a busy state of component Bi ∈ B, by ⊥ji which shows that component
Bi is busy to finish the computation process of its latest action which has been managed by scheduler Sj ∈ S. A
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computation lattice L initially consists of an initial node initL = (init , (0, . . . , 0)), where init is the initial state of
the system and (0, . . . , 0) is a vector clock where all the clocks associated to the schedulers are zero. The set of nodes
of computation lattice L is denoted by L.nodes , and for a node η = (q, vc) ∈ L.nodes , η.state denotes q and η.clock
denotes vc. If (i) the event of node η happened before the events of node η′, that is η′.clock > η.clock and η� η′, and
(ii) the states of η and η′ follow the global behavior of the system (as per Definition 4) in the sense that the execution
of an interaction a ∈ Int from the state of η brings the system to the state of η′, that is η.state a−→ η′.state , then in the
computation lattice it is denoted by η a η′ or by η η′ when clear from context.
Two nodes η and η′ of the computation lattice L are said to be concurrent if neither η.clock > η′.clock nor η′.clock >
η.clock . For two concurrent nodes η and η′ if there exists a node η′′ such that η′′ η and η′′ η′, then node η′′ is
said to be the meet of η and η′ denoted by meet(η, η′,L) = η′′.

The rest of this section is structured as follows. In Sec. 5.1 some intermediate notions are defined in order to introduce
our algorithm to construct the computation lattice in Section 5.2. In Section 5.3 we discuss the correctness of the
algorithm.

5.1 Intermediate Operations for the Construction of the Computation Lattice

In the reminder, we consider a computation lattice L as per Definition 14. The reception of a new event either modifies
L or is kept in a queue to be used later. Action events extend L using operator extend (Definition 15), and update events
update the existing nodes ofL by adding the missing state information into them using operator update (Definition 18).
By extending the lattice with new nodes, one needs to further extend the lattice by computing joints of the created nodes
(Definition 17) with the existing ones so as to complete the set of possible global traces.

Extension of the lattice. We define a function to extend a node of the lattice with an action event which takes as input
a node of the lattice and an action event and outputs a new node.

Definition 15 (Node extension). Function extend : (Ql ×VC )×Ea → Ql ×VC is defined as follows. For a node
η = ((q1, . . . , q|B|), vc) ∈ Ql ×VC and an action event e = (a, vc′) ∈ Ea,

extend(η, e) =


((q′1, . . . , q

′
|B|), vc

′) if ∃j ∈ [1 ,|S|] :

(vc′[j] = vc[j] + 1 ∧ ∀j′ ∈ [1 ,|S|] \ {j} : vc′[j′] = vc[j′])

undefined otherwise ;

with ∀i ∈ [1 ,|B|] : q′i =

{
qi if Bi ∈ involved(a),

⊥ki otherwise.
where k = managed(a).index .

Node η said to be extendable by event e if extend(η, e) is defined. Intuitively, node η = (q, vc) represents a global
state of the system and extensibility of η by action event e = (a, vc′) means that from the global state q, scheduler
Sj = managed(a), could execute interaction a. State ⊥ki indicates that component Bi is busy and being involved in a
global action which has been executed (managed) by scheduler Sk for k ∈ [1 ,|S|].
We say that computation lattice L is extendable by action event e if there exists a node η ∈ L.nodes such that
extend(η, e) is defined.

Property 1. ∀e ∈ Ea :|{η ∈ L.nodes | ∃η′ ∈ Ql ×VC : η′ = extend(η, e)}|≤ 1.

Property 1 states that for any update event e, there exists at most one node in the lattice for which function extend is
defined (meaning that L can be extended by event e from that node).

Example 10 (Node extension). Considering the local partial-traces described in Example 9, initially, the computa-
tion lattice consists of the initial node which has the initial state init , with an associated vector clock (0, 0), i.e.,
initL = ((d1, d2, d3), (0, 0)). As for the sequence of events in trace t1, node ((d1, d2, d3), (0, 0)) is extendable by
event (Fill12, (1, 0)) because, according to Definition 15, we have: extend(((d1, d2, d3), (0, 0)), (Fill12, (1, 0))) =
((⊥1

1,⊥1
2, d3), (1, 0)).

Furthermore, to illustrate Property 1, let us consider the extended lattice after event (Fill12, (1, 0)) which consists
of two nodes, initial node ((d1, d2, d3), (0, 0)) and node ((⊥1

1,⊥1
2, d3), (1, 0)). When action event (Fill3, (0, 1))

is received, we have extend(initL, (Fill3, (0, 1)) = ((d1, d2,⊥2
3), (0, 1)) whereas extend(((⊥1

1,⊥1
2, d3), (1, 0)),

(Fill3, (0, 1))) is not defined which shows that Property 1 holds on the lattice.

We define a relation between two vector clocks to distinguish the concurrent execution of two interactions such that
both could happen from a specific global state of the system.

Definition 16 (Relation JL). Relation JL ⊆ VC ×VC is defined between two vector clocks as follows: JL =
{(vc, vc′) ∈ VC ×VC | ∃! k ∈ [1 ,|S|] : vc[k] = vc′[k] + 1 ∧ ∃! l ∈ [1 ,|S|] : vc′[l] = vc[l] + 1 ∧ ∀j ∈ [1 ,|S|] \
{k, l} : vc[j] = vc′[j]}.

For two vector clocks vc and vc′ to be in relation JL, vc and vc′ should agree on all but two clocks values related
to two schedulers of indexes k and l. On one of these indexes, the value of one vector clock is equal to the value of
the other vector clock plus 1, and the converse on the other index. Intuitively, (η.clock , η′.clock) ∈ JL means that
nodes η and η′ are associated to two concurrent events (caused by the execution of two interactions managed by two
different schedulers) that both could happen from a unique global state of the system which is the meet of η and η′ (see
Property 2). Example 11 illustrates relation JL.
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Property 2. ∀η, η′ ∈ L.nodes : (η.clock , η′.clock) ∈ JL =⇒ meet(η, η′,L) ∈ L.nodes .

Property 2 states that for two nodes η and η′ in lattice L such that (η.clock , η′.clock) ∈ JL, there exists a node in
lattice L as the meet of η and η′, that is meet(η, η′,L) ∈ L.nodes .
The joint node of η and η′ is defined as follows.

Definition 17 (Joint node). For two nodes η, η′ ∈ L.nodes such that (η.clock , η′.clock) ∈ JL, the joint node of η
and η′, denoted by joint(η, η′,L) = η′′, is defined as follows:

– ∀i ∈ [1 ,|B|] : η′′.state[i] =

{
η.state[i] if η.state[i] 6= ηm.state[i],

η′.state[i] otherwise;
– η′′.clock = max(η.clock , η′.clock);

where ηm = meet(η, η′,L).

According to Property 2, for two nodes η and η′ in relation JL, their meet node exists in the lattice. The state of the
joint node of η and η′ is defined by comparing their states and the state of their meet. Since two nodes in relation JL
are concurrent, the state of component Bi for i ∈ [1 ,|B|] in nodes η and η′ is either equal to the state of component
Bi in their meet, or only one of the nodes η and η′ has a different state than their meet (components can not be both
involved in two concurrent executions). The joint node of two nodes η and η′ takes into account the latest changes of
the state of the nodes η and η′ compared to their meet. Note that joint(η, η′,L) = joint(η′, η,L), because joint is
defined for nodes whose clocks are in relation JL.

Example 11 (RelationJL and joint node). To continue Example 10, the reception of action event (Fill3, (0, 1)) extends
the lattice in the direction of scheduler S2 because function extend is defined, that is:

extend(((d1, d2, d3), (0, 0)), (Fill3, (0, 1))) = ((d1, d2,⊥2
3), (0, 1)).

After this extension, the lattice has three nodes which are ((d1, d2, d3), (0, 0)), ((⊥1
1,⊥1

2, d3), (1, 0)) and ((d1, d2,⊥2
3),

(0, 1)). According to Definition 16, the vector clocks of the two nodes ((⊥1
1,⊥1

2, d3), (1, 0)) and ((d1, d2,⊥2
3), (0, 1))

are in relation JL (i.e., ((1, 0), (0, 1)) ∈ JL). Therefore, following Definition 17, the joint node of the two above nodes
is ((⊥1

1,⊥1
2,⊥2

3), (1, 1)), and their meet is ((d1, d2, d3), (0, 0)).

Update of the lattice. We define a function to update a node of the lattice which takes as input a node of the lattice
and an update event and outputs the updated version of the input node.

Definition 18 (Node update). Function update : (Ql × VC ) × Eβ → Ql × VC is defined as follows. For a node
η = ((q1, . . . , q|B|), vc) and an update event e = (βi, q

′
i) ∈ Eβ with i ∈ [1 ,|B|] which is sent by scheduler Sk with

k ∈ [1 ,|S|]:
update(η, e) = ((q1, . . . , qi−1, q

′′
i , qi+1, . . . , q|B|), vc),

with q′′i =

{
q′i if qi = ⊥ki ,
qi otherwise.

An update event (βi, q
′
i) contains an updated state of some component Bi. By updating a node η in the lattice with an

update event which is sent from scheduler Sk, we update the partial state associated to η by adding the state information
of that component, if the state of component Bi associated to node η is ⊥ki . Intuitively means that a busy state which
is caused by an execution of an action managed by scheduler Sk can only be replace by a ready state sent by the same
scheduler Sk. Updating node η does not modify the associated vector clock vc.

Example 12 (Node update). To continue Example 11, let us consider node ((⊥1
1,⊥1

2, d3), (1, 0)) whose state is a
partial state (because of the lack of the state information of Tank1 and Tank2), and update event (β1, f1) sent by
scheduler S1. To obtain the updated node, we apply function update over the node and the update event. We have:
update(((⊥1

1,⊥1
2, d3), (1, 0)), (β1, f1)) which results updated node ((f1,⊥1

2, d3), (1, 0)). Although the state of the
updated node is a partial state, it has more state information then the state before update (i.e., (⊥1

1,⊥1
2, d3)). Concerning

the initial node of the lattice and update event (β1, f1), update(((d1, d2, d3), (0, 0)), (β1, f1)) = ((d1, d2, d3), (0, 0)).

Buffering events. The reception of an action event or an update event might not always lead to extending or updating
the current computation lattice. Due to communication delay, an event which has happened before another event might
be received later by the observer. It is necessary for the construction of the computation lattice to use events in a specific
order. Such events must be kept in a waiting queue to be used later. For example, such a situation occurs when receiving
action event e such that function extend is not defined over e and none of the existing nodes of the lattice. In this
case event e must be kept in the queue until obtaining another configuration of the lattice in which function extend is
defined. Moreover, an update event e′ referring to an internal action of component Bi is kept in the queue if there exists
an action event e′′ in the queue such that component Bi is involved in e′′, because we can not update the nodes of the
lattice with an update event associated to an execution which is not yet taken into account in the lattice.

Definition 19 (Queue κ). A queue of events is a finite sequence of events in E. Moreover, for a non-empty queue
κ = e1 · e2 · · · er , remove(κ, e) = κ(1 · · · z − 1) · κ(z + 1 · · · r) with e = ez ∈ {e1, e2, . . . , er}.

Queue κ is initialized to an empty sequence. Function remove takes as input queue κ and an event in the queue and
outputs the version of κ in which the given event is removed from the queue.
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Algorithm 1 MAKE

Global variables: L initialized to initL,
κ initialized to ε,
V initialized to (0, . . . , 0).

