
Verifying Secure Speculation in Isabelle / HOL

Matt Griffin[0000−0003−2703−0368] and Brijesh Dongol[0000−0003−0446−3507]

University of Surrey, Guildford, Surrey, UK
{matt.griffin,b.dongol}@surrey.ac.uk

Abstract. Secure speculation is an information flow security hyperprop-
erty that prevents transient execution attacks such as Spectre, Meltdown
and Foreshadow. Generic compiler mitigations for secure speculation are
known to be insufficient for eliminating vulnerabilities. Moreover, these
mitigation techniques often overprescribe speculative fences, causing the
performance of the programs to suffer. Recently Cheang et al. have de-
veloped an operational semantics of program execution capable of char-
acterising speculative executions as well as a new class of information
flow hyperproperties named TPOD that ensure secure speculation. This
paper presents a framework for verifying TPOD using the Isabelle/HOL
proof assistant by encoding the operational semantics of Cheang et al.
We provide translation tools for automatically generating the required
Isabelle/HOL theory templates from a C-like program syntax, which
speeds up verification. Our framework is capable of proving the exis-
tence of vulnerabilities and correctness of secure speculation. We exem-
plify our framework by proving the existence of secure speculation bugs
in 15 victim functions for the MSVC compiler as well as correctness of
some proposed fixes.

Keywords: Isabelle/HOL · Secure Speculation · Formal Verification ·
Spectre · Transient Execution Vulnerabilities · Hyperproperties

1 Introduction

Transient execution vulnerabilities, especially Spectre, remain an active area of
research since their disclosure in 2018 [17]. Even with the availability of many
(now mature) solutions, there is seemingly no decrease in the discovery of new
variants, including “next generation attacks” [3, 22]. Modern processors from
nearly all vendors are susceptible, meaning that millions of devices are insecure.
This problem is of high concern to cloud providers since vulnerabilities can
leak sensitive information from system memory, including across hypervisors,
breaking virtual machine boundaries. Moreover, attacks can be carried out using
valid processor mechanisms, meaning that detecting an occurrence is extremely
hard. A successful attack leaves almost no trace of its exploitation that could be
discerned from normal operation.

The root of the problem lies within the design of modern microprocessors
and the complexity of many interacting components. The combination of perfor-
mance features such as speculative execution, branch prediction and out-of-order

2 M. Griffin and B. Dongol

MSVC BAP Translation Isabelle/HOL

Secure

Insecure

*.c x86 *.bil*.bil *.thy

Insert missing spec fences

Fig. 1. Translation of C source programs to an Isabelle/HOL proof

execution are exploited/misused to extract information through side channels
such as the CPU cache. Interestingly, processors that exhibit these vulnerabil-
ities are correct, at least according to their vendor’s specifications. Moreover,
exploited mechanisms, namely branch prediction and speculative execution, are
key to high performance computation. This indicates weaknesses in the specifi-
cations themselves, primarily their nondeterminism which affords flexibility at
the permittance of undefined behaviour.

For some attacks (e.g., Meltdown [18] and Foreshadow [2]), the latest patches
offer a combination of hardware- or micokernel-based fixes, but older architec-
tures remain vulnerable. Moreover, many attacks (e.g., those based on Spec-
tre [17, 22]) cannot be patched, even for the latest CPUs, since it is impossible
to detect whether an arbitrary sequence of instructions is exploitable [16]. This
suggests that a full solution to transient execution vulnerabilities will require a
mix of hardware- and software-based solutions.

Existing mitigations (e.g., for Spectre) tend to be heavy handed, and thus,
either incur performance penalties [20] or only target specific variants [14, 25].
A compiler-based approach, developed by Microsoft (MSVC), designed to work
with new specifications of the lfence instructions in x86 processors is known to
over-prescribe speculation barriers, leading to performance concerns [16]. More
seriously, these mitigations are known to be incomplete — 15 victim functions
were originally identified for Spectre variant 1 (see §2.1), capable of bypassing
MSVC mitigations [16].

The above motivates the need for formal proofs of correctness of secure specu-
lation for the compiled assembly-level representation of programs. A significant
step towards such proofs were taken by Cheang et al. [5], who developed an
operational semantics of program execution capable of characterising specula-
tive executions. They have coupled this with a new class of information flow
hyperproperties [6] named trace property-dependent observational determinism
(TPOD) with mechanisation in the UCLID5 model checker [24]. TPOD gener-
alises observational determinism [19, 23] to allow information flow from high to
low states in the presence of speculation, succinctly characterising correctness of
secure speculation.

