
Verification of the Incremental Merkle Tree

Algorithm with Dafny

Franck Cassez

ConsenSys
franck.cassez@consensys.net

Abstract. The Deposit Smart Contract (DSC) is an instrumental component of the Ethereum
2.0 Phase 0 infrastructure. We have developed the first machine-checkable version of the incre-
mental Merkle tree algorithm used in the DSC. We present our new and original correctness
proof of the algorithm along with the Dafny machine-checkable version. The main results are: 1)
a new proof of total correctness; 2) a software artefact with the proof in the form of the complete
Dafny code base and 3) new provably correct optimisations of the algorithm.

1 Introduction

Blockchain-based decentralised platforms process transactions between parties and record
them in an immutable distributed ledger. Those platforms were once limited to handle simple
transactions but the next generation of platforms will routinely run decentralised applications
(DApps) that enable users to make complex transactions (sell a car, a house or more broadly,
swap assets) without the need for an institutional or governmental trusted third-party.

Smart Contracts. More precisely, the transactions are programmatically performed by
programs called smart contracts. If there are real advantages having smart contracts act as
third-parties to process transactions, there are also lots of risks that are inherent to computer
programs: they can contain bugs. Bugs can trigger runtime errors like division by zero or array-
out-of-bounds. In a networked environment these types of vulnerabilities can be exploited by
malicious attackers over the network to disrupt or take control of the computer system. Other
types of bugs can also compromise the business logic of a system, e.g., an implementation may
contain subtle errors (e.g., using a += operator in C instead of =+) that make them deviate
from the initial intended specifications.

Unfortunately it is extremely hard to guarantee that programs and henceforth smart
contracts implement the correct business logics, that they are free of common runtime errors,
or that they never run into a non-terminating computation.1 There are notorious examples
of smart contract vulnerabilities that have been exploited and publicly reported: in 2016, a
reentrance vulnerability in the Decentralised Autonomous Organisation (DAO) smart contract
was exploited to steal more than USD50 Million. There may be several non officially reported
similar attacks that have resulted in the loss of assets.

1 In the Ethereum ecosystem, programs can only use a limited amount of resources, determined by the gas
limit. So one could argue that non-terminating computations are not problematic as they cannot arise: when
the gas limit is reached a computation is aborted and has no side effects. It follows that a non-terminating
computation (say an infinite loop due to a programming error) combined with a finite gas limit will abort
and will result in the system being unable to successfully process some or all valid transactions and this is
a serious issue.

ar
X

iv
:2

10
5.

06
00

9v
3

 [
cs

.L
O

]
 3

1
A

ug
 2

02
1

The Deposit Smart Contract in Ethereum 2.0. The next generation of Ethereum-
based networks, Ethereum 2.0, features a new proof-of-stake consensus protocol. Instead of
miners used in Ethereum 1.x, the new protocol relies on validators to create and validate
blocks of transactions that are added to the ledger. The protocol is designed to be fault-
tolerant to up to 1/3 of Byzantine (i.e., malicious or dishonest) validators. To discourage
validators to deviate from an honest behaviour, they have to stake some assets in Ether
(a crypto-currency), and if they are dishonest they can be slashed and lose (part of) their
stake. The process of staking is handled by the Deposit Smart Contract (DSC): a validator
sends a transaction (“stake some Ether”) by calling the DSC. The DSC has a state and can
update/record the history of deposits that have occurred so far.

As a result the DSC is a mission-critical component of Ethereum 2.0, and any errors/crashes
could result in inaccurate tracking of the deposits or downtime which in turn may compromise
the integrity/availability of the whole system.

This could be mitigated if the DSC was a simple piece of code, but, for performance rea-
sons, it relies on sophisticated data structures and algorithms to maintain the list of deposits
so that they can be communicated over the network efficiently: the history of deposits is
summarised as a unique number, a hash, computed using a Merkle (or Hash) tree. The tree
is built incrementally using the incremental Merkle tree algorithm, and as stated in [21]:

“The efficient incremental algorithm leads to the DSC implementation being unintu-
itive, and makes it non-trivial to ensure its correctness.”

Related Work. In this context, it is not surprising that substantial efforts, auditing, re-
view [3], testing and formal verification [20,21] has been invested to guarantee the reliability
and integrity (e.g., resilience to potential attacks) of the DSC. The DSC has been the focus of
an end-to-end analysis [21], including the bytecode2 that is executed on the Ethereum Virtual
Machine (EVM). However, the incremental Merkle tree algorithm has not been mechanically
verified yet, even though a pen and paper proof has been proposed [20] and partially mecha-
nised using the K-framework [5]. An example of the limitations of the mechanised part of the
proof in [20] is that it does not contain a formal (K-)definition of Merkle trees. The mech-
anised sections (lemmas 7 and 9) pertain to some invariants of the algorithm but not to a
proper correctness specification based on Merkle trees. The K-framework and KEVM, the for-
malisation of the EVM in K, has been used to analyse a number of other smart contracts [25].
There are several techniques and tools3 e.g., [8,9,1,6,28], for auditing and analysing smart
contracts written in Solidity (a popular language to write Ethereum smart contracts) or EVM
bytecode, but they offer limited capabilities to verify complex functional requirements.

Interesting properties of incremental Merkle trees were established in [19] using the MONA
prover. This work does not prove the algorithms in the DSC which are designed to minimise
gas consumption and hence split into parts: insert a value in a tree, and compute the root
hash. Moreover, some key lemmas in the proofs could not be discharged by MONA.

The gold standard in program correctness is a complete logical proof that can be mechan-
ically checked by a prover. This is the problem we address in this paper: to design a machine-
checkable proof for the DSC algorithms (not the bytecode) using the Dafny language and
verifier. The DSC has been deployed in November 2020. To the best of our knowledge, our
analysis, completed in October 2020, provided the first fully mechanised proof that the code

2 A limitation is that the bytecode is proved using a non-trusted manual specification.
3 https://github.com/leonardoalt/ethereum formal verification overview.

2

https://github.com/leonardoalt/ethereum_formal_verification_overview

logic was correct, and free of runtime errors. There seem to be few comparable case-studies
of Dafny-verified (or other verification-aware programming languages like Whiley [23]) code
bases. The most notorious and complex one is probably the IronFleet/IronClad [10] distribu-
ted system, along with some non-trivial algorithms like DPPL [2] or Red-Black trees [24], or
operating systems, FreeRTOS scheduler [16], and ExpressOS [15]. Other proof assistants like
Coq [22], Isabelle/HOL [18] or Lean [17] have also been extensively used to write machine-
checkable proofs of algorithms [12,27,7,26] and software systems [11,14].