1: procedure MAKE(e, from-the-queue)
2: if e ∈ Ea then . if e is an action event.
3: ACTIONEVENT(e, from-the-queue)
4: else if e ∈ Eβ then . if e is an update event.
5: UPDATEEVENT(e, from-the-queue)
6: end if
7: end procedure

Example 13 (Event storage in the queue). Let us consider trace t2 in Example 9, such that all the events of scheduler S2

are received by the observer earlier than the events of scheduler S1. After the reception of action event (Fill3, (0, 1)),
since extend(((d1, d2, d3), (0, 0)), (Fill3, (0, 1))) is defined, the lattice is extended in the direction of scheduler S2

and the new node ((d1, d2,⊥2
3)(0, 1)) is created. The reception of update event (β3, f3) updates the newly created

node ((d1, d2,⊥2
3)(0, 1)) to ((d1, d2, f3)(0, 1)). After the reception of action event (Drain23, (1, 2)), since there is no

node in the lattice where function extend is defined over, event (Drain23, (1, 2)) must be stored in the queue, therefore
κ = (Drain23, (1, 2)).

5.2 Algorithm Constructing the Computation Lattice

In the following, we define an algorithm based on the above definitions to construct the computation lattice based on
the events received by the global observer.
The algorithm consists of a main procedure (see Algorithm 1) and several sub-procedures using global variables lattice
L (Definition 14) and queue κ (Definition 19).
For an action event e ∈ Ea with e = (a, vc), e.action denotes interaction a and e.clock denotes vector clock vc. For
an update event e ∈ Eβ with e = (βi, qi), e.index denotes index i.
Initially, after the reception of event e from a controller of a scheduler, the observer calls the main procedure using
MAKE(e, false). In the following, we describe each procedure in detail.

MAKE (Algorithm 1): Procedure MAKE takes two parameters as input: a boolean variable from-the-queue and an
event e. Parameters e and from-the-queue vary based on the type of event e. Boolean variable from-the-queue is
true when the input event e is picked up from the queue and false otherwise (i.e., event e is received from a controller
of a scheduler). Procedure MAKE uses two sub-procedures, ACTIONEVENT and UPDATEEVENT. If the input event
is an action event, sub-procedure ACTIONEVENT is called, and if the input event is an update event, sub-procedure
UPDATEEVENT is called. Procedure MAKE updates the global variables.

Algorithm 2 ACTIONEVENT

1: procedure ACTIONEVENT(e, from-the-queue)
2: lattice-extend ← false

3: for all η ∈ L.nodes do
4: if ∃η′ ∈ Ql ×VC : η′ = extend(η, e) then
5: L.nodes← L.nodes ∪ {η′} . extend the lattice with the new node.
6: MODIFYQUEUE(e, from-the-queue, true) . event e is removed from the queue if it was picked up from the queue.
7: lattice-extend ← true

8: break . stop iteration when the lattice is extended (Property 1).
9: end if

10: end for
11: if ¬ lattice-extend then
12: MODIFYQUEUE(e, from-the-queue, false) . event e is added to the queue if it was not picked up from the queue.
13: return
14: end if
15: JOINTS( ) . extend the lattice with joint nodes.
16: REMOVEEXTRANODES() . lattice size reduction.
17: if ¬ from-the-queue then
18: CHECKQUEUE( ) . recall the events stored in the queue.
19: end if
20: end procedure
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Algorithm 3 UPDATEEVENT

1: procedure UPDATEEVENT(e, from-the-queue)
2: for all e′ ∈ κ do
3: if e′ ∈ Ea ∧ e.index ∈ involved(e′.action) then . check if there exists an action event in the queue concerning

component Be.index .
4: MODIFYQUEUE(e, from-the-queue, false) . event e is added to the queue if it was not picked up from the queue.
5: return
6: end if
7: end for
8: for all η ∈ L.nodes do
9: η ← update(η, e) . update nodes according to Definition 18.

10: end for
11: MODIFYQUEUE(e, from-the-queue, true)
12: end procedure

Algorithm 4 MODIFYQUEUE

1: procedure MODIFYQUEUE(e, from-the-queue, event-is-used )
2: if from-the-queue ∧ event-is-used then
3: κ← remove(κ, e) . event e is removed from the queue if it is picked from queue and used.
4: else if ¬ from-the-queue ∧¬ event-is-used then
5: κ← κ · e . event e is added to the queue if it is not picked from queue and could not be used.
6: end if
7: end procedure

ACTIONEVENT (Algorithm 2): Procedure ACTIONEVENT is associated to the reception of action events and takes
as input an action event e and a boolean parameter from-the-queue , which is false when event e is received from a
controller of a scheduler and true when event e is picked up from the queue. Procedure ACTIONEVENT modifies global
variables L and κ.
Procedure ACTIONEVENT has a local boolean variable lattice-extend which is true when an input action event could
extend the lattice (i.e., the current computation lattice is extendable by the input action event) and false otherwise.
By iterating over the existing nodes of lattice L, ACTIONEVENT checks if there exists a node η in L.nodes such that
function extend is defined over event e and node η (Definition 15). If such a node η is found, ACTIONEVENT creates
the new node extend(η, e), adds it to the set of the nodes of the lattice, invokes procedure MODIFYQUEUE, and stops
iteration. Otherwise, ACTIONEVENT invokes procedure MODIFYQUEUE and terminates.
In the case of extending the lattice by a new node, it is necessary to create the (possible) joint nodes. To this end, in
Line 15 procedure JOINTS is called to evaluate the current lattice and create the joint nodes. For optimization purposes,
after making the joint nodes procedure REMOVEEXTRANODES is called to eliminate unnecessary nodes to optimize
the lattice size.
After making the joint nodes and (possibly) reducing the size of the lattice, if the input action event is not picked from
the queue, ACTIONEVENT invokes procedure CHECKQUEUE in Line 18, otherwise it terminates.

UPDATEEVENT (Algorithm 3): Procedure UPDATEEVENT is associated to the reception of update events. Recall
that an update event e contains the state update of some component Bi with i ∈ [1 ,|B|] (e.index = i). Procedure UP-
DATEEVENT takes as input an update event e and a boolean value associated to parameter from-the-queue . Procedure
UPDATEEVENT modifies global variables L and κ.
First, UPDATEEVENT checks the events in the queue. If there exists an action event e′ in the queue such that component
Bi is involved in e′.action , UPDATEEVENT adds update event e to the queue using MODIFYQUEUE and terminates.
Indeed, one can not update the nodes of the lattice with an update event associated to an execution which is not yet
taken into account in the lattice.
If no action event in the queue concerned component Bi, UPDATEEVENT updates all the nodes of the lattice (Lines 8-
10) according to Definition 18.
Finally, the input update event is removed from the queue if it is picked from the queue, using MODIFYQUEUE.

MODIFYQUEUE (Algorithm 4): Procedure MODIFYQUEUE takes as input an event e and two boolean variables
from-the-queue and event-is-used . Procedure MODIFYQUEUE adds (resp. removes) event e to (resp. from) queue κ
according to the following conditions. If event e is picked up from the queue (i.e., from-the-queue = true) and e is
used in the algorithm to extend or update the lattice (i.e., event-is-used = true), event e is removed from the queue
(Line 3). Moreover, if event e is not picked up from the queue and it is not used in the algorithm, event e is stored in the
queue (Line 5).

JOINTS (Algorithm 5): Procedure JOINTS extends lattice L in such a way that all the possible joints have been
created. First, procedure JCOMPUTE is invoked to compute relation JL (Definition 16) among the existing nodes of the
lattice and then creates the joint nodes and adds them to the set of the nodes of the lattice. Then, after the creation of the
joint node of two nodes η and η′, (η.clock , η′.clock) is removed from relation JL. It is necessary to compute relation
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Algorithm 5 JOINTS

1: procedure JOINTS

2: JL ← JCOMPUTE . compute the pairs of the vector clocks of the nodes which are in JL.
3: while JL 6= ∅ do
4: for all η, η′ ∈ L.nodes such that (η.clock , η′.clock) ∈ JL do
5: L.nodes ← L.nodes ∪ {joint(η, η′,L)} . extend the lattice with the new joint node.
6: JL ← JL \ {(η.clock , η′.clock)}
7: end for
8: JL ← JCOMPUTE

9: end while
10: end procedure

JL again after the creation of joint nodes, because new nodes can be in relation JL. This process terminates when JL
is empty.

Algorithm 6 JCOMPUTE

1: procedure JCOMPUTE

2: for all η, η′, η′′ ∈ L.nodes do
3: if η′′ � η ∧ η′′ � η′ then . if η and η′ are associated to two concurrent events.
4: JL = JL ∪ {(η.clock , η′.clock)} . η.clock and η′.clock are added to relation JL.
5: end if
6: end for
7: return JL
8: end procedure

JCOMPUTE (Algorithm 6): Procedure JCOMPUTE computes relation JL by pairwise iteration over all the nodes of
the lattice and checks if the vector clocks of any two nodes satisfy the conditions in Definition 16. The pair of vector
clocks satisfying the above conditions are added to relation JL.

CHECKQUEUE (Algorithm 7): Procedure CHECKQUEUE recalls the events stored in the queue e ∈ κ and executes
MAKE(e, true), to check whether the conditions for taking them into account to update the lattice hold.
Procedure CHECKQUEUE checks the events in the queue until none of the events in the queue can be used either to
extend or to update the lattice. To this end, before checking queue κ, in Line 3 a copy of queue κ is stored in κ′, and
after iterating all the events in queue κ, the algorithm checks the equality of current queue and the copy of the queue
before checking. If the current queue κ and copied queue κ′ have the same events, it means that none of the events in
queue κ has been used (thus removed), therefore the algorithm stops checking the queue again by breaking the loop in
Line 8.
Note, when the algorithm is iterating over the events in the queue, i.e., when the value of variable from-the-queue is
true, it is not necessary to iterate over the queue again (Algorithm 2, Line 17). Moreover, events in the queue are picked
up in the same order as they have been stored in the queue (FIFO queue).

REMOVEEXTRANODES (Algorithm 8): For optimization reasons, after extending the lattice by an action event,
procedure REMOVEEXTRANODES is called to eliminate some (possibly existing) nodes of the lattice. A node in the
lattice can be removed if the lattice no longer can be extended from that node. Having two nodes of the lattice η and η′

such that every clock in the vector clock of η′ is strictly greater than the respective clock of η, one can remove node η.
This is due to the fact that the algorithm never receives an action event which could have extended the lattice from η
where the lattice has already took into account an occurrence of event which has greater clocks stamp than η.clock .

Remark 4. The reason to remove the extra nodes of the lattice can be explained as following. First, our online algorithm
is used for runtime monitoring purposes, and second, each node n represents the evaluation of system execution up to
node n. Hence, the nodes which reflect the state of the system in the past are not valuable for the runtime monitor.