Our paper comprises the following core contributions. (1) We build on the
work of Cheang et al. [5] by encoding their operational semantics in the Is-
abelle/HOL proof assistant. (2) We couple our Isabelle/HOL mechanisation
with a Hoare-style deductive verification technique, which we show is capable of
reasoning about both the absence and presence of secure speculation. (3) We

Verifying Secure Speculation in Isabelle / HOL 3

1 void victim_function_v01(size_t x) {

2 if (x < array1_size) {

3 temp &= array2[array1[x] * 512];

4 }

5 }

Listing 1.1. Spectre Bounds Check Bypass

prove the existence of vulnerabilities for all 15 victim functions originally identi-
fied for MSVC [16], and correctness of two of the most interesting fixes. (4) We
develop an automatic translation tool that generates associated Isabelle/HOL
theories for a given BIL1 input, integrating into a verification workflow from C
code to Isabelle/HOL proofs (see Fig. 1). (5) We develop theorems to identify
programs that are guaranteed to satisfy TPOD, which reduces the proof burden.

Our mechanisation work uncovers minor issues in the operational semantics
of Cheang et al. [5], which we revise in our operational semantics (see §3). More-
over, we treat speculative fences as dedicated instructions in program memory,
as opposed to abstract barriers, more closely modelling a mitigated program.
Furthermore, we clear speculative states on resolution for intuitive comparisons
in proof conditions. Finally, we introduce a set of theorems to discharge triv-
ial proof obligations, achieving similar verification scalability as the “havocing
adversary” without the need for an explicit havoc instruction.

2 Transient Execution Vulnerabilities

Transient execution vulnerabilities target performance features such as specula-
tive execution and branch prediction. Since the first discovered attacks [17, 18]
many such vulnerabilities have been uncovered, targetting specific hardware ar-
chitectures. Some variants have been fixed via hardware and microarchitecture
updates, e.g. Foreshadow [2] no longer affects Intel architectures since 9th Gen-
eration Coffee Lake [13]. However, many variants of Spectre remain unpatched
and require software-based mitigation.

2.1 Spectre Variant 1: Bounds Check Bypass

Spectre mistrains the branch predictor so that mispredictions are made on
branching statements. One such mistraining strategy targets the pattern history
table (PHT), which is used to decide the direction (taken/not-taken) of a con-
ditional branch. This vulnerability is classified as Spectre-PHT [3] and was first
introduced as Spectre Bounds Check Bypass (BCB), aka variant 1, by Kocher
et al. [17]. Consider the simple C program in Listing 1.1, which demonstrates
the Spectre BCB vulnerability.

The function takes some untrusted input x and performs a bounds check to
ensure that it is less that the size of array1 (array1_size). The value x indexes

1 BIL is an assembly intermediate language [1].

4 M. Griffin and B. Dongol

1 00001 bbd: RAX := mem[array2 , el]:u64

2 00001 bc4: RDX := mem[array1 , el]:u64

3 00001 bdc: ... // some processing on the index of array1 RDX

4 00001 c1c: RDX := mem[RDX , el]:u64

5 00001 c54: ... // some processing on the index of array2 RAX

6 00001 c6d: RDX := mem[RAX , el]:u64

Listing 1.2. Concise translation of line 3 in Listing 1.1 to assembly in BIL. Full
translation is given in Listing 1.6.

array1 and subsequently array2 through some transformation. The result is
stored in temp before control is returned to the caller. The bounds check on line 2
is supposed to act as a guard between trusted and untrusted operations. Under
normal execution, a caller would not be able to perform the memory reads and
writes on line 3 if the guard does not hold. However, under speculative execution,
the result of the branch condition on line 2 could be mispredicted, which can be
reliably guaranteed if the branch predictor is mistrained.

If a misprediction occurs, the operations on line 3 will be executed spec-
ulatively with a value of x outside the prescribed bounds. This could lead to
unconstrained reads from protected memory and differences in the speculative
state across multiple executions. Note that the adversary cannot directly observe
these differences as architectural changes are reverted when mispredictions are
resolved. However, these changes persist in the microarchitecture state such as
the L1 and L3 caches.2

We demonstrate how reads can be unconstrained, by examining a subset of
the assembly corresponding to the program in Listing 1.1. An excerpt of the BIL3

instructions (resulting from compiling line 3) in the program using Microsoft’s
Visual C++ Compiler (MSVC) are shown in Listing 1.2. Instructions are shown
on the right with addresses (in program memory) on the left.