Our Contribution. We present a thorough analysis of the incremental Merkle tree algo-
rithm used in the DSC. Our results are available as software artefacts, written using the CAV-
awarded Dafny4 verification-aware programming language [13]. This provides a self-contained
machine checkable and reproducible proof of the DSC algorithms. Our contribution is many-
fold and includes:

– a new original simple proof of the incremental Merkle tree algorithm. In contrast to the
previous non-mechanised proof in [20] we do not attempt to directly prove the existing
algorithm, but rather to design and refine it. Our proof is parametric in the height of the
tree, and hash functions;

– a logical specification using a formal definition of Merkle trees, and a new functional
version of the algorithm that is proved correct against this specification; the functional
version is used to specify the invariants for the proof of the imperative original version [4]
of the algorithm;

– a repository5 with the complete Dafny source code of the specification, the algorithms and
the proofs, and comprehensive documentation;

– some new provably correct simplifications/optimisations;
– some reflections on the practicality of using a verification-aware programming language

like Dafny and some lessons learned from this experience.

2 Incremental Merkle Trees

Merkle Trees. A complete (or perfect) binary tree is such that each non-leaf node has
exactly two children, and the two children have the same height. An example of a complete
binary tree is given in Fig. 1. A Merkle (or hash) tree is a complete binary tree the nodes
of which are decorated with hashes (fixed-size bit-vectors). The hash values of the leaves are
given and the hash values of the internal (non-leaf) nodes are computed by combining the
values of their children with a binary function hash. It follows that a Merkle tree is a complete
binary tree decorated with a synthesised attribute defined by a binary function.

Merkle trees are often used in distributed ledger systems to define a property of a collection
of elements e.g., a list L of values. This property can then be used instead of the collection
itself to verify,6 using a mechanism called Merkle proofs, that data received from a node in the
distributed system is not corrupted. This is a crucial optimisation as the size of the collection
is usually large (typically up to 232) and using a compact representation is instrumental
to obtain time and space efficient communication and a reasonable transactions’ processing
throughput.

4 https://github.com/dafny-lang/dafny
5 https://github.com/ConsenSys/deposit-sc-dafny
6 More precisely the verification result holds with high probability as the chosen hashing functions may

(rarely) generate collisions.

3

https://github.com/dafny-lang/dafny
https://github.com/ConsenSys/deposit-sc-dafny

In this work, we are not concerned with Merkle proofs but rather with the (efficient)
computation of the hash attribute on a Merkle tree.

The actual function used to compute the values of the internal nodes is not relevant in
the incremental Merkle tree algorithms’ functional logics and without loss of generality we
may treat it as a parameter i.e., a given binary function.7 In the sequel we assume that
the decorations of the nodes are integers, and we use in the examples a simple function
hash : Int× Int −→ Int defined by hash(x, y) = x− y− 1 instead of an actual (e.g., sha256-
based) hash function.

Properties of Lists with Merkle Trees. A complete binary tree of height8 h has 2h

leaves and 2h+1 − 1 nodes. Given a list L of integers (type Int) of size |L| = 2h, we let T (L)
be the Merkle tree for L: the values of the leaves of T (L), from left to right, are the elements
of L and T (L) is attributed with the hash function. The value of the attribute at the root
of T (L), the root hash, defines a property of the list L. It is straightforward to extend this
definition to lists L of size |L| ≤ 2h by right-padding the list with zeroes (or any other default
values.) Given a list L of size |L| ≤ 2h, let L denote L right-padded with 2h − |L| default
values. The Merkle tree associated with L is T (L), and the root hash of L is the root hash of
T (L). Computing the root hash of a tree T (L) requires to traverse all the nodes of the tree
and thus is exponential in the height of the tree.

The Incremental Merkle Tree Problem. A typical use case of a Merkle tree in the
context of Ethereum 2.0 is to represent properties of lists that grow monotonically. In the
DSC, a Merkle tree is used to record the list of validators and their stakes or deposits. A
compact representation of this list, as the root hash of a Merkle tree, is communicated to the
nodes in the network rather than the tree (or list) itself. However, as mentioned before, each
time a new deposit is appended to the list, computing the new root hash using a standard
synthesised-attribute computation algorithm requires exponential time in h. This is clearly
impractical in a distributed system like Ethereum in which the height of the tree is 32 and
the number of nodes is 233 − 1.

Given (a tree height) h > 0, L a list with |L| < 2h, and e a new element to add to L, the
incremental Merkle tree problem (IMTP) is defined as follows:9

Can we find α(L) a polynomial-space abstraction of T (L) such that we can compute
in polynomial-time: 1) the root hash of T (L) from α(L), and 2) the abstraction
α(L+ [e]) from α(L) and e?

Linear-time/space algorithms to solve the IMTP were originally proposed by V. Buterin in [4].
However, the correctness of these algorithms is not obvious. In the next section, we analyse
the IMTP, and we present the main properties that enable us to design polynomial-time
recursive algorithms and to verify them.

3 Recursive Incremental Merkle Tree Algorithm

In this section we present the main ideas of the recursive algorithms to insert a new value in
a Merkle tree and to compute the new root hash (after a new value in inserted) by re-using
(dynamic programming) previously computed results.

7 In the code base, the hash function is uninterpreted and its type is generic.
8 The height is the length of the longest path from the root to any leaf.
9 Polynomial in the height of the tree h. The operator + is list concatenation.

4

−12
ν(ε)

−8
ν(0)

−4

3 6

3

2 −2

3
ν(1)

3
ν(1.0)

4

ν(1.0.0)

0

0

ν(1.0.1)

1

0

0

−1
ν(1.1)

0 0

1

1

b[0] = i0

b[1] = i1

b[2] = −8

z[0] = zero0

z[1] = zero1

z[2] = zero2

Fig. 1. A Merkle tree of height 3 for list L2 = [3, 6, 2,−2, 4] and hash(x, y) = x− y − 1. The green path π1 is
encoded as 1.0.0 (from root to leaf) and the blue path π2 as 1.0.1. The left and right siblings of π1 are shaded.
The values of the right siblings of π1 at levels 0 and 1 are z[0] = zero0 = 0 and z[1] = zero1 = hash(0, 0) = −1.
i0 and i1 are arbitrary values.