Example 14 (Lattice construction). Figure 8a depicts the computation lattice according to the received sequence of
events concerning trace t2 of Example 9. Node ((d1, d2, f3) , (0, 1)) is associated to event (Fill12, (1, 0)) and node
((f1, f2, d3) , (1, 0)) is associated to event (Fill3, (0, 1)). Since these two events are concurrent, joint node ((f1, f2, f3),
(1, 1)) is made. Node

((
f1,⊥2

2,⊥2
3

)
, (1, 2)

)
is associated to event (Drain23, (1, 2)). Due to vector clock update tech-

nique, the node with vector clock of (0, 2) is not created.
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Algorithm 7 CHECKQUEUE

1: procedure CHECKQUEUE

2: while true do
3: κ′ ← κ
4: for all z ∈ [1, length(κ)] do
5: MAKE(κ(z), true) . recall the events of the queue.
6: end for
7: if κ = κ′ then
8: break . break if none of the events in the queue is used.
9: end if

10: end while
11: end procedure

Algorithm 8 REMOVEEXTRANODES

1: procedure REMOVEEXTRANODES

2: for all η ∈ L.nodes do
3: if ∀j ∈ [1,m],∃η′ ∈ L.nodes : η′.clock [j] > η.clock [j] then . if there exists a node with a strictly greater clocks in the

vector clock.
4: remove(L.nodes, η) . the node with the smaller vector clock is removed.
5: end if
6: end for
7: end procedure

5.3 Insensibility to Communication Delay

Algorithm MAKE can be defined over a sequence of events received by the observer ζ = e1 · e2 · e3 · · · ez ∈ E∗ in the
sense that one can apply MAKE sequentially from e1 to ez initialized by taking event e1, the initial lattice initL and an
empty queue.

Proposition 2 (Insensitivity to the reception order). For any two sequences of events ζ, ζ′ ∈ E∗, we have(
∀Sj ∈ S : ζ ↓Sj= ζ′ ↓Sj

)
=⇒ MAKE(ζ) = MAKE(ζ′), where ζ ↓Sj is the projection of ζ on scheduler Sj which

results the sequence of events generated by Sj .

Proposition 2 states that different ordering of the events does not affect the output result of Algorithm MAKE. Note, this
proposition assumes that all events in ζ and ζ′ can be distinguished. For a sequence of events ζ ∈ E∗, MAKE(ζ).lattice
denotes the constructed computation lattice L by algorithm MAKE.

5.4 Correctness of Lattice Construction

Computation lattice L has an initial node initL which is the node with the smallest vector clock, and a frontier node
which is the node with the greatest vector clock. A path of the constructed computation lattice L is a sequence of
causally-related nodes of the lattice, starting from the initial node and ending up in the frontier node.

Definition 20 (Set of the paths of a lattice). The set of the paths of a constructed computation lattice L is Π(L) ={
η0 ·α1 ·η1 ·α2 ·η2 · · ·αz ·ηz | η0 = initL ∧∀r ∈ [1 , z] :

(
ηr−1

αr ηr ∨ (∃N ⊆ L.nodes : ηr−1 = meet(N,L)∧

ηr = joint(N,L) ∧ ∀η ∈ N : ηr−1
aη η ∧ αr =

⋃
η∈N aη)

)}
, where the notions of meet and joint are naturally

extended over a set of nodes.

A path is a sequence of nodes such that for each pair of adjacent nodes either (i) the prior node is in relation with
the next node or (ii) the prior and the next node are the meet and the joint of a set of existing nodes respectively. A path
from a meet node to the associated joint node represents an execution of a set of concurrent joint actions.

Example 15 (Set of the paths of a lattice). In the computation lattice L depicted in Figure 8a, there are three distinct
paths that begin from the initial node ((d1, d2, d3) , (0, 0)) and end up to the frontier node

((
f1,⊥2

2,⊥2
3

)
, (1, 2)

)
. The

set of paths is Π(L) = {π1, π2, π3}, where:
– π1 = ((d1, d2, d3), (0, 0)) · {Fill12} · ((f1, f2, d3), (1, 0)) · {{Fill3}} · ((f1, f2, f3), (1, 1)) · {Drain23} ·

((f1,⊥2
2,⊥2

3), (1, 2)),
– π2 = ((d1, d2, d3), (0, 0)) · {{Fill3}} · ((d1, d2, f3), (0, 1)) · {Fill12} · ((f1, f2, f3), (1, 1)) · {Drain23} ·

((f1,⊥2
2,⊥2

3), (1, 2)),
– π3 = ((d1, d2, d3), (0, 0)) · {Fill12, {Fill3}} · ((f1, f2, f3), (1, 1)) · {Drain23} · ((f1,⊥2

2,⊥2
3), (1, 2)).

Let us consider system M with the global behavior (Q,GAct ,→) as per Definition 4. At runtime, the execution of
such a system produces a global trace t = q0 · (α1∪β1) · q1 · (α2∪β2) · · · (αk ∪βk) · qk as per Definition 5. Since the
actual partial trace t is not observable due to the occurrence of simultaneous and concurrent interactions and internal
actions, partial trace t can be represented as a set of compatible partial traces, which could have happened in the system
at runtime.
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((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2, f3), (0, 1))

((f1, f2, f3), (1, 1))

((f1,⊥2
2,⊥2

3), (1, 2))

(? , (0, 2))

(a) Computation lattice

((f1, f2, d3), (1, 0))

((f1, f2, f3), (1, 1))

((f1,⊥2
2,⊥2

3), (1, 2))

(b) Optimized computation lattice

Fig. 8: Computation lattice associated to trace t2 in Example 5

Definition 21 (Compatible partial traces of a partial trace). The set of all compatible partial traces of partial trace
t is P(t) = {t′ ∈ Q · (GAct ·Q)∗ | ∀j ∈ [1 ,|S|] : t′ ↓Sj= t ↓Sj= sj(t)}.

Partial trace t′ is compatible with the partial trace t if the projection of both t and t′ on scheduler Sj , for j ∈ [1 ,|S|],
results the local partial-trace of scheduler Sj . In a partial trace, for each global action which consists of several con-
current interactions and internal actions of different schedulers, one can define different ordering of those concurrent
interactions, each of which represents a possible execution of that global action. Consequently, several compatible
partial traces can be encoded from a partial trace of the distributed system M.
Note that two compatible traces with only difference in the ordering of their internal actions are considered as a unique
compatible trace. What matters in the compatible traces of a partial trace is the different ordering of interactions.

Example 16 (The set of compatible partial traces). Let us consider the partial trace t1 described in Example 4, that is
t1 = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Drain1} , {Fill3}} · (⊥,⊥,⊥) · {β2} · (⊥, f2,⊥).
The projection of t1 on each scheduler is represented as follow:

– t1 ↓S1= (d1, d2, d3) · {Fill12} · (⊥,⊥, ? ) · {β1} · (f1,⊥, ? ) · {{Drain1}} · (⊥,⊥, ? ) · {β2} · (⊥, f2, ? ),
– t1 ↓S2= (d1, d2, d3) · {Fill3} · (? , d2,⊥).

The set of compatible partial traces is P(t1) =
{
t11, t

2
1, t

3
1, t

4
1, t

5
1

}
where:

– t11 = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Fill3} , {Drain1}} · (⊥,⊥,⊥) · {β2} · (⊥, f2,⊥),
– t21 = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Drain1}} · (⊥,⊥, d3) · {{Fill3}} · (⊥,⊥,⊥) ·
{β2} · (⊥, f2,⊥),

– t31 = (d1, d2, d3) · {Fill12} · (⊥,⊥, d3) · {β1} · (f1,⊥, d3) · {{Fill3}} · (f1,⊥,⊥) · {{Drain1}} · (⊥,⊥,⊥) ·
{β2} · (⊥, f2,⊥),

– t41 = (d1, d2, d3) · {Fill12, {Fill3}} · (⊥,⊥,⊥) · {β1} · (f1,⊥,⊥) · {{Drain1}} · (⊥,⊥,⊥) · {β2} · (⊥, f2,⊥),
– t51 = (d1, d2, d3) · {{Fill3}} · (d1, d2,⊥) · {Fill12} · (⊥,⊥,⊥) · {β1} · (f1,⊥,⊥) · {{Drain1}} · (⊥,⊥,⊥) ·
{β2} · (⊥, f2,⊥).

Since the desired property is defined over the global states, for monitoring purposes it is necessary to obtain the global
trace of the system with a sequence of global states. To this end, by inspiring the technique introduced in [28] to
reconstruct the witness trace, we define a function which takes as input a partial trace of the distributed system (i.e., a
sequence of partial states) and outputs an equivalent global trace in which all the internal actions (β) are removed from
the trace and instead the updated state after each internal action is used to complete the states of the global trace.

Definition 22 (Function refineRβ). FunctionRβ : Q · (GAct ·Q)∗ −→ Q · (Int ·Q)∗ is defined as:
• Rβ(init) = init ,

• Rβ(σ · (α ∪ β) · q) =


Rβ(σ) · α · q if β = ∅,
map [x 7→ upd(q, x)] (Rβ(σ)) if α = ∅,
map [x 7→ upd(q, x)] (Rβ(σ) · α · q) otherwise;

with upd : Q× (Q ∪ 2Int) −→ Q ∪ 2Int defined as:
– upd((q1, . . . , q|B|), α) = α,

– upd
(

(q1, . . . , q|B|), (q
′
1, . . . , q

′
|B|)
)

= (q′′1 , . . . , q
′′
|B|),

where ∀k ∈ [1 , |B|] : q′′k =

{
qk if (qk /∈ Qb

k) ∧ (q′k ∈ Qb
k)

q′k otherwise.

FunctionRβ uses the (information in the) state after internal actions in order to update the partial states using function
upd.
By applying function Rβ over the set of compatible partial traces P(t), we obtain a new set of compatible global
traces which is (i) equivalent to P(t), (ii) internal actions are discarded in the presentation of each global trace and (iii)
contains maximal global states that can be built with the information contained in the partial states observed so far.
A refined global traceRβ(t) is said to be equal with a path η0 ·α1 · η1 ·α2 · η2 · · ·αz · ηz ifRβ(t) = (η0.state) ·α1 ·
(η1.state) · α2 · (η2.state) · · ·αz · (ηz.state).
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((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(a) Computation lattice

((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(b) Path π1

((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(c) Path π2

((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(d) Path π3

((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(e) Path π4

((d1, d2, d3), (0, 0))

((f1, f2, d3), (1, 0))((d1, d2,⊥), (0, 1))

((⊥, f2, d3), (2, 0))

((⊥, f2,⊥), (2, 1))

((f1, f2,⊥), (1, 1))

(f) Path π5

Fig. 9: Computation lattice, all the associated paths and compatible traces associated to trace t1 in Example 5

Example 17 (Applying functionRβ). By applying functionRβ over the set of compatible partial traces in Example 16
we have the refined traces (compatible global traces):

– Rβ(t11) = (d1, d2, d3) · {Fill12} · (f1, f2, d3) · {{Drain1} , {Fill3}} · (⊥, f2,⊥),
– Rβ(t21) = (d1, d2, d3) · {Fill12} · (f1, f2, d3) · {{Drain1}} · (⊥, f2, d3) · {{Fill3}} · (⊥, f2,⊥),
– Rβ(t31) = (d1, d2, d3) · {Fill12} · (f1, f2, d3) · {{Fill3}} · (f1, f2,⊥) · {{Drain1}} · (⊥, f2,⊥),
– Rβ(t41) = (d1, d2, d3) · {Fill12, {Fill3}} · (f1, f2,⊥) · {{Drain1}} · (⊥, f2,⊥),
– Rβ(t51) = (d1, d2, d3) · {{Fill3}} · (d1, d2,⊥) · {Fill12} · (f1, f2,⊥) · {{Drain1}} · (⊥, f2,⊥).

In Definition 7 we defined {s1(t), . . . , sm(t)}, the set of observable local partial-traces of the schedulers obtained
from partial trace t. According to Definition 13, from each local partial-trace we can obtain the sequences of events
generated by the controller of each scheduler, such that the set of all the sequences of the events is {event(s1(t)),
. . . , event(sm(t))} with event(sj(t)) ∈ E∗ for j ∈ [1 ,|S|].
In the following, we define the set of all possible sequences of events that could be received by the observer.