Assuming that the branch predictor has mispredicted the condition that x

is less than the size of array1, the memory read at 00001c1c may load an
unconstrained value v from memory into the register RDX, where v is being used
as an address. As instruction 00001c1c is speculative, this read is permitted
despite the fact that v is potentially a value in protected memory. This is the first
indication of a vulnerability, even though the adversary cannot yet read v in the
speculative state. However, the adversary can discover v through a side channel.
In particular, the memory read at 00001c6d, ultimately accesses v,4 which means
that v will be brought into the cache. Since the cache is microarchitectural, even
when the branch predictor resolves this misspeculation on x, v remains in the
cache making the value susceptible to a timing attack [16, 17]. Note that the

2 For this to be exploited we must have already “poisoned” the cache [17]. In this
paper, assume cache poisoning to have occurred prior to execution of each program.

3 BIL is an assembly intermediate language [1]. In general, we must reason about secure
speculation in assembly language since compilers may optimise branch statements
in high-level languages.

4 Technically speaking, the value being accessed is the transformed value v * 512.

Verifying Secure Speculation in Isabelle / HOL 5

purpose of array2 is to provide a mechanism for indexing addresses; the attacker
is not aiming to steal secrets from array2 itself.

One way to fix this issue is via a speculative fence, specfence, which is an
assembly instruction that resolves all branch predictions, in turn ensuring the ab-
sence of speculation at specific programmer-controlled locations. In Listing 1.2,
a speculative fence is required prior to executing instruction 00001c6d, which is
the instruction that loads v into the cache as an address. After introduction of a
speculative fence immediately prior to 00001c6d, the misprediction on x will be
resolved, preventing v from being loaded in the first place. However, determin-
ing precisely where speculative fences should be placed is difficult: underfencing
leaves the code vulnerable, while overfencing negatively impact performance.
Compilers alone cannot be trusted to reliably fence program code [16], pointing
to a need for formal verification.

2.2 TPOD

Properties involving speculative execution cannot be formalised over a single
trace. Instead we require a more general class of properties called hyperprop-
erties [6], which are properties over sets of traces. An example is observational
determinism [19, 23], which is a two-trace hyperproperty. It is well known that
observational determinism allows one to establish low equivalence, which is an
information flow property that holds iff from a user state (i.e., a low state) an
observer cannot detect any difference in a root state (i.e., a high state). Opera-
tions are either untrusted and act on the low state, or are trusted and act on
the high state.

It turns out observational determinism is not sufficient to characterise the
types of properties described in §2.1 [5]. Instead, we require a more general
condition called trace property-dependent observational determinism (TPOD),
which is a four-trace hyperproperty. Unlike observational determinism, which
precludes information flow from high to low states, TPOD allows information
flow from a high state to a low state in the presence of misspeculation.

We describe TPOD directly in terms of its formal definition (see Fig. 2),
but describe its components informally for now. The formal definitions of the
components comprising TPOD are given in §3.3. We use s1 ≈L s2 to denote
that state s1 and s2 are low-equivalent. For traces π1 and π2, we use π1 ≈L π2
to denote that for all indices i, πi1 ≈L πi2, where πik is the state indexed i in πk.
We assume that Tr is the set of all traces of a program, and T ⊆ Tr is the
set of traces of the program with no misprediction. Moreover, opL(π) returns
the sequence of low-state (i.e., untrusted) instructions executed for each state
of the trace, which may be null if the instruction is trusted. opH(π) is similar,
but returns the sequence of trusted instructions. A difference between opL(π)
and opH(π) is that opH(π) also returns the observable memory after each high
instruction (see §3.3 for details).

By (1) we assume that π1 and π2 are traces with no misprediction (and hence
no speculation) and π3 and π4 are traces with misprediction, and by (2) all four
traces execute the same sequence of low instructions. By (3), traces π1 and π3

6 M. Griffin and B. Dongol

∀π1, π2, π3, π4 ∈ Tr . π1 ∈ T ∧ π2 ∈ T ∧ π3 /∈ T ∧ π4 /∈ T −→ (1)

opL(π1) = opL(π2) = opL(π3) = opL(π4) −→ (2)

opH(π1) = opH(π3) ∧ opH(π2) = opH(π4) −→ (3)

π1 ≈L π2 ∧ π0
3 ≈L π0

4 −→ (4)

π3 ≈L π4 (5)

Fig. 2. Formal definition of TPOD

execute the same sequence of high instructions, as do π2 and π4. By (4), π1
and π2 are low equivalent, while π3 and π4 are initially low equivelent. Under
these assumptions, we must show (5), which ensures that π3 and π4 (the traces
with mispredication) are low equivalent. Note that π1 and π3 execute the same
instructions with the same memory, but only π3 can speculate. Similarly, for π2
and π4. Also note that there is no such constraint on π1 and π2 (and on π3 and
π4), thus they could execute different instructions with different memory in the
high state.