Notations. A path π from the root of a tree to a node can be defined as a sequence of bits
(left or right) in {0, 1}∗. In a Merkle tree of height h, the length, |π|, of π is at most h. ν(π)
is the node at the end of π. If |π| = h then ν(π) is a leaf. For instance ν(ε) is the root of the
tree, ν(0) in Fig. 1 is the node carrying the value −8 and ν(1.0.0) is a leaf. The right sibling
of a left node of the form ν(π.0) is the node ν(π.1). Left siblings are defined symmetrically.
A node in a Merkle tree is associated with a level which is the distance from the node to a
leaf in the tree. Leaves are at level 0 and the root is at level h. In a Merkle tree, level 0 has
2h leaves that can be indexed left to right from 0 to 2h − 1. The n-th leaf of the tree for
0 ≤ n < 2h is the leaf at index n.

Listing A.1. Recursive Algorithm to Compute the Root Hash.

computeRootUp (p : seq<b i t> , l e f t : seq< i n t> , r i g h t : seq< i n t> , s e e d : i n t) : i n t
r e qu i r e s | p | == | l e f t | == | r i g h t | // vectors have the same sizes

decreases p
{

i f | p | == 0 then s e e d
e l s e i f l a s t (p) == 0 then // node at end of p is a left node

computeRootUp (i n i t (p) , i n i t (l e f t) , i n i t (r i g h t) , hash (seed , l a s t (r i g h t)))
e l s e // node at end of p is a right node

computeRootUp (i n i t (p) , i n i t (l e f t) , i n i t (r i g h t) , hash (l a s t (l e f t) , s e e d))
}

Computation of the Root Hash on a Path. We first show that the root hash can be
computed if we know the values of the siblings of the nodes on any path, and the value at
the end of the path. For instance, If we know the values of the left and right siblings (shaded
nodes) of the nodes on π1 (green path in Fig. 1), and the value at the end of π1, we can
compute the root hash of the tree by propagating upwards the attribute hash. The value of
the hash attribute at ν(1.0) is hash(4, ν(1.0.1)) = 3, at ν(1) it is hash(3, ν(1.1)) = 3 and at
the root hash(ν(0), ν(1)) = hash(−8, 3) = −12.

Algorithm computeRootUp (Listing A.1) computes10 bottom-up in time linear in |p| the
root hash with left the list of values of the left siblings (top-down) on a path p (top-down),

10 For l = l′ + x, last(l) = x, init(l) = l′, and for l = x+ l′, first(l) = x, tail(l) = l′.

5

right the values of the right siblings (top-down) and seed the value at ν(p). The generic
version (uninterpreted hash) of the algorithm is provided in the ComputeRootPath.dfy file.

For the green path pi1 = [1, 0, 0] in Fig. 1, left = [−8, i1, i0], right = [−1,−1, 0] and
the seed is 4. The evaluation of computeRootUp returns −12.

Given a path π, if the leaves on the right of ν(π) all have the default value 0, the values
of the right siblings on the path π only depend on the level of the sibling in the tree. For
example, the leaves on the right of π1 (orange in Fig. 1) all have the default value 0. The root
hash of a tree in which all the leaves have the same default value only depends on the level
of the root: 0 at level 0, hash(0, 0) at level 1, hash(hash(0, 0),hash(0, 0)) at level 2 and so
on. Let zerol be defined by: zerol = 0 if l = 0 else hash(zerol−1

0 , zerol−1
0).

Given a path π, if all the leaves on the right of ν(π) have the default value, any right
sibling value at level l on π is equal to zerol.

As an example in Fig. 1, the right siblings on π1 = 1.0.0 have values 0 at level 0, node
ν(1.0.1), and hash(0, 0) = zero1 = −1 at level 1, node ν(1.1). If a path p leads to a node
with the default value 0 and all the leaves right of ν(p) have the default value 0, the root hash
depends only on the values of the left and default right siblings. Hence the root hash can
be obtained by computeRootUp(p, left, right, 0). For the path pi2 = [1, 0, 1] (Fig. 1),
left = [−8, i1, 4], right = [−1,−1, 0], computeRootUp(pi2, left, right, 0) returns −12.

As a result, to compute the root hash of a tree T (L), we can use a compact abstraction
α(L) of T (L) composed of the left siblings vector b and the right siblings default values z
(Fig. 1) of the path to the |L|-th leaf in T (L).

Insertion: Update the Left Siblings. Assume π1 is a path to the n-th leaf and n < 2h−1
(not the last leaf), where the next value v is to be inserted. As we have shown before, if we
have b1 holding the values of left siblings of π1, z and v, we can compute the new attribute
values of the nodes on π1 and the new root hash after v is inserted. Let π2 be the path to
the n+ 1-th leaf. If we can compute the values b2 of the left siblings of π2 as a function of b1,
z and v, we have an efficient algorithm to incrementally compute the root hash of a Merkle
tree: we keep track of the values of the left siblings b on the path to the next available leaf,
and iterate this process each time a new value is inserted.

As ν(π1) is not the last leaf, π1 must contain at least one 0, and has the form11 π1 = w.0.1k

with w ∈ {0, 1}∗, k ≥ 0. Hence, the path π2 to the n + 1-th leaf is w.1.0k, arithmetically
π2 = π1 + 1. An example of two consecutive paths is given in Fig. 1 with π1 (green) and π2
(blue) to the leaves at indices 4 and 5.

The related forms of π1 (a path) and π2 (the successor path) are useful to figure out how
to incrementally compute the left siblings vector b2 for π2:

– as the initial prefix w is the same in π1 and π2, the values of the left siblings on the nodes
of w are the same in b1 and b2;

– all the nodes in the suffix 0k of π2 are left nodes and have right siblings. It follows that
the corresponding k values in b2 are irrelevant as they correspond to right siblings, and
we can re-use the corresponding b1 values;

– hence b2 is equal to b1 except possibly for the level of the node at ν(w.0).

We now illustrate how to compute the new value in the vector b2 on the example of Fig. 1.
Let π1 = w.0 and π2 = w.1 with w = 1.0 and |w| = 2. For the top levels 2 and 1, b2 is the

11 xk, x ∈ {0, 1} denotes the sequence of k x’s.

6

https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/synthattribute/ComputeRootPath.dfy#L57

same as b1: b2[2] = b1[2] = −8 and b2[1] = b1[1] = i1. For level 0, the level of the node ν(w.0),
the value at ν(w.0) = ν(1.0.0) becomes the left sibling of the node ν(1.0.1) on π2 at this level.
So the new value of the left sibling on π2 is exactly the new value, 4, of the node ν(1.0.0)
after 4 is inserted.