Definition 23 (Events order). Considering partial trace t, the set of all possible sequences of events that could be
received by the observer is Θ(t) = {ζ ∈ E∗ | ∀j ∈ [1 ,|S|] : ζ ↓Sj= event(sj(t))}.

Events are received by the observer in any order just under a condition in which the ordering of the local events of a
scheduler is preserved.

Proposition 3 (Soundness). ∀ζ ∈ Θ(t),∀π ∈ Π( MAKE (ζ) .lattice), ∀j ∈ [1 ,|S|] :π ↓Sj= Rβ(sj(t)).

Proposition 3 states that the projection of all paths in the lattice on a scheduler Sj for j ∈ [1 ,|S|] results in the refined
local partial-trace of scheduler Sj .
The following proposition states the correctness of the construction in the sense that applying Algorithm MAKE over
a sequence of observed events (i.e., ζ ∈ Θ) at runtime, results in a computation lattice which encodes a set of the
sequences of global states, such that each sequence represents a global trace of the system.

Proposition 4 (Completeness). Given a partial trace t as per Definition 5, we have

∀ζ ∈ Θ(t), ∀t′ ∈ P(t), ∃!π ∈ Π
(

MAKE (ζ) .lattice
)

:π = Rβ(t′).

π said to be the associated path of the compatible partial-trace t′.

Applying algorithm MAKE over any of the sequence of events, constructs a computation lattice whose set of paths
consists on all the compatible global traces.

Example 18 (Existence of the set of compatible global traces in the constructed lattice). Let us consider partial trace
t1 presented in Example 4 and the set of all associated event of t1 that is presented in Example 9. Events are received
by the observer in order to make the lattice. Figure 9, illustrates the associated constructed computation lattice using
algorithm MAKE consists of 5 paths π1 to π5. The set of compatible global traces (presented in Example 17) can be
extracted from the reconstructed lattice, where πk = Rβ(tk1) for k ∈ [1 , 5]. Paths π1 to π5 are associated paths of the
compatible partial-traces t11 to t51 respectively.
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6 LTL Runtime Verification by Progression on the Reconstructed Computation
Lattice

In this section, we address the problem of monitoring an LTL formula specifying the desired global behavior of the
system.
In the usual case, evaluating whether an LTL formula holds requires the monitoring procedure to have access to the
global state of the system. In the previous section we introduced how to construct the computation lattice using the
partially-ordered events. Although by stabilizing the system to have the ready state of all components we could obtain
a complete computation lattice using algorithm MAKE (see Section 5.2), that is the state of each node is a global state,
instead, we propose an on-the-fly verification of an LTL property during the construction of computation lattice.
There are many approaches to monitor LTL formulas based on various finite-trace semantics (see [2]). One way of
looking at the monitoring problem for some LTL formula ϕ is described in [3] based on formula rewriting, which is
also known as formula progression, or just progression. Progression splits a formula into (i) a formula expressing what
needs to be satisfied by the observed events so far and (ii) a new formula (referred to a future goal), which has to be
satisfied by the trace in the future. We apply progression over a set of finite partial-traces, where each trace consists in a
sequence of (possibly) partial states, encoded from the constructed computation lattice. An important advantage of this
technique is that it often detects when a formula is violated or validated before the end of the execution trace, that is,
when the constructed lattice is not complete, so it is suitable for online monitoring.
To monitor the execution of a distributed CBS with respect to an LTL property ϕ, we introduce a more informative
computation lattice by attaching to the each node of latticeL a set of formula. Given a computation latticeL = (N, )
(as per Definition 14), we define an augmented computation lattice Lϕ as follow.

Definition 24 (Computation lattice augmentation). Lϕ is a pair (Nϕ, ), where Nϕ ⊆ Ql × VC ×2LTL is the
set of nodes augmented by 2LTL, that is the set of LTL formulas. The initial node is initϕL = (init , (0, . . . , 0), {ϕ})
with ϕ ∈ LTL the global desired property.

In the newly defined computation lattice, a set of LTL formulas is attached to each node. The set of formulas attached
to a node represents the different evaluation of the property ϕ with respect to different possible paths form the initial
node to the node. The state and the vector clock associated to each node and the happened-before relation are defined
similar to the initial definition of computation lattice (see Definition 14).
The construction of the augmented computation lattice requires some modifications to algorithm MAKE:

– Lattice Lϕ initially has node initϕL = (init , (0, . . . , 0), {ϕ}).
– The creation of a new node η in the lattice with η.state = q and η.clock = vc, calculates the set of formulas Σ

associated to η using the progression function (see Definition 25). The augmented node is η = (q, vc,Σ), where
Σ = {prog(LTL′, q) | LTL′ ∈ η′.Σ ∧ (η′ η ∨ ∃N ⊆ Lϕ.nodes : η′ = meet(N,L) ∧ η = joint(N,L))}.
We denote the set of formulas of node η ∈ Lϕ.nodes by η.Σ.

– Updating node η = (q, vc,Σ) by update event e = (βi, qi) ∈ Eβ, i ∈ [1 ,|B|] which is sent by scheduler
Sj , j ∈ [1 ,|S|] updates all associated formulas Σ to Σ′ using the update function (see Definition 26), where
Σ′ =

{
updϕ(LTL, qi, j) | LTL ∈ Σ

}
.

Definition 25 (Progression function). prog : LTL×Ql −→ LTL is defined using a pattern-matching with p ∈
APi∈[1 ,|B|] and q = (q1, . . . , q|B|) ∈ Ql.

prog(ϕ, q) = match(ϕ) with

| p ∈ APi∈[1 ,|B|] →


T if qi ∈ Qr

i ∧ p ∈ qi
F if qi ∈ Qr

i ∧ p 6∈ qi
Xkβp otherwise (qi = ⊥ki , k ∈ [1 ,|S|])

| Xkβp→ Xkβp
| ϕ1 ∨ ϕ2 → prog(ϕ1, q) ∨ prog(ϕ2, q)
| ϕ1Uϕ2 → prog(ϕ2, q) ∨ prog(ϕ1, q) ∧ ϕ1Uϕ2

| Gϕ→ prog(ϕ, q) ∧ Gϕ
| Fϕ→ prog(ϕ, q) ∨ Fϕ
| Xϕ→ ϕ
| ¬ϕ→ ¬prog(ϕ, q)
| T → T

We define a new modality Xβ such that Xkβp for p ∈ APi∈[1 ,|B|] and k ∈ [1 ,|S|] means that atomic proposi-
tion p has to hold at next ready state of component Bi which is sent by scheduler Sk. For a sequence of partial
states obtained at runtime σ = q0 · q1 · q2 · · · such that σj = qj , we have σj |= Xkβp ⇔ σz |= p where

z = min
({
r > j

∣∣∣ (σr−1 ↓Sk )
βi−→Sk (σr ↓Sk )

})
.

The truth value of the progression of an atomic proposition p ∈ APi for i ∈ [1 ,|B|] with a partial state q =
(q1, . . . , q|B|) is evaluated by true (resp. false) if the state of component Bi (that is qi) is a ready state and satis-
fies (resp. does not satisfy) the atomic proposition p. If the state of component Bi is not a ready state, the evaluation of
the atomic proposition p is postponed to the next ready state of component Bi.
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Definition 26 (Formula update function). updϕ : LTL×{Qr
i}|B|i=1 × [1 ,|S|] → LTL is defined using a pattern-

matching with qi ∈ Qr
i for i ∈ [1 ,|B|].

updϕ(ϕ, qi, j) = match(ϕ) with

| Xkβp→


T if p ∈ AP i ∩ qi ∧ k = j

F if p ∈ AP i ∩ qi ∧ k = j

Xkβp otherwise (p 6∈ APi ∨ k 6= j)
| ϕ1 ∨ ϕ2 → updϕ(ϕ1, qi) ∨ updϕ(ϕ2, qi)
| ϕ1 ∧ ϕ2 → updϕ(ϕ1, qi) ∧ updϕ(ϕ2, qi)
| ϕ1Uϕ2 → updϕ(ϕ1, qi)U updϕ(ϕ2, qi)
| Gϕ→ G updϕ(ϕ, qi)
| Fϕ→ F updϕ(ϕ, qi)
| Xϕ→ X updϕ(ϕ, qi)
| ¬ϕ→ ¬ updϕ(ϕ, qi)
| T → T
| p ∈ APi∈[1 ,|B|] → p

Update function updates a progressed LTL formula with respect to a ready state of a component. Intuitively, a formula
consists in an atomic proposition whose truth or falsity depends on the next ready state of component Bi sent by
scheduler Sk, that is Xkβp where p ∈ AP i, can be evaluated using update function by taking the first ready state of
component Bi received from scheduler Sk after the formula rewrote to Xkβp.

Example 19 (Formula progression and formula update over an augmented computation lattice). Let consider the sys-
tem presented in Example 5 with partial trace t2 and the associated sequence of events presented in Example 9 and
desired property ϕ = G(d3 ∨ f1). Lϕ initially has node initϕL = ((d1, d2, d3), (0, 0), {ϕ}). By observing the ac-
tion event (Fill12, (1, 0)), algorithm MAKE creates new node η1 = ((⊥,⊥, d3), (1, 0), {ϕ}), because prog(G(d3 ∨
f1), (⊥,⊥, d3)) = prog((d3 ∨ f1), (⊥,⊥, d3)) ∧G(d3 ∨ f1) = T ∧G(d3 ∨ f1) = G(d3 ∨ f1) = ϕ.
By observing the action event (Fill3, (0, 1)), new node η2 = ((d1, d2,⊥), (0, 1), {Xβd3 ∧ ϕ}) is created, because
prog(G(d3 ∨ f1), (d1, d2,⊥)) = prog((d3 ∨ f1), (d1, d2,⊥)) ∧ G(d3 ∨ f1) = Xβd3 ∧ G(d3 ∨ f1) = Xβd3 ∧ ϕ.
Formula Xβd3 means that the evaluation of partial state (d1, d2,⊥) with respect to formula (d3 ∨ f1) is on hold until
the next ready state of component Tank3.
Consequently joint node η3 = ((⊥,⊥,⊥), (1, 1), {(Xβd3)∧(Xβd3∨Xβf1)∧ϕ, (Xβd3∨Xβf1)∧ϕ, (Xβd3∨Xβf1)∧
ϕ}) is made. The update event (β3, f3) updates both state and the set of formulas associated to each node as follows.
Although initϕL and η1 remain intact, but node η2 is updated to ((d1, d2, f3), (0, 1), {F}) because updϕ(Xβd3 ∧
ϕ, f3) = F . Moreover, node η3 is updated to η3 = ((⊥,⊥, f3), (1, 1), {F, (Xβf1) ∧ ϕ, (Xβf1) ∧ ϕ}).
The update event (β2, f2) updates nodes η1 and η3 such that η1 = ((⊥, f2, d3), (1, 0), {ϕ}) and η3 = ((⊥, f2, f3),
(1, 1), {F, (Xβf1) ∧ ϕ, (Xβf1) ∧ ϕ}).
By observing the action event (Drain23, (1, 2)), the new node η4 = ((⊥,⊥,⊥), (1, 2), {F, (Xβd3∨Xβf1)∧(Xβf1)∧
ϕ, (Xβd3 ∨ Xβf1) ∧ (Xβf1) ∧ ϕ}) is created.
The update event (β1, f1) updates nodes η1, η3 and η4 such that η1 = ((f1, f2, d3), (1, 0), {ϕ}), η3 = ((f1, f2, f3),
(1, 1), {F,ϕ, ϕ}) and η4 = ((f1,⊥,⊥), (1, 2), {F,ϕ, ϕ}).
Table 1 shows the step-by-step reconstructing and monitoring of the associated computation lattice. The highlighted
nodes are the removed nodes using Algorithm 8, but for the sake of better understanding we show them.

6.1 Correctness of Formula Progression on the Lattice
In Section 5, we introduced how from an unobservable partial trace t of a distributed CBS one can construct a set of
paths representing the set of compatible global-traces of t in form of a lattice. Furthermore, in Section 6 we adapted
formula progression over the constructed lattice with respect to a given LTL formula ϕ. What we obtained is a directed
lattice Lϕ starting from the initial node and ending up with frontier node ηf . The set of formulas attached to the frontier
node, that is ηf .Σ, represents the progression of the initial formula over the set of path of the lattice.

Definition 27 (Progression on a partial trace). Function PROG : LTL×Q · (GAct ·Q)∗ → LTL is defined as:
– PROG(ϕ, init) = ϕ,
– PROG(ϕ, σ) = ϕ′

– PROG (ϕ, σ · (α ∪ β) · q) = prog (UPD (PROG (ϕ, σ) ,Q) , q) where
• Q = {q[i] | βi ∈ β} is the set of updated states,
• function UPD : LTL×QR → LTL is defined as:
∗ UPD (ϕ, {ε}) = ϕ,
∗ UPD (ϕ,Qr ∪ {qi}) = updϕ (UPD (ϕ,Qr) , qi).

with QR ⊆ {q ∈ Qr
i | i ∈ [1 ,|B|]} the set of subsets of ready states of the components.

Function PROG uses functions prog (Definition 25), updϕ (Definition 26) and function UPD . Since after each global
action in the partial trace we reach a partial state(see Definition 5), function updϕ does not need to check among
multiple partial states to find whose formula must be updated. That is why PROG uses the simplified version of
function updϕ by eliminating the scheduler index input. Moreover functions prog modified in such way to take as
input a partial state in Q instead of a state in Ql because as we above mentioned, the index of schedulers does not play
a role in the progression of an LTL formula on a partial trace.
Given a partial state t as per Definition 5 and an LTL property ϕ, by ηf .Σ we denote the set of LTL formulas of the
frontier node of the constructed computation lattice Lϕ, we have the two following proposition and theorems:
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Table 1: On-the-fly construction and verification of computation lattice

step event constructed lattice

0 ε ((d1, d2, d3), (0, 0), {ϕ})

1

- receiving event Fill12(1, 0)

- extending by making a new node

- the formula projection of new node ((d1, d2, d3), (0, 0), {ϕ})

((⊥,⊥, d3), (1, 0), {ϕ})

2

- receiving event Fill3(0, 1)

- extending by making a new node

- extending by making the joint node

- the formula projection of new nodes

- three formulas attached to the frontier

represent the evaluation of three paths

- the node with vector clock (0, 0) can be removed

((d1, d2, d3), (0, 0), {ϕ})

((⊥,⊥, d3), (1, 0), {ϕ})((d1, d2,⊥), (0, 1), {Xβd3 ∧ ϕ})

((⊥,⊥,⊥), (1, 1), {(Xβd3) ∧ (Xβd3 ∨ Xβf1) ∧ ϕ, (Xβd3 ∨ Xβf1) ∧ ϕ, (Xβd3 ∨ Xβf1) ∧ ϕ})

3

- receiving event (β3, f3)

- updating states of the existing nodes

- updating the formulas of existing nodes
((d1, d2, d3), (0, 0), {ϕ})

((⊥,⊥, d3), (1, 0), {ϕ})((d1, d2, f3), (0, 1), {F})

((⊥,⊥, f3), (1, 1), {F, (Xβf1) ∧ ϕ, (Xβf1) ∧ ϕ})

4

- receiving event (β2, f2)

- updating states of the existing nodes

- updating the formulas of existing nodes
((d1, d2, d3), (0, 0), {ϕ})

((⊥, f2, d3), (1, 0), {ϕ})((d1, d2, f3), (0, 1), {F})

((⊥, f2, f3), (1, 1), {F, (Xβf1) ∧ ϕ, (Xβf1) ∧ ϕ})

5

- receiving event Drain23(1, 2)

- extending by making a new node

- the formula projection of new node

- the node with vector clock (0, 1) can be removed

((d1, d2, d3), (0, 0), {ϕ})

((⊥, f2, d3), (1, 0), {ϕ})((d1, d2, f3), (0, 1), {F})

((⊥, f2, f3), (1, 1), {F, (Xβf1) ∧ ϕ, (Xβf1) ∧ ϕ})

((⊥,⊥,⊥), (1, 2), {F, (Xβd3 ∨ Xβf1) ∧ (Xβf1) ∧ ϕ, (Xβd3 ∨ Xβf1) ∧ (Xβf1) ∧ ϕ})

6

- receiving event (β1, f1)

- updating states of the existing nodes

- updating the formulas of existing nodes

((d1, d2, d3), (0, 0), {ϕ})

((f1, f2, d3), (1, 0), {ϕ})((d1, d2, f3), (0, 1), {F})

((f1, f2, f3), (1, 1), {F,ϕ, ϕ})

((f1,⊥,⊥), (1, 2), {F,ϕ, ϕ})

24



Unobservable Global Trace t

Local Partial-Traces

Distributed CBS

Sequence of
Partially-Ordered

Events

Online Algortihm

Algorithm 1

L
attice

L

•

•

•

•

•

•

•

•

•

•

•

•

Observable Local Partial-Traces

Local Partial-Trace S1(t)

Local Partial-Trace S|S|(t)

Local Events

Transformation Instrumented
Distributed CBS

Set of paths of L
Π

progression(Π) ηf .ΣPROG(P(t))

Online
Progression/Update on L

Definition 25, Definition 26

Definition 20

Standard
Progression

[3]

Standard
Progression

[3]

Set of Compatible Global Traces
P(t)

(Soundness)

Proposition 3

(Completeness)

Proposition 4

≡

=
Theorem 1

(Soundness)

=
Theorem 2

(Completeness)

Fig. 10: Approach overview

Proposition 5. Given an LTL formula ϕ and a partial trace t, there exists a partial trace t′ such that PROG(ϕ, t′) =
progression(ϕ,Rβ(t′)) with:

t′ =

{
t if last(t)[i] ∈ Qr

i for all i ∈ [1 ,|B|],
t · β · q otherwise.

Where β ⊆
⋃
i∈[1 ,|B|] {βi}, ∀i ∈ [1 ,|B|], q[i] ∈ Qr

i and progression is the standard progression function on a global
trace as described in [3].

Proposition 5 states that progression of an LTL formula on a partial trace of a distributed system (as per Definition 5)
using PROG results similar to the standard progression of the LTL formula on the corresponding refined global trace
using progression if we allow the system to be stabilized by the execution of β actions of busy components. Intuitively,
our progression method over on a trace of a distributed system follows the standard progression technique on a trace of
a sequential system where the global state of the system is always defined.

Theorem 1 (Soundness). For a partial trace t and LTL formula ϕ, we have

∀ϕ′ ∈ ηf .Σ, ∃t′ ∈ P(t) :PROG(ϕ, t′) = ϕ′.

Theorem 1 states that each formula of the frontier node is derived from the progression of formula ϕ on a compatible
partial-trace of t.

Theorem 2 (Completeness). For a partial trace t and an LTL formula ϕ, we have:

ηf .Σ =
{
PROG(ϕ, t′)

∣∣ t′ ∈ P(t)
}
.

Theorem 2 states that the set of formulas in the frontier node is equal to the set of progression of ϕ on all the compatible
partial-traces of t.
Figure 10 depicts our monitoring approach for a distributed CBS.

7 Implementation

We present an implementation of our monitoring approach in a tool called RVDIST. RVDIST is a prototype tool
implementing algorithm MAKE presented in Sec. 6, written in the C++ programming language. RVDIST takes as input
a configuration file describing the architecture of the distributed system and a list of events. The configuration file has
the parameters of system such as the number of schedulers, the number of components, the initial state of the system, the
LTL formula to be monitored, the mapping of each atomic propositions to the components. The formula is monitored
against the sequence of events by progression over the constructed computation lattice. RVDIST outputs the evaluation
of the constructed lattice by reporting the number of observed events, the number of existing nodes of the constructed
lattice, the number of nodes which have been removed from the lattice due to optimizing the size of the lattice, the vector
clock of the frontier node, the number of paths from the initial node to the frontier node which have been monitored
(the set of all compatible traces), the set of formulas associated to the frontier node. Figure 11 depicts the work-flow of
RVDIST.
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8 Evaluation

We present the evaluation of our monitoring approach on two case studies carried out with RVDIST.

8.1 Case Studies

We present a realistic example of a robot navigation and a model of two phase commit protocol (TPC).

Deadlock Freedom of Robotic Application ROBLOCO The functional level of this navigating robot consists
of a set of modules. ROBLOCO is in charge of the robot low-level controller. It has a track task associated to the
activities TSStart/TSStop (TrackSpeedStart, TrackSpeedStop). TSStart reads data from the dedicated speed port and
sends it to the motor controller. In parallel, the manager module, which is associated to the odo task activities (OdoStart
and OdoStop) reads the signals from the encoders on the wheels and produces a current position on the pos port.
ROBLASER is in charge of the laser. It has a scan task associated to the StartScan/StopScan activities. They produce
the free space in the laser’s range tagged with the position where the scan has been made. ROBMAP aggregates the
successive scan data in the map port. ROBMOTION has one task plan which, given a goal position, computes the
appropriate speed to reach it and writes it on speed, using the current position, and avoiding obstacles. We deal with the
most complex module, i.e., ROBLOCO, involving three schedulers in charge of the execution of the dedicated actions.
ROBLOCO has 34 components and 117 multi-party interactions synchronizing the actions of components. Since tasks
are based on the specific sequence of the execution of interactions and tasks are not totally independent, there exist
some share components which are involved in more than one task. To prevent deadlocks in the system, it is required
that whenever the controller is in free state, at some point in future, the signal module must reach the start state before
the manager starts managing a new odo task. The deadlock freedom requirement can be defined as LTL formula ϕ1.