More generally, when computing the new root hash bottom-up on π1, the first time we
encounter a left node, at level d, we update the corresponding value of b with the computed
value of the attribute on π1 at level d. Algorithm12 insertValue in Listing A.2 computes, in
linear-time, the list of values of the left siblings (top-down) of the path p + 1 using as input
the list (top-down) of values left (resp. right) siblings left (resp. right) of p and seed the
new value inserted at ν(p). The generic (non-interpreted hash) algorithm is provided in the
NextPathInCompleteTreesLemmas.dfy file.

Listing A.2. Recursive Algorithm to Compute the New Left Siblings.

i n s e r t V a l u e (p : seq<b i t> , l e f t : seq< i n t> , r i g h t : seq< i n t> , s e e d : i n t) : seq< i n t>
r e qu i r e s | l e f t | == | r i g h t | == | p | >= 1
decreases p

{
i f | p | == 1 then // note that f i r s t (p) == l a s t (p) in this case

i f f i r s t (p) == 0 then [s e e d] e l s e l e f t
e l s e i f l a s t (p) == 0 then // we encounter a left node. Stop recursion.

i n i t (l e f t) + [s e e d]
e l s e // right node ,move up on the path.

i n s e r t V a l u e (i n i t (p) , i n i t (l e f t) , i n i t (r i g h t) , hash (l a s t (l e f t) , s e e d))
+ [l a s t (l e f t)]

}

We illustrate how the algorithm insertValue works with the example of Fig. 1. Assume
we insert the seed 4 at the end of the (green) path pi1 = [1,0,0]. The left (resp. right)
siblings’ values are given by left = [−8, i1, i0] (resp. right = [−1,−1, 0]). insertValue

computes the values of the left siblings on the (blue) path pi2 = [1,0,1] after 4 is inserted
at the end of π1: the first call terminates the algorithm and returns [−8, i1, 4] which is the list
of left siblings that are needed on π2.

In the next section we describe how to verify the recursive algorithms and the versions
implemented in the DSC.

4 Verification of the Algorithms

In order to verify the implemented (imperative style/Solidity) versions of the algorithms of
the DSC, we first prove total correctness of the recursive versions (Section 3) and them use
them to prove the code implemented in the DSC.

In this section, the Dafny code has been simplified and sometimes even altered while
retaining the main features, for the sake of clarity. The code in this section may not
compile. We provide the links to the files with the full code in the text and refer the
reader to those files.

Correctness Specification. The (partial) correctness of our algorithms reduces to check-
ing that they compute the same values as the ones obtained with a synthesised attribute on
a Merkle tree. We have specified the data types Tree, MerkleTree and CompleteTrees and
the relation between Merkle trees and lists of values (see trees folder.)

12 + stands for list concatenation.

7

https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/paths/NextPathInCompleteTreesLemmas.dfy#L101
https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/paths/NextPathInCompleteTreesLemmas.dfy#L101https://github.com/ConsenSys/deposit-sc-dafny/tree/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/trees

The root hash of a MerkleTree t is t.rootv. The (specification) function buildMerkle(h,

L, hash) returns a MerkleTree of height h, the leaves of which are given by the values
(right-padded) L, and the values on the internal nodes agree with the definition of the syn-
thesised attribute hash, i.e., what we previously defined in Section 2 as T (L). It follows that
buildMerkle(h, L, hash).rootv is the root hash of a Merkle tree with leaves L.

Total Correctness. The total correctness proof for the computeRootUp function amounts
to showing that 1) the algorithm always terminates and 2) the result of the computation
is the same as the hash of the root of the tree. In Dafny, to prove termination, we need to
provide a ranking function (strictly decreasing and bounded from below.) The length of the
path p is a suitable ranking function (see the decreases clause in Listing A.1) and is enough
for Dafny to prove termination of computeRootUp.

We establish property 2) by proving a lemma (Listing A.3): the pre-conditions (requires)
of the lemma are the assumptions, and the post-conditions (ensures) the intended property.
The body of the lemma (with a non-interpreted hash function) which provides the machine-
checkable proof is available in the computeRootPath.dfy file. This lemma requires that the
tree r is a Merkle tree, and that the lists left (resp. right) store the values of left (resp.
right) siblings of the nodes on a path p. Moreover, the value at the end of p should be seed.
Under these assumptions the conclusion (ensures) is that computeRootUp returns the value
of the root hash of r.

Listing A.3. Correctness Proof Specification for ComputeRootUp.

lemma computeRootUpIsCor rec tForTree (
p : seq<b i t> , r : Tree< i n t> , l e f t : seq< i n t> , r i g h t : seq< i n t> , s e e d : i n t)
// size of p is the height of the tree r

r e qu i r e s | p | == h e i g h t (r)
// r is a Merkle tree for attribute hash

r e qu i r e s i s C o m p l e t e T r e e (r)
r e qu i r e s i s D e c o r a t e d W i t h (hash , r)
// the value at the end of the path p in r is seed

r e qu i r e s s e e d == nodeAt (p , r) . v
// vectors of same sizes

r e qu i r e s | r i g h t | == | l e f t | == | p |
// Left and right contain values of left and right siblings of p in r.

r e qu i r e s f o r a l l i : : 0 <= i < | p | ==>
// the value of the sibling of the node at p[..i] in r

s i b l i n g V a l u e A t (p , r , i + 1) ==
// are stored in left and right

i f p [i] == 0 then r i g h t [i] e l s e l e f t [i]
// Main property: computeRootUp computes the hash of the root of r

ensures r . r o o t v == computeRootUp (p , l e f t , r i g h t , s e e d)

The proof of lemma computeRootUpIsCorrectForTree requires a few intermediate sub-lem-
mas of moderate difficulty. The main step in the proof is to establish an equivalence between
a bottom-up computation computeRootUp and the top-down definition of (attributed) Merkle
trees. All the proofs are by induction on the tree or the path. The complete Dafny code for
algorithm is available in computeRootPath.dfy file.

Termination for insertValue is proved by using a ranking function (decreases clause in
Listing]A.2). The functional correctness of insertValue reduces to proving that, assuming
left (resp. right) contains the values of the left (resp. right) siblings of the nodes on p,
then insertValue(p, left, right, seed) returns the values of the nodes that are left
siblings on the successor path. The specification of the corresponding lemma is given in

8

https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/synthattribute/ComputeRootPath.dfy#L85
https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/synthattribute/ComputeRootPath.dfy

Listing A.4. The code for this lemma is in the NextPathInCompleteTreesLemmas.dfy file.
The main proof is based on several sub-lemmas that are not hard conceptually but cannot
be easily discharged using solely the built-in Dafny induction strategies. They require some
intermediate proof hints (verified calculations) to deal with all the nodes on the path p. Note
that for this lemma, we require that the leaves are indexed (from left to right) to be able to
uniquely identify each leaf of r.