ϕ1: G
(
ControlFree =⇒ (X¬ManagerStartodo USignalStart)

)

Protocol Correctness of Two Phase Commit (TPC): We consider the distributed transaction commit [17]
problem where a set of nodes called resource managers {rm1, rmn, . . . , rmn} have to reach agreement on whether
to commit or abort a transaction. Resource managers are able to locally commit or abort a transaction based on a local
decision. In a fault-free system, it is required the global system to commit as a whole if each resource manager has
locally committed, and that it aborts as a whole if any of the resource managers has locally aborted. In case of global
abort, locally-committed resource managers may perform roll-back steps to undo the effect of the last transaction [42].
Two phase commit protocol is a solution proposed by [16] to solve the transaction commit problem. It uses a transaction
manager that coordinates between resource managers to ensure they all reach one global decision regarding a partic-
ular transaction. The global decision is made by the transaction manager based on the feedback it gets from resource
managers after making their local decision (LocalCommit/LocalAbort).
The protocol, running on a transaction, uses a client, a transaction manager and a non-empty set of resource managers
which are the active participants of the transaction. The protocol starts when client sends remote procedure to all the
participating resource managers. Then each participating resource manager rmi makes its local decision based on its
local criteria and reports its local decision to transaction manager. LocalCommiti is true if resource manager rmi

can locally-commit the transaction, and LocalAborti is true if resource manager rmi cannot locally-commit the
transaction. Each participant resource managers stays in wait location until it hears back from transaction manager
whether to perform a global commit or abort for the current transaction. After all local decisions have been made and
reported to transaction manager, the latter makes a global decision (GlobalCommit/GlobalAbort) that all the
system will agree upon. When GlobalCommit is true, the system will globally-commit as a whole, and it will abort
as a whole when GlobalAbort is true. We consider two specifications related to TPC protocol correctness:

ϕ2: G
(∧n

i=1(LocalAborti =⇒ X(¬LocalAborti ∧ ¬LocalCommiti) UGlobalAbort)
)

,

ϕ3: G
(∧n

i=1 LocalCommiti =⇒ X
(∧n

i=1(¬LocalAborti ∧ ¬LocalCommiti)
)

UGlobalCommit
)

.
Property ϕ2 states that, sending locally abort in any resource managers for a current transaction implies the global abort
(GlobalAbort) on that transaction before the resource manager locally aborts or commits the next transaction, that
is, none of the resource managers commit. Property ϕ3 states that, if all the resource managers send locally commit
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Fig. 12: Lattice construction vs. number of shared components

for a current transaction, then all the resource managers commit the transaction (GlobalCommit) before the resource
managers locally aborts or commits the next transaction.
For each system we applied the model transformation defined in Section 4.1 and run them in a distributed setting. Each
instrumented system produces a sequence of event which is generated and sent from the controllers of its schedulers.
The events are sent to the RVDIST where the associated configuration file is already given. Upon the reception of each
event, RVDIST applies the online monitoring algorithm introduced in Section 6 and outputs the result consists of the
information stored in the constructed computation lattice and evaluation of the desired LTL property so far.
In the following we investigate how the number of shared components effects on the size of the computation lattice over
a very simple example of a distributed CBS with multiparty interaction.

Example 20 (Shared component, lattice size). Let us consider a component-based system consists of four indepen-
dent components Comp1, . . . ,Comp4. Each component has two actions Action1,Action2 which are designed to only
be executed with the following order: Action1.Action2.Action1 and then the component terminates. We distribute the
execution of actions using four schedulers Sched1, . . . , Sched4. For the sake of simplicity, we consider each action of
the components as a singleton interaction of the system such that Act = {Compi.Action1,Compi.Action2 | i ∈ [1, 4]}.
Each scheduler manages a subset of Act . We define various partitioning of the interactions to obtain the following
settings:

1. Each scheduler is dedicated to manage the actions of only one component, such that actions Compi.Action1 and
Compi.Action2 are managed by Scheduler Schedi for i ∈ [1, 4]. In this setting, no component has shared its actions
to more that one scheduler.

2. Considering the previous setting with the only difference that action Comp1.Action2 by scheduler Sched2. In this
setting, component Comp1 is a shared component.

3. Considering the previous setting with the only difference that action Comp2.Action2 by scheduler Sched3. In this
setting, components Comp1 and Comp2 are shared component.

4. Considering the previous setting with the only difference that action Comp3.Action2 by scheduler Sched4. In this
setting, components Comp1, Comp2 and Comp3 are shared component.

5. Considering the previous setting with the only difference that action Comp4.Action2 by scheduler Sched1. In this
setting, all the components are shared component.

Since the components are designed to be involved only in three actions, the number of generated action/update events is
equal in different settings (24 events in total), no matter which scheduler manages which action, and the only differences
of events obtained through those setting are the vector clock of the action events and the sender of action/update events.
Table 2 and Figure 12 represent the results with respect to the above-mentioned settings. Columns in Table 2 have the
following meaning:

– Column shared component indicates the number of shared components in each setting.
– Column lattice nodes shows the number of the nodes of the constructed lattice in each setting.
– Column removed nodes indicates the number of removed nodes in the lattice using the optimization algorithm.
– Column path indicates the number of paths of the constructed computation lattice.

Considering the first setting where there is no shared component in the system, results a set of independent action
events where none of the two action events from two different schedulers are causally related, so that we construct a
complete (maximal) computation lattice in order to cover all the compatible global traces. The size of constructed lattice
as well as the number of paths of the lattice is decreased by considering more shared components (see Figure 12a and
Figure 12b).

8.2 Results and Conclusion

Table 3 and Figure 13 present the results checking specifications deadlock freedom on ROBLOCO and protocol cor-
rectness on TPC. The columns of the table have the following meanings:
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Table 2: Results of lattice construction w.r.t different settings of Example 20
shared

component
lattice
nodes

removed
nodes

paths

0 175 81 10,681,263
1 88 72 1,616,719
2 56 60 572,847
3 34 52 316,035
4 18 47 251.177

Table 3: Results of monitoring ROBLOCO and TPC with RVDIST

System property |ϕ| # observed events
# lattice size

frontier node VC
optimized not-optimized

ROBLOCO ϕ1 3 3463 17 10602 (730,352,485)

TPC
ϕ2 10

4709 11 2731 (402,402,402,601)
ϕ3 26

– Column |ϕ| shows the size of the monitored LTL formula. Note, the size of formulas are measured in terms of the
operators entailment inside it, e.g., G(a ∧ b) ∨ Xc is of size 2.

– Column observed event indicates the number of action/update events sent by the controllers of the schedulers.
– Column lattice size reports the size of constructed lattice using optimization algorithm is used vs. the size of

constructed lattice when non-optimized algorithm is used.
– Column frontier node VC indicated the vector clock associated to the frontier node of the constructed lattice.

Figures 13a, 13b show how the size of constructed lattice varies in two systems as they evolve. Having shared com-
ponents in system is not the only reason to have a small lattice size, what is more important is how often the shared
components are used as a part of executed interactions. The more execution with shared components results the more
dependencies in the generated events and thus the smaller lattice size.
In ROBLOCO system, after receiving 3463 events, the size of the obtained computation lattice is 17, whereas the size
of non-optimized lattice is 10602 which is a quite large in terms of storage space and iteration process. It shows how
efficient our optimization algorithm minimize and optimize the monitoring process. Figures 13a shows how the size
of constructed lattice varies by the time the ROBLOCO systems evolves. Although what we need in the constructed
computation lattice as the verdicts of the monitor output is only stored in the frontier node, but the rest of the nodes are
necessary to be kept at runtime in order to extend the lattice in case of reception of new events.
In TPC system we also obtained a very small size of the lattice after the reception of 4709 events. As it is shown in
Table 3 the size and complexity of the LTL property does not change the structure of the constructed lattice, it only
effects on the progression process. The frontier-node vector clock shows that how many interactions have been executed
by each scheduler at the end of the system run.
Our monitoring algorithm implemented in RVDIST provide a lightweight tool to runtime monitor the behavior of a
distributed CBS. RVDIST keeps the size of the lattice as small as possible even for a long run.

9 Related Work

A close work to the approach presented in this paper has been exposed in [3]. In this setting, multiple components in a
system each observe a subset of some global event trace. Given an LTL property ϕ, their goal is to create sound formula
derived from ϕ that can be monitored on each local trace, while minimizing inter-component communication. Similar to
our approach, the monitor synthesis is based on the internal structure of the monitored system and the projection of the
global trace upon each component is well-defined and known in advance. Moreover, all components consume events
from the trace synchronously. Compare to our setting, we target a distributed component system with asynchronous
executions. Hence, instead of having a global trace at runtime, we are dealing with a set of possible global traces which
possibly could happen during the run of the system.
In [7], Cooper and Marzullo present three algorithms for detecting global predicates based on the construction of the
lattice associated with a distributed execution. The first algorithm determined that the predicate was possibly true at
some point in the past; the second algorithm determines that the predicate was definitely true in the past; while the third
algorithm establishes that the predicate is currently true, but to do so it may delay the execution of certain processes.
In [8], Diehl, Jard and Rampon present basic algorithm for trace checking of distributed programs by building the
lattice of all reachable states of the distributed system under test, based on the on-the-fly observation of the partial order
of message causality. Compare to our approach, in our distributed setting schedulers don’t communicate directly by
sending-receiving messages. Moreover, no monitor has been proposed in [8] for the purpose of verification whereas
in our algorithm we synthesize a runtime monitor which evaluate on-the-fly the behavior of the system based on the
reconstructed computation lattice of partial-states.
In [38], Sen and Vardhan design a method for monitoring safety properties in distributed systems using the past-time
linear temporal logic (PLTL). The distributed monitors gain knowledge about the state of the system by piggybacking
on the existing communication among processes. That is, if processes rarely communicate, then monitors exchange
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Fig. 13: Optimization algorithm effect on the size of the constructed lattice

very little information and, hence, some violations of properties may remain undetected. In that paper, a tool called
DIANA (distributed analysis) introduce in order to implement the proposed monitoring method. The main noteworthy
difference between [38] and our work is that we evaluate the behavior of the distributed system based on all of the
possible global traces of the distributed system.
In [24], Massart and Meuter define an online monitoring method which collect the trace and checks on the fly that is
satisfies a requirement, given by any LTL property on finite sequence. Their method explores the possible configurations
symbolically, as it handles sets of configurations. Our approach mainly differs from [24] in that we target distributed
CBSs with multi-party interactions where the execution traces are defined over the set of the partial states of the system.
In [33], Scheffel and Schmitz studied runtime verification of distributed asynchronous systems against Disributed Tem-
poral Logic (DTL) properties. DTL combines the three-valued Linear Temporal Logic (LTL3) with past-time Dis-
tributed Temporal Logic (ptDTL). In that paper, a distributed system is modeled as n agents and each agent has a local
monitor. These monitors work together to check a property, but they only communicate by adding some data to the
messages already sent by the agents. They can not force their agent to send a message or even communicate on their
own.
In [27], a decentralized algorithm for runtime verification of distributed programs is proposed. Proposed algorithm
conducts runtime verification for the 3-valued semantics of the linear temporal logic (LTL3). In that paper, they adapt
the distributed computation slicing algorithm for distributed online detection of conjunctive predicates, and also the
lattice-theoretic technique is adapted for detecting global-state predicates at run time.
In [37], Sen and Garg use a temporal logic, CTL, for specifying properties of distributed computation and interpret it
on a finite lattice of global states and check that a predicate is satisfied for an observed single execution trace of the
program. Compare to our approach, we deal with a set of events at runtime generated by the schedulers which results in
a infinite lattice of partial-states. Although the computation lattice in our method is made based of the observed partial
states, we could check the satisfaction of temporal predicates defined over the global states of the system, which mean
that we could monitor the system even if the global state of the is not defined.
In [35], Sen and Garg used computation slicing for offline predicate detection in the subset of CTL with the following
three properties; i) temporal operators, ii) atomic propositions are regular predicates and iii) negation operator has
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been pushed onto atomic propositions. They called this logic Regular CTL plus (RCTL+), where plus denotes that the
disjunction and negation operators are included in the logic. In that paper, authors gave the formal definition of RCTL+
which uses regular predicates as atomic propositions and implemented their predicate detection algorithms, which use
computation slicing, in a prototype tool called Partial Order Trace Analyzer (POTA). Morover, the authors developed
this work in [36], by presenting the central online algorithm with respect to properties expressed in RCTL+.