Listing A.4. Correctness Proof Specification for ComputeRootUp.

lemma i n s e r t V a l u e t I s C o r r e c t I n A T r e e (
p : seq<b i t> , r : Tree< i n t> , l e f t : seq< i n t> , r i g h t : seq< i n t> , s e e d : T, k : nat)
// r is a Merkle tree

r e qu i r e s i s C o m p l e t e T r e e (r)
r e qu i r e s i s D e c o r a t e d W i t h (f , r)
// leaves are uniquely indexed from to right

r e qu i r e s hasLeaves IndexedFrom (r , 0)
// k is an index which is not the index of the l a s t leaf

r e qu i r e s k < | l e a v e s I n (r) | − 1
r e qu i r e s 1 <= | p | == h e i g h t (r)
// The leaf at index k is the leaf at the end of p

r e qu i r e s nodeAt (p , r) == l e a v e s I n (r) [k]
// The value of the leaf at the end of p is seed

r e qu i r e s s e e d == nodeAt (p , r) . v

r e qu i r e s | p | == | l e f t | == | r i g h t |

// Left and right contain the values of the siblings on p

r e qu i r e s f o r a l l i : : 0 <= i < | p | ==>
s i b l i n g A t (take (p , i + 1) , r) . v == i f p [i] == 0 then r i g h t [i] e l s e l e f t [i]

// A path to a leaf that is not the rightmost one has a zero

ensures e x i s t s i : : 0 <= i < | p | && p [i] == 0
// insertValue computes the values of the left siblings

// of the successor path of ‘p‘.

ensures f o r a l l i : : 0 <= i < | p | && nextPath (p) [i] == 1 ==>
c o m p u t e L e f t S i b l i n g O n N e x t P a t h F r o m L e f t R i g h t (p , l e f t , r i g h t , f , s e e d) [i]
== s i b l i n g A t (take (nextPath (p) , i + 1) , r) . v

Index Based Algorithms. The algorithms that implement the DSC do not use a bitvector
to encode a path, but rather, a counter that records the number of values inserted so far and
the height of the tree. In order to prove the algorithms actually implemented in the DSC, we
first recast the computeRootUp and insertValue algorithms to use a counter and the height
h of a tree. In this step, we use a parameter k that is the index of the next available leaf where
a new value can be inserted. The leaves are indexed left to right from 0 to 2h− 1 and hence k
is the number of values that have been inserted so far. It follows that the leaves with indices
k ≤ i ≤ 2h − 1 have the default value. The correspondence between the bitvector encoding
of the path to the leaf at index k and the value k is straightforward: the encoding of the
path p is the value of k in binary over h bits. We can rewrite left computeRootUp to use use
k and h (computeRootUpWithIndex, Listing A.5) and prove it computes the same value as
computeRootUp. A similar proof can be established for the insertValue algorithm. The index
based algorithms and the proofs that they are equivalent (compute the same values as) to
computeRootUp and insertValue are available in the IndexBasedAlgorithm.dfy file. Dafny

9

https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/paths/NextPathInCompleteTreesLemmas.dfy
https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/algorithms/IndexBasedAlgorithm.dfy

can discharge the equivalence proofs with minimal proof hints using the builtin induction
strategies.

Listing A.5. ComputeRootUpWithIndex.

computeRootUpWithIndex (
h : nat , k : nat , l e f t : seq< i n t> , r i g h t : seq< i n t> , s e e d : i n t) : i n t
r e qu i r e s | l e f t | == | r i g h t | == h
// the index is in the range of indices for a tree of height h

r e qu i r e s k < power2 (h)
// Indexed algorithm computes the same value as computeRootUp

ensures computeRootUpWithIndex (h , k , l e f t , r i g h t , f , s e e d) ==
// natToBitList(k,h) is the binary encoding of k over h bits

computeRootUp (n a t T o B i t L i s t (k , h) , l e f t , r i g h t , f , s e e d)
// ranking function

decreases h
{

i f h == 0 then s e e d
e l s e i f k % 2 == 0 then // left node

computeRootUpWithIndex (h−1,k /2 , i n i t (l e f t) , i n i t (r i g h t) , hash (seed , l a s t (r i g h t)))
e l s e // right node

computeRootUpWithIndex (h−1,k /2 , i n i t (l e f t) , i n i t (r i g h t) , hash (l a s t (l e f t) , s e e d))
}

Listing A.6. Implemented Version of computeRootUp.

method g e t d e p o s i t r o o t () r e t u r n s (r : i n t)
// The result of get_deposit_root_() is the root value of the Merkle tree.

ensures r == b u i l d M e r k l e (v a l u e s , TREE HEIGHT , hash) . r o o t v
{

// Store the expected result in a ghost variable.

// values is a ghost variable of ther DSC and record all the inserted values

ghost var e := computeRootUpWithIndex (TREE HEIGHT , count , branch , z e r o h a s h e s , 0) ;
// Start with default value for r.

r := 0 ;
var h := 0 ;
var s i z e := count ;
whi le h < TREE HEIGHT

// Main invariant:

i n v a r i a n t e ==
computeRootUpWithIndex (

TREE HEIGHT − h , s i z e ,
take (branch , TREE HEIGHT − h) , take (z e r o h a s h e s , TREE HEIGHT − h) , r)

{
i f s i z e % 2 == 1 {

r := hash (branch [h] , r) ;
} e l s e {

r := hash (r , z e r o h a s h e s [h]) ;
}
s i z e := s i z e / 2 ;
h := h + 1 ;

}
}

Total Correctness of the Algorithms Implemented in the DSC. In this section we
present the final proof of (total) correctness for the algorithms implemented in the DSC

10

(Solidity-like version.) Our proof establishes that the imperative versions, with while loops
and dynamic memory allocation (for arrays) are correct, terminate and are memory safe.

The DSC is an object and has a state defined by a few variables: count is the number of
inserted values (initially zero), branch is a vector that stores that value of the left siblings
of the path leading to the leaf at index count, and zero hashes is what we previously
defined as z. The algorithm that computes the root hash of the Merkle tree in the DSC is
get deposit root(). get deposit root() does not have any seed parameter as it computes
the root hash using the default value (0). The correctness proof of get deposit root()

uses the functional (proved correct) algorithm computeRootUpWithIndex as an invariant.
Listing A.6 is a simplified version (for clarity) of the full code available in the DepositSmart.dfy
file.