10 Conclusions and Future Work

We draw conclusions and outline avenues for future work.

10.1 Conclusions

In this paper, we tackled the problem of runtime verification of distributed component-based system with multi-party
interactions. The goal is to verify the satisfaction or violation of properties referring to the global states of the system on-
the-fly. To this end, we introduced an abstract semantic model of CBSs consisting of a set of components, each of which
is endowed with a set of actions, and a set of schedulers. Each scheduler is in charge of executing the dedicated subset
of multi-party interactions (joint actions). The execution of each interaction triggers the set of actions of corresponding
components involved in the interaction. In the distributed setting, schedulers execute interactions by knowing the partial
states of the system. Therefore, the observable trace of the system is a sequence of partial states which is not suitable
for verifying global-state properties. Moreover, the total order of the executions of the interactions is not observable.
Our technique consists of two steps, (i) model instrumentation of the CBSs to extract the events of the system, and (ii)
synthesizes a centralized monitor which collects the events, reconstructs the corresponding global trace(s), and verifies
the desired properties on-the-fly.
In this context, the instrumented system outputs a sequence of partially-ordered events. Since the total ordering of the
events is not observable, we deal with a set of compatible partial traces of the system. We showed that each compatible
partial trace could have occurred as the actual run of the system. Moreover, for each compatible partial trace, there
exists a corresponding-compatible global trace. The set of compatible global traces is represented in the form of a
lattice. In this setting, our approach (i) integrates a centralized observer which collects the local events of all schedulers
(ii) constructs the computation lattice, and (iii) verifies on-the-fly any LTL property over the constructed lattice. We
introduced a novel online LTL monitoring technique on the computation lattice, so that each nodes carries a set of
formulas evaluating the set of paths start from the initial node and end up with the node. The set of formulas attached
to the frontier node of the constructed lattice represents the evaluation of all the compatible global traces with respect
to the given LTL formula.
We implemented our monitoring approach in a prototype tool called RVDIST. RVDIST executes in parallel with the
distributed system and takes as input the events generated from each scheduler and outputs the evaluated computation
lattice. The experimental results show that, thanks to the optimization applied in the online monitoring algorithm, the
size of the constructed computation lattice is insensitive to the the number of received events, and the lattice size is kept
reasonable.

10.2 Future Work

Several research perspectives can be considered.
A first direction for monitoring distributed CBSs is to decentralizing the runtime monitor, such that the satisfaction or
violation of specifications can be detected by local monitors alone.
Another direction is to use static analysis to detect a set of global states that can never occur at runtime, so that some
nodes of the lattice can be ignored and the paths consisting of these nodes are never explored. Thus, the computation
lattice size and monitoring load is decreased.
Runtime verification might provide a sufficient assurance to check whether or not the desired property is satisfied.
However, for some classes of systems e.g., safety-critical systems, a misbehavior might be not acceptable. To prevent
this, a possible solution is to enforce the desired property so that the monitor does not only observe the current program
execution, but it also controls it in order to ensure that the expected property is fulfilled. Runtime enforcement was
initiated by the work of Schneider [34] on security automata. Runtime enforcement consists in using a monitor to watch
the current execution sequence and after it whenever it deviates from the property by for instance halting the system.
This line of work has been also studied for program monitoring in [22,9,23,14,29,13] and for monitoring sequential
component-based systems in [12].
Another possible direction is to extend the proposed framework to runtime verify and enforce timed specifications on
timed components. Recently, the real-time multi-threaded and distributed CBSs [45,44] have been proposed, where
each interaction has a timing constraint.
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A Correctness Proof of the Approach
In the following, we consider a distributed system M consisting a set of schedulers and components {S1, . . . , S|S|, B1,
. . . , B|B|} with the global behavior (Q,GAct ,→) as per Definition 4 and the transformed version of M due to moni-
toring purposes, that is Mc consisting instrumented schedulers and shared components {S1⊗Cs1 , . . . , S|S|⊗Cs|S|, B′1,
. . . , B′|B|} with behavior (Qc,GActc,→c) as per Definition 12 where Csj for j ∈ [1 , |S|] is the controller of scheduler
Sj as per Definition 8 such that ∀i ∈ [1 , |B|] :B′i = Bi ⊗ Cbi such that Cbi is the controller of the share component Bi
if Bi ∈ Bs as per Definition 10 and B′i = Bi otherwise.
We consider the global state of system M as q = (qs1 , . . . , qs|S| , qb1 , . . . , qb|B|) ∈ Q, where qsj is the state of
scheduler Sj for j ∈ [1 ,|S|], and qbi is the state of component Bi for i ∈ [1 ,|B|]. Moreover, the global state of system
Mc is q′ = (q′s1 , qsc1 , . . . , q

′
s|S| , qsc|S| , q

′
b1
, qbc1 , . . . , q

′
b|B|

, qbc|B|) ∈ Qc, where qscj is the state of the controller of
scheduler Sj for j ∈ [1 ,|S|], qbci is the state of the controller of shared component Bi for i ∈ [1 ,|B|] if Bi ∈ Bs and
empty otherwise. The first result concerns the correctness of the transformed model Mc through the instrumentation
defined in Section 4.1.
The instrumented model Mc generates events and sends them the observer in order to reconstruct the set of com-
patible global traces, that is, the computation lattice L. The second results concerns the correctness (soundness and
completeness) of computation lattice construction presented in Section 5 with respect to the obtained events from the
instrumented model.
The third result states the correctness (soundness and completeness) of the monitoring algorithm applied on the con-
structed lattice presented in Section 6, that is, our algorithm verifies the set of compatible global traces of the system.

Proof outline. The following proofs are organized as follows. Some intermediate definitions and lemmas are intro-
duced in Appendix A.1 in order to prove Proposition Proposition 1 in Appendix A.2. The proof of Property 1 is in
Appendix A.3. The proof of Property 2 is in Appendix A.4. The proof of Proposition 2 is in Appendix A.5. The proof
of Proposition 3 is in Appendix A.6. The proof of Proposition 4 is in Appendix A.7. The proof of Proposition 5 is in
Appendix A.8. The proof of Theorem 1 is in Appendix A.9. The proof of Theorem 2 is in Appendix A.10.

A.1 Intermediate Definition and Lemma
We give some intermediate definition and lemma that are needed to prove Proposition 1 to prove the bi-simulation of
M and Mc. First we define a relation between the states of two systems.
Definition 28. Relation equ ⊆ Q×Qc is the smallest set that satisfies the following rule.

(q, q′) ∈ equ =⇒ qsj = q′sj ∧ qbi = q′bi ,∀j ∈ [1 ,|S|],∀i ∈ [1 ,|B|]
Two states q ∈ Q and q′ ∈ Qc are in relation equ where the states of scheduler Sj for j ∈ [1 ,|S|] and the state of
component Bi for i ∈ [1 ,|B|] in global state q are the same as they are in global state q′.
The following lemma is a direct consequence of Definition 28.
Lemma 1. A global action α ∈ GAct is enabled in the initial system at global state q, and in the transformed system
at global state q′ if (q, q′) ∈ equ.
Since controllers do not induce any restriction in the system in the sense that they do not hold the execution of the
system, any enabled action in the initial system at state q is also enabled in the augmented system at state q′ if (q, q′) ∈
equ.
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A.2 Proof of Proposition 1 (p. 12)

We shall prove the existence of a bi-simulation between initial and transformed model, that is relation
R = {(q, q′) ∈ Q×Qc | (q, q′) ∈ equ} satisfies the following property:(

(q, q′) ∈ R ∧ ∃α ∈ GAct , ∃z ∈ Q : q
α−→ z

)
=⇒ ∃α ∈ GActc,∃z′ ∈ Qc :

(
q′

α−→c z
′ ∧ (z, z′) ∈ R

)
Proof. After executing global action α, states of the schedulers managed the interactions of the global action and
components involved in the interactions are changed following the semantic rules defined in Definition 4. Moreover,
because of the equality of q and q′, global action α is enabled at state q′ in the transformed system. Execution of
global action α in the transformed system following the semantic rules defined in Definition 9 results the new states
of the schedulers managed the action α which are the same as the states of the schedulers in the initial model after the
execution of global action α.
If any shared component is involved in global action α, according to the semantic rules defined in Definition 11, state of
the shared component in the transformed system after the execution of global action α is the same as it is in the initial
model after the execution of α.
Therefore, we can conclude that (z, z′) ∈ R.

A.3 Proof of Property 1 (p. 14)

We shall prove that a computation lattice can be extended by an action event e ∈ Ea from just one node.

Proof. The proof is done by contradiction. Let us assume that there exists two nodes η, η′ ∈ L.nodes in such that
extend(η, e) and extend(η′, e) both are defined. According to Definition 16, the vector clocks of the nodes η and η′

are in relation JL, that is (η.clock , η′.clock) ∈ JL. Moreover, its concluded that nodes η and η′ are associated to two
concurrent action events. Based on the definition 17, joint node of η and η′ has the same vector clock as e.clock , which
means that we received an action event whose vector clock is already dedicated to another node in the lattice. Reception
of an action event with a vector clock similar to the vector clock of the joint node of η and η′ defeats the concurrency
between η and η′ and contradict the assumption. Therefore there exist at most one node in the lattice for with function
extend is defined.

A.4 Proof of Property 2 (p. 15)

We shall prove that the meet of two nodes η, η′ ∈ L.nodes in relation JL exists in L.nodes .

Proof. According to Definition 15, for a node η in the lattice where η.clock = (c1, . . . , c|S|) we have ∃η′ ∈ L.nodes :
η′.clock = (c′1, . . . , c

′
|S|) such that ∃! j ∈ [1 ,|S|] : c′j = cj − 1. Node η′ is the node that lattice L has been extended

from, to make node η. If two nodes of the lattice satisfy relation JL, According to Definition 16, they have extended
the lattice from a unique node which exists in the lattice according to the above argument.

A.5 Proof of Proposition 2 (p. 19)

We shall prove that reception of certain events results computing a unique lattice and unique queue of stored events.

ζ, ζ′ ∈ E∗ :
(
∀Sj ∈ S : ζ ↓Sj= ζ′ ↓Sj

)
=⇒ MAKE(ζ) = MAKE(ζ′)

Proof. The proof is done by induction over the length of the sequence of received events.
– Base case. for the sequences of events with the length of one the proposition holds.
– Let us suppose that the proposition holds for two sequences of events ζ and ζ′ such that MAKE(ζ) = MAKE(ζ′).

By Extending ζ and ζ′ via two events e and e′ in different order such that ζ · e1 · e2 and ζ′ · e2 · e1 are the new
sequences, we have following possible cases:
• If either e1, e2 ∈ Ea such that e1 6� e2 ∨ e2 6� e1 or e1, e2 ∈ Eβ , these events are said to be independent

events in the sense that using one of them in order to extend/update the lattice or storing it in the queue does
not depend to the reception of the other event.

• If e1, e2 ∈ Ea and there exist happened-before relation between them such that for instance e1� e2, and e2 is
received before e1. After the reception of event e2, one can’t find node η in the lattice in which extend(η, e2)
is defined, thus event e2 is added to the queue. After the reception of event e1 and extending the lattice with
the associated node, the algorithm recalls event e2 in the queue, as if event e1 has been received earlier than
e2. In other words, the algorithm reorders the received events by using the queue κ.