Listing A.7. The deposit method.

method d e p o s i t (v : i n t)
// The tree cannot be full.

r e qu i r e s count < power2 (TREE HEIGHT) − 1
// branch and zero_hashes hold the values of the siblings

r e qu i r e s a r e S i b l i n g s A t I n d e x (| v a l u e s | ,
b u i l d M e r k l e (v a l u e s , TREE HEIGHT , hash) , branch , z e r o h a s h e s)

// Correctness property

ensures a r e S i b l i n g s A t I n d e x (| v a l u e s | ,
b u i l d M e r k l e (v a l u e s , TREE HEIGHT , hash) , branch , z e r o h a s h e s)

{
var v a l u e := v ;
var s i z e : nat := count ;
var i : nat := 0 ;
// Store the expected result in e.

ghost var e := c o m p u t e L e f t S i b l i n g s O n N e x t p a t h W i t h I n d e x (
TREE HEIGHT , o l d (s i z e) , o l d (branch) , z e r o h a s h e s , v) ;

whi le s i z e % 2 == 1
// Main invariant:

i n v a r i a n t e ==
c o m p u t e L e f t S i b l i n g s O n N e x t p a t h W i t h I n d e x (

TREE HEIGHT − i , s i z e ,
take (branch , TREE HEIGHT − i) ,
take (z e r o h , TREE HEIGHT − i) , v a l u e) + drop (branch , TREE HEIGHT − i)

decreases s i z e
{

v a l u e := f (branch [i] , v a l u e) ;
s i z e := s i z e / 2 ;
i := i + 1 ;

}
// 0 <= i < | branch | and no there is no index -out-of-bounds error

branch [i] := v a l u e ;
count := count + 1 ;
v a l u e s := v a l u e s + [v] ;

}

The algorithm that inserts a value v in the tree is deposit(v) in the implemented version
of the DSC. Listing A.7 is an optimised version of the original algorithm. The simplification
is explained in Section 5. The correctness of the algorithm is defined by ensuring that, if at
the beginning of the computation the vectors branch (resp, zero hashes) contain values of
the left (resp. right) siblings of the path leading to the leaf at index count, then at the end
of the computation, after v is inserted, this property still holds. The proof of this invariant

11

https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/DepositSmart.dfy

requires a number of proof hints for Dafny to verify it. We use the functional version of the
algorithm to specify a loop invariant (not provided in Listing A.7).

The termination proof is easy using size as the decreasing ranking function. However,
a difficulty in this proof is memory safety, i.e. to guarantee that the index i used to access
branch[i] is within the range of the indices of branch.

We have also proved the initialisation functions init zero hashes() and constructor.
The full code of the imperative version of the DSC is available in the DepositSmart.dfy file.

5 Findings and Lessons Learned

Methodology. In contrast to the previous attempts to analyse the DSC, we have adopted a
textbook approach and used standard algorithms’ design techniques (e.g., dynamic program-
ming, refinement, recursion.) This has several advantages over a direct proof (e.g., [20]) of the
imperative code including:

– the design of simple algorithms and proofs;

– recursive and language-agnostic recursive versions of the algorithms;

– new and provably correct simplifications/optimisations.

Algorithmic Considerations. Our implementations and formal proofs have resulted in
the identification of two previously unknown/unconfirmed optimisations. First, it is not nec-
essary to initialise the vector of left siblings, b, and the algorithms are correct for any initial
value of this vector.

Second, the original version of the deposit algorithm (which we have proved correct
too) has the form13 given in Listing A.8. Our formal machine-checkable proof revealed14 that
indeed the condition C1 is always true and the loop always terminates because C2 eventually
becomes true. As witnessed by the comment after the loop in the Solidity code of the DSC,
this property was expected but not confirmed, and the Solidity contract authors did not take
the risk to simplify the code. Our result shows that the algorithm can be simplified to while

not(C2) do ... od.

Listing A.8. Solidity Version of the DSC Deposit Function.

d e p o s i t (. . .)
{

whi le C1 do
i f C2 re tu rn ;

. . .
od
// As the loop should always end prematurely with the ‘return ‘ statement ,

// this code should be unreachable. We assert ‘false ‘ just to be safe.

a s s e r t (f a l s e) ;
}

This is interesting not only from a safety and algorithmic perspectives, but also because it
reduces the computation cost (in gas/Ether) of executing the deposit method. This simpli-
fication proposal is currently being discussed with the DSC developer, however the currently
deployed version still uses the non-optimised code.

13 The complete Solidity source code is freely available on GitHub at https://github.com/ethereum/eth2.0-
specs/blob/dev/solidity deposit contract/deposit contract.sol

14 This finding was not uncovered in any of the previous audits/analyses.

12

https://github.com/ConsenSys/deposit-sc-dafny/blob/50b16f96021368a839f932b5d666729405a305b0/src/dafny/smart/DepositSmart.dfy
https://github.com/ethereum/eth2.0-specs/blob/dev/solidity_deposit_contract/deposit_contract.sol
https://github.com/ethereum/eth2.0-specs/blob/dev/solidity_deposit_contract/deposit_contract.sol

Verification Effort. The verification effort for this project is 12 person-weeks resulting in
3500 lines of code and 1000 lines of documentation. This assumes familiarity with program
verification, Hoare logic and Dafny. Table 1, page 14 provides some insights into the code
base.

The filenames in green are the ones that require the less number of hints for Dafny to check
a proof. In this set of files the hints mostly consist of simple verified calculations (e.g., empty
sequence is a neutral element for lists [] + l == l + [] == l.) Most of the results on se-
quences (helpers package) and simplifications of sequences of bits (seqofbits package) are in
this category and require very few hints. This also applies for the proofs15 of the algorithms

package, e.g., proving that the versions using the index of a leaf instead of the binary encoding
of a path are equivalent.

The filenames in orange require some non-trivial proof hints beyond the implicit induction
strategies built in Dafny. For instance in NextPathInCompleteTrees.dfy and PathInComplete-
Trees.dfy, we had to provide several annotations and structure for the proofs. This is due to
the fact that the proofs involve properties on a Merkle tree t1 and its successor t2 (after a
value is inserted) which is a new tree, and on a path π1 in t1 and its successor π2 in t2.

The filenames in red require a lot of hints. For the files in the synthattribute package it
is mostly calculation steps. Some steps are not absolutely necessary but adding them reduces
the verification time by on order of magnitude (on our system configuration, MacBookPro
16GBRAM). The hardest proof is probably the correctness of the deposit method in De-
positSmart.dfy. The proof requires non trivial lemmas and invariants. The difficulty stems
from a combination of factors: first the while loop of the algorithm (Listing A.7) maintains a
constraint between size and i, the latter being used to access the array elements in branch.
Proving that there is no array-of-bounds error (i.e., i is within the size of branch) requires to
prove some arithmetic properties. Second, the proof of the main invariant (Listing A.7) using
the functional specification computeLeftSiblingsOnNextpathWithIndex is complex and had
to be structured around additional lemmas.

Overall, almost 90% of the lines of code are (non-executable) proofs, and function defi-
nitions used in the proofs. The verified algorithms implemented in the DSC functional are
provided in DepositSmart.dfy and account for less than 10% of the code.

Considering the criticality of the DSC, 12 person-weeks can be considered a moderate
effort well worth the investment: the result is an unparalleled level of trustworthiness that can
inspire confidence in the Ethereum platform. According to our experts (ConsenSys Diligence)
in the verification of Smart Contracts, the size of such an effort is realistic and practical
considering the level of guarantees provided. The only downside is the level of verification
expertise required to design the proofs.

The trust base in our work is composed of the Dafny verification engine (verification
conditions generator) and the SMT-solver Z3.

Dafny Experience. Dafny is rather has excellent documentation, support for data struc-
tures, functional (side-effect free) and object-oriented programming. The automated verifica-
tion engine has a lot of built-in strategies (e.g., induction, calculations) and a good number
of specifications are proved fully automatically without providing any hints. The Dafny proof
strategies and constructs that we mostly used are verified calculations and induction. The

15 The file CommuteProof.dfy in this package is not needed for the main proof but was originally used and
provides an interesting result, so it is still in code base.

13

src/dafny/package/file.dfy #LoC Lemmas Methods #Doc (#Doc/#LoC in %)

smart
DepositSmart.dfy 163 1 + 1 1 + 3 92 56

smart/algorithms
CommuteProof.dfy 73 2 0 31 42
IndexBasedAlgorithm.dfy 96 3 2 59 61
MainAlgorithm.dfy 66 2 0 38 58
OptimalAlgorithm.dfy 24 2 0 15 62
Sub-total 259 2 + 7 2 143 55

smart/helpers
Helpers.dfy 51 5 1 10 20
SeqHelpers.dfy 137 10 6 34 25

smart/paths
NextPathInCompleteTrees.dfy 262 1 + 2 2 99 38
PathInCompleteTrees.dfy 408 2 + 13 0 60 15
Sub-total 670 3 + 15 2 159 24

smart/seqofbits
SeqOfBits.dfy 527 19 0 100 19

smart/synthattribute
ComputeRootPath.dfy 305 2 + 9 0 116 38
GenericComputation.dfy 148 6 0 75 51
RightSiblings.dfy 210 1 + 2 + 2 1 57 27
Siblings.dfy 124 1 + 1 0 31 25
SiblingsPlus.dfy 556 2 + 2 0 52 9
Sub-total 1343 4 + 4 + 20 1 331 25

smart/trees
CompleteTrees.dfy 89 8 1 19 21
MerkleTrees.dfy 208 6 3 101 49
Trees.dfy 91 3 5 41 45
Sub-total 388 17 9 161 41

src/dafny
TOTAL 3538 5 + 9 + 94 1 + 24 1030 29

Table 1. Dafny Code Statistics. #Loc (resp. #Doc) is the number of Lines of Code (resp. Documentation),
Lemmas is the number of proofs broken down in difficulty levels, Methods the number of executable method-
s/function methods. Colour scheme easy/few proof hints, moderate, hard/detailed proof hints.

14

side-effect free proofs seem to be handled much more efficiently (time-wise) than the proofs
using mutable data structures.

In the current version we have used the autocontracts attribute for the DSC object
which is a convenient way of proving memory safety using a specific invariant (given by the
Valid predicate). This could probably be optimised as Dafny has some support to specify
precisely the side-effects using frames (based on dynamic framing.)

Overall, Dafny is a practical option for the verification of mission-critical smart contracts,
and a possible avenue for adoption could be to extend the Dafny code generator engine to
support Solidity, a popular language for writing smart contracts for the Ethereum network,
or to automatically translate Solidity into Dafny. We are currently evaluating these options
with our colleagues at ConsenSys Diligence, as well as the benefits of our technique to the
analysis of other critical smart contracts.

The software artefacts including the implementations, proofs, documentation and a Docker
container to reproduce the results are freely available as a GitHub repository at https://github.
com/ConsenSys/deposit-sc-dafny.

Acknowledgements. I wish to thank Suhabe Bugrara, ConsenSys Mesh, for helpful dis-
cussions on the Deposit Smart Contract previous work and the anonymous reviewers of a
preliminary version of this paper.

References

1. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart contract bytecode in
Isabelle/HOL. In: Andronick, J., Felty, A.P. (eds.) Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018. pp.
66–77. ACM (2018), https://doi.org/10.1145/3167084

2. Andrici, C., Ciobâcă, Ş.: Verifying the DPLL algorithm in Dafny. In: Marin, M., Craciun, A. (eds.) Pro-
ceedings Third Symposium on Working Formal Methods, FROM 2019, Timişoara, Romania, 3-5 September
2019. EPTCS, vol. 303, pp. 3–15 (2019), https://doi.org/10.4204/EPTCS.303.1

3. Bugrara, S.: A review of the deposit contract (2020), https://github.com/suhabe/eth-deposit-contract-
vyper-review/blob/master/EthDepositContractVyperReview.pdf

4. Buterin, V.: Progressive merkle tree, https://github.com/ethereum/research/blob/master/beacon chain
impl/progressive merkle tree.py

5. Chen, X., Rosu, G.: K - A semantic framework for programming languages and formal analysis. In: Bowen,
J.P., Liu, Z., Zhang, Z. (eds.) Engineering Trustworthy Software Systems - 5th International School, SETSS
2019, Chongqing, China, April 21-27, 2019, Tutorial Lectures. Lecture Notes in Computer Science, vol.
12154, pp. 122–158. Springer (2019), https://doi.org/10.1007/978-3-030-55089-9 4

6. ConsenSys Diligence: Mythx, https://mythx.io/
7. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: Openjdk’s java.utils.collection.sort() is bro-

ken: The good, the bad and the worst case. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided
Verification. pp. 273–289. Springer International Publishing, Cham (2015)

8. Hajdu, Á., Jovanovic, D.: solc-verify: A modular verifier for solidity smart contracts. In: Chakraborty, S.,
Navas, J.A. (eds.) Verified Software. Theories, Tools, and Experiments - 11th International Conference,
VSTTE 2019, New York City, NY, USA, July 13-14, 2019, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 12031, pp. 161–179. Springer (2019), https://doi.org/10.1007/978-3-030-41600-3 11