• If e1 ∈ Ea, e2 ∈ Eβ , where e2 is an update event contains the state of component Bi for i ∈ [1 ,|B|].
Updating the lattice with event e2 or storing event e2 in the queue depends on the other events in the queue
such that if there exists an action event associated to execution of an action concerning the componentBi, then
e2 must be stored in the queue. However, based on our assumption, it never be the case that from a specific
scheduler, the observer receives an update event associated to component componentBi earlier than receiving
the action event associated to the execution of an action concerning component Bi. Therefore, updating the
lattice with event e2 or storing event e2 in the queue does not depend on event e1 which is going to be received
later.
Moreover, extending the lattice with the action event e2 or storing the action event e2 in the queue does not
depend on any update event.
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A.6 Proof of Proposition 3 (p. 21)

We shall prove that for any possible set of events ζ of a given global trace t, the projection of the paths in the con-
structed lattice on scheduler Sj with j ∈ [1 ,|S|] results the refined local trace of the scheduler. ∀ζ ∈ Θ(t),∀π ∈
Π( MAKE (ζ) .lattice), ∀j ∈ [1 ,|S|] :π ↓Sj= Rβ(sj(t)).

Proof. The proof is done by induction over the length of the global trace t.
– Base case. The proposition holds initially where t = init .
– Let us suppose that the proposition holds for a global trace t.

We have two cases for the next action of the system, which leads to the extension of the global trace:
– Any extension of the global trace by execution of an action a ∈ Int (i.e., t · a · q) generates the associated action

event e = (a, vc), and if there exist a node in the lattice η ∈ lattice such that extend(η, e) is defined, then event
e extends the lattice from η toward the direction of the scheduler manages interaction a. We consider two cases
whether or not the lattice is extended from the frontier node:
• if η is the frontier node (i.e., η = ηf )

Π( MAKE (ζ.e) .lattice) = {π · a · η′ | π ∈ Π( MAKE (ζ) .lattice ∧ η′ = extend(η, e))}. We have two cases
∀j ∈ [1 ,|S|]:
∗ if Sj 6= managed(a) we have sj(t · a · q) = sj(t), and

Π( MAKE (ζ.e) .lattice) ↓Sj= Π( MAKE (ζ) .lattice) ↓Sj ,
∗ if Sj = managed(a) we have sj(t · a · q) = sj(t) · a · q, and Π( MAKE (ζ.e) .lattice) ↓Sj=

Π( MAKE (ζ) .lattice) ↓Sj ·a · (η′.state) where η′ is the new node.
• if η is not the frontier node
{π(0 . . . k) · a · η′ | π ∈ Π( MAKE (ζ) .lattice) ∧ k ∈ [0 , length(π)] ∧ π(k) = η ∧ η′ = extend(η, e))}.
A set of new paths starting from the initial node and ending with node η′ is added to the set of paths.
First, Algorithm MAKE extends the lattice by generating node η′ = extend(η, e).
Since η is not the frontier node, there exists node η′′ ∈ L.nodes such that (η′.clock , η′′.clock) ∈ JL, mean-
ing that execution of interaction a is concurrent with the execution associated to node η′′.
Extending the lattice with the possible joints leads to an extended lattice up to a new frontier ηfnew =
extend(ηf , (a,max(vc, ηf .clock))), where ηfnew .state = q.
For each path π in the initial lattice where π = π1 ·a′ ·π2 such that a′ is concurrent to action a, and the vector
clock of the first node of π2 is in relation JL with the vector clock of node η′, we have a set of new paths
π′ = {(π1 · a · q1 · a′ · π′2), (π1 · a′ · q2 · a · π′2), (π1 · (a ∪ a′) · π′2)} where π′2 has the same sequence of
actions with π2 with the difference that π′2 begins from the joint of η′ and the first node of π2 and π′2 ends up
with node ηfnew . Projection of each new path on schedulers results the following ∀j ∈ [1 ,|S|]:
∗ if Sj 6= managed(a) then π′ ↓Sj= π ↓Sj
∗ if Sj = managed(a) then π′ ↓Sj= π ↓Sj ·a · π′2 ↓Sj

– Any extension of the global trace by execution of a busy action (i.e., t·βi ·q) generates an update event e = (βi, qi).
According to Algorithm MAKE, procedure UPDATEEVENT uses the state information of event e and update the
busy state of the nodes. Similarly, refine function updates the busy states associated to the component Bi using
upd function. Therefore, for each updated path of the lattice π we have ∀j ∈ [1 ,|S|] :π ↓Sj= Rβ(sj(t · βi · q)).

In either case, the proposition holds.

A.7 Proof of Proposition 4 (p. 21)

We shall prove that for any possible set of events ζ of a given global trace t, there exists a unique path in the constructed
lattice associated to each compatible trace, such that ∀ζ ∈ Θ(t), ∀t′ ∈ P(t), ∃!π ∈ Π

(
MAKE (ζ) .lattice

)
:π =

Rβ(t′)

Proof. The proof is done by induction over the length of the global trace t.
– Base case. The proposition holds initially where t = init .
– Let us assume that the proposition holds for a global trace t.
– We have two cases for the next action of the system, which leads to the extension of the global trace:
• Any extension of the global trace by execution of a global action a ∈ 2Int (i.e., t · α · q) results the new set of

compatible traces P(t ·α ·q) in which for each trace t′ ∈ P(t) we have a set of extended traces considering all
the possible ordering of the actions in α that is P(t ·α ·q) = {t′′ · t′′′ | t′′ ∈ P(t), t′′′ ∈ P(last(t′′) · α · q)}.
According to Proposition 3 execution of an action causes the lattice extension considering all the possible
orderings with the rest of the execution of the system. Therefore for each trace t′ in set P(t ·α · q) there exists
a corresponding path π in the lattice such that π = Rβ(t′).

• Any extension of the global trace by execution of a global action β ⊆
⋃
i∈[1 ,|B|] {βi} (i.e., t · β · q) does not

extend the lattice but the state of the nodes of the lattice. Moreover, according to Definition 18, updating the
nodes of the path corresponding to a compatible trace t is done in such a way that the refine function updates
the partial states of t as per Definition 22. Therefore, based on our assumption updated path π is still equal to
the corresponding refined compatible trace trace t′ after update by the internal action β.

For both cases, the proposition holds.
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A.8 Proof of Proposition 5 (p. 25)

We shall prove that for a given an LTL formula ϕ and a global trace t, there exists a global trace t′ such that
PROG(ϕ, t′) = progression(ϕ,Rβ(t′)) with:

t′ =

{
t if last(t)[i] ∈ Qr

i for all i ∈ [1 ,|B|],
t · β · q otherwise.

Where β ⊆
⋃
i∈[1 ,|B|] {βi}, ∀i ∈ [1 ,|B|], q[i] ∈ Qr

i and progression is the standard progression function.

Proof. The proof is done by induction over the length of the global trace t.
– Base case. The proposition holds initially where

PROG(ϕ, init) = progression(ϕ,Rβ(init)) = progression(ϕ, init).
– Let us assume that the proposition holds for a global trace t.
– We shall prove that the proposition holds for any possible extension of t. We consider two cases based on the last

element of t:
• if last(t)[i] ∈ Qr

i for all i ∈ [1 ,|B|], the next action only could be in set α ⊆ 2Int because all the components
are ready and no β action is possible. Then, the new global trace is t ·α · q and q is a global state in which the
state of components involved in α are busy state. According to Definition 27, function PROG(ϕ, t ·α ·q) uses
sub-function prog which postpones the formula evaluation by using Xβ until the busy components execute
their busy actions. As soon as the busy components are done with their computations and the corresponding
schedulers generate the update events, function PROG evaluates all postponed propositions. Therefore, there
exists a stabilized global trace t′ = t·α·q·β ·q′ with ready states for all components in q′. Moreover, according
to Definition 22, the refined trace of t′ consists of sequence of global ready state so that the construction of
ready states is postponed until the occurrence of busy actions of busy components. Hence, PROG(ϕ, t ·α · q ·
β · q′) = progression(ϕ,Rβ(t · α · q · β · q′)).

• if last(t)[i] 6∈ Qr
i for all i ∈ [1 ,|B|], we consider two cases based on the next action:

∗ If the next action is a busy action β ⊆
⋃
i∈[1 ,|B|] {βi}, it follows our base assumption, therefore the

proposition holds.
∗ If the next action contains actions in set α ⊆ 2Int , the components involved in α are added to the set of

busy components and their states evaluations are postponed until their next ready state (following the first
case argument).

In both cases, the proposition holds.

A.9 Proof of Theorem 1 (p. 25)

We shall prove that for a global trace t and LTL formula ϕ, each formula attached to the frontier node of the re-
constructed computation lattice L corresponds to the evaluation of a compatible trace, that is ∀ϕ′ ∈ ηf .Σ, ∃t′ ∈
P(t) :PROG(ϕ, t′) = ϕ′.

Proof. The proof is done by induction over the length of the global trace t.
– According to Definition 24, initially lattice has only one node initϕL = (init , (0, . . . , 0), {ϕ}). P(t) = {init} and

PROG(ϕ, init) = ϕ therefor the theorem holds for the initial state.
– We assume that for a global trace t progression of all the compatible traces of t exists in the set of formula of the

frontier node.
– any extension creates the corresponding nodes. if the extension take take place from the frontier node ηf , then

the set of formulas of the new frontier is Σ = {prog(LTL′, q) | LTL′ ∈ ηf .Σ}. and for all compatible trace
t′ ∈ P(t) the corresponding extended compatible trace is (t ·a · q) ∈ P(t ·a · q). According to Definition 27, eval-
uation of each formula PROG(ϕ, t · a · q) = prog(ϕ, q) = prog(prog(ϕ, ηf .state), q). Base on our assumption
prog(ϕ, ηf .state) is the associated progressed formula of the compatible trace t′ which exists in ηf .Σ.

– Extension of the lattice from a non-frontier node also leads to a new frontier node such that the number of compat-
ible traces are increased as well as the number of path of the lattice (see Proposition 4). For each newly generated
path in the lattice there exists a corresponding compatible trace. The set of formulas associated to the new frontier
node ηf .Σ = {prog(LTL, ηf .state) | LTL ∈ η.Σ ∧ (η ηf ∨ ∃N ⊆ Lϕ.nodes : η = meet(N,L) ∧ ηf =
joint(N,L))}. Each formula associated to the new frontier is evaluation of one path of the lattice. Similarly, the
progression of global trace by function PROG is done using function prog, so that the evaluation of each com-
patible global trace results a formula which exists in the set of formula of new frontier node associated to the
compatible global trace.

– Any extension of the global trace by busy actions β on one hand updates the formulas of lattice nodes using
function updϕ in order to ascertain the truth of falsity of associated Xβ modalities, and on the other hand function
PROG updates the evaluation of the compatible traces, i.e., PROG(ϕ, t · β · q) = UPD (ϕ,Qr) where Qr is the
set of update states after busy actions. According to Definition 27, function UPD uses function updϕ so the the
progressed formula of each compatible global trace is updated in the similar way as the formulas in the frontier
node are updated.
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A.10 Proof of Theorem 2 (p. 25)

We shall prove that the set of formula in the frontier node of the constructed lattice consists in the evaluation of the
compatible global traces of the system, that is ηf .Σ = {PROG(ϕ, t′) | t′ ∈ P(t)}.

Proof. The proof is straightforward since the lattice construction is complete (Proposition 4), in the sense that for each
compatible global trace there exists a path in the constructed lattice and according to Theorem 1 each formula in the
frontier node corresponds to the evaluation of a compatible global trace.
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