9. Hajdu, Á., Jovanovic, D., Ciocarlie, G.F.: Formal specification and verification of solidity contracts
with events (short paper). In: Bernardo, B., Marmsoler, D. (eds.) 2nd Workshop on Formal Methods
for Blockchains, FMBC@CAV 2020, July 20-21, 2020, Los Angeles, California, USA (Virtual Confer-
ence). OASIcs, vol. 84, pp. 2:1–2:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020), https:
//doi.org/10.4230/OASIcs.FMBC.2020.2

10. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L., Setty, S.T.V., Zill, B.:
IronFleet: proving practical distributed systems correct. In: Miller, E.L., Hand, S. (eds.) Proceedings of
the 25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7,
2015. pp. 1–17. ACM (2015), https://doi.org/10.1145/2815400.2815428

15

https://github.com/ConsenSys/deposit-sc-dafny
https://github.com/ConsenSys/deposit-sc-dafny
https://doi.org/10.1145/3167084
https://doi.org/10.4204/EPTCS.303.1
https://github.com/suhabe/eth-deposit-contract-vyper-review/blob/master/EthDepositContractVyperReview.pdf
https://github.com/suhabe/eth-deposit-contract-vyper-review/blob/master/EthDepositContractVyperReview.pdf
https://github.com/ethereum/research/ blob/master/beacon_chain_impl/progressive_merkle_tree.py
https://github.com/ethereum/research/ blob/master/beacon_chain_impl/progressive_merkle_tree.py
https://doi.org/10.1007/978-3-030-55089-9_4
https://mythx.io/
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.4230/OASIcs.FMBC.2020.2
https://doi.org/10.4230/OASIcs.FMBC.2020.2
https://doi.org/10.1145/2815400.2815428

11. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K.,
Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: sel4: formal verification of an OS kernel. In:
Matthews, J.N., Anderson, T.E. (eds.) Proceedings of the 22nd ACM Symposium on Operating Systems
Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009. pp. 207–220. ACM (2009),
https://doi.org/10.1145/1629575.1629596

12. Lammich, P.: Efficient verified implementation of introsort and pdqsort. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris,
France, July 1-4, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12167, pp. 307–323.
Springer (2020), https://doi.org/10.1007/978-3-030-51054-1 18

13. Leino, K.R.M.: Accessible software verification with Dafny. IEEE Softw. 34(6), 94–97 (2017), https://doi.
org/10.1109/MS.2017.4121212

14. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446 (2009), https://doi.
org/10.1007/s10817-009-9155-4

15. Mai, H., Pek, E., Xue, H., King, S.T., Madhusudan, P.: Verifying security invariants in expressos. In:
Sarkar, V., Bod́ık, R. (eds.) Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’13, Houston, TX, USA - March 16 - 20, 2013. pp. 293–304. ACM (2013), https://doi.org/10.
1145/2451116.2451148

16. Matias, M.: Program Verification of FreeRTOS Using Microsoft Dafny. Cleveland State University (2014),
https://books.google.com.au/books?id=A iyoQEACAAJ

17. de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean Theorem Prover (system
description). In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction - CADE-25 - 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. Lecture Notes in
Computer Science, vol. 9195, pp. 378–388. Springer (2015), https://doi.org/10.1007/978-3-319-21401-6 26

18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic, LNCS,
vol. 2283. Springer (2002)

19. Ogawa, M., Horita, E., Ono, S.: Proving properties of incremental merkle trees. In: Nieuwenhuis, R. (ed.)
Automated Deduction – CADE-20. pp. 424–440. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

20. Park, D., Zhang, Y.: Formal verification of the incremental merkle tree algorithm (2020),
https://github.com/runtimeverification/verified-smart-contracts/blob/master/deposit/formal-incremental-
merkle-tree-algorithm.pdf

21. Park, D., Zhang, Y., Rosu, G.: End-to-end formal verification of ethereum 2.0 deposit smart contract. In:
Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification - 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol.
12224, pp. 151–164. Springer (2020), https://doi.org/10.1007/978-3-030-53288-8 8

22. Paulin-Mohring, C.: Introduction to the Coq Proof-Assistant for Practical Software Verification, pp. 45–95.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012), https://doi.org/10.1007/978-3-642-35746-6 3

23. Pearce, D.J., Utting, M., Groves, L.: An introduction to software verification with Whiley. In: Bowen, J.P.,
Liu, Z., Zhang, Z. (eds.) Engineering Trustworthy Software Systems - 4th International School, SETSS
2018, Chongqing, China, April 7-12, 2018, Tutorial Lectures. Lecture Notes in Computer Science, vol.
11430, pp. 1–37. Springer (2018), https://doi.org/10.1007/978-3-030-17601-3 1

24. Peña, R.: An assertional proof of red-black trees using dafny. J. Autom. Reason. 64(4), 767–791 (2020),
https://doi.org/10.1007/s10817-019-09534-y

25. Runtime Verification Inc.: Formally verified smart contracts., https://github.com/runtimeverification/
verified-smart-contracts

26. Sternagel, C.: Proof pearl–a mechanized proof of ghc’s mergesort. J. Autom. Reason. 51(4), 357–370 (Dec
2013), https://doi.org/10.1007/s10817-012-9260-7

27. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer, D., Huisman, M. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp. 61–78. Springer International
Publishing, Cham (2018)

28. Wüstholz, V., Christakis, M.: Harvey: A Greybox Fuzzer for Smart Contracts, pp. 1398–1409. Association
for Computing Machinery, New York, NY, USA (2020), https://doi.org/10.1145/3368089.3417064

16

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/2451116.2451148
https://doi.org/10.1145/2451116.2451148
https://books.google.com.au/books?id=A_iyoQEACAAJ
https://doi.org/10.1007/978-3-319-21401-6_26
https://github.com/runtimeverification/verified-smart-contracts/blob/master/deposit/formal-incremental-merkle-tree-algorithm.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/master/deposit/formal-incremental-merkle-tree-algorithm.pdf
https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.1007/978-3-642-35746-6_3
https://doi.org/10.1007/978-3-030-17601-3_1
https://doi.org/10.1007/s10817-019-09534-y
https://github.com/runtimeverification/verified-smart-contracts
https://github.com/runtimeverification/verified-smart-contracts
https://doi.org/10.1007/s10817-012-9260-7
https://doi.org/10.1145/3368089.3417064

	Verification of the Incremental Merkle Tree Algorithm with Dafny