To see that TPOD does indeed capture the secure speculation properties of
interest, consider a speculative execution of the program in Listing 1.2 up to
instruction 00001c6d. We construct the four traces π1-π4 in parallel. Since we
are considering a speculative execution, π1 and π2 will be stuttering, i.e., wait-
ing at the mispredicted branch (see §3 below), while π3 and π4 are executing
the program speculatively. Thus (1) holds. Further assume that conditions (2)
and (3) hold, meaning that the operations executed until this point are equiva-
lent as defined by (2) and (3). By (4), π1 and π2 are low equivalent, and since
TPOD is prefix-closed [5] π3 and π4 must also be low equivalent. Upon execut-
ing 00001c6d, it will be possible for the system to load from different memory
addresses, which violates low equivalence. This models the phenomenon where
the adversary can identify a difference in the memory addresses accessed.

3 Operational semantics

3.1 Syntax and semantics

We model secure speculation using operational semantics for speculative in-order
processors similar to Cheang et al. [5] with some modifications. We keep the pro-
posed assembly intermediate representation (AIR), whose syntax for programs
(Prog), instructions (Instr) and expressions (Exp) are given below. We let Reg
and Const be the set of all registers and constants, respectively, and ♦u and ♦b

be unary and binary operators.

Prog ::= Instr∗ Exp ::= Const | Reg | ♦u Exp | Exp ♦b Exp

Instr ::= Reg := Exp | mem := mem[Exp → Exp] | Reg := mem[Exp]

| if Exp goto AddrΠ | goto AddrΠ | specfence

We let AddrΠ ,Addrµ ⊆ Const be the set of all program and memory addresses,
respectively. The machine state is represented by s = 〈Π ,∆, µ, pc, ω, β, n〉, where

Verifying Secure Speculation in Isabelle / HOL 7

Π : N→ AddrΠ → Instr is the program memory (mapping program addresses to
instructions), ∆ : N→ Reg → Val and µ : N→ Addrµ → Val are the register and
memory states, pc : N→ AddrΠ is the program counter, ω ∈ (AddrΠ × Addrµ)∗

is the trace of accessed program and memory addresses, β is the branch predictor,
and finally n ∈ N is the speculation level. Note that ∆, µ and pc are functions
over the current speculation level, which discuss in detail below. We use ∆n for
∆(n), where ∆0 refers to the architectural state with no speculation (similarly
µn, pcn). We use dot notation (e.g., s.Π) to refer to components of s.

A program is speculating in state s (denoted in speculating(s) iff s.n > 0).
Moreover, we use ρ

.
= pcn to refer to the current program counter, ι

.
= Π (ρ) to

the current instruction. Following Cheang et al., we assume an evaluation func-
tion, where JeK∆n

evaluates the expression e in the register state ∆n. Semantics
of expression evaluation are shown below.

Const
c = JcK∆n

Reg
∆n(r) = v

v = JrK∆n

UnOp
v′ = JeK∆n

v = ♦uv
′

v = J♦ueK∆n

BinOp
v1 = Je1K∆n

v2 = Je2K∆n
v = v1♦bv2

v = Je1♦be2K∆n

We now define the transition relation, which are shown in Fig. 3. Each state
s already contains a mapping from s to the next instruction (s.ι) to be exe-
cuted. Thus, the transition relation is of the form s s′, which advances the
machine state from s to s′ by either executing s.ι or resolving a misprediction in
s. The rules use uninterpreted predicates, mispred(n, β, pc) and resolve(n, β, pc),
which model branch misprediction and resolution, respectively, and an uninter-
preted function, update(n, β, pc), which models branch prediction. The values
of uninterpreted predicates and functions are non-deterministically selected and
updated. Thus, in our verification, for any uninterpreted predicate or predicate,
we must check both the true and false cases.

For a sequence σ ∈ X∗ and an element x ∈ X, we use σ · x for the sequence
σ with x appended to the end. Thus ω · 〈x, y〉 denotes ω with the pair 〈x, y〉
appended to the end.

For space reasons, we only discuss the most important aspects of the tran-
sition relation here and ask the interested reader to consult the original paper
for full details [5]. When executing a branch instruction, there are four possible
outcomes, determined by the combination of the condition evaluation, JeK∆n ,
and mispred(n, β, pc). If mispred(n, β, pc) holds we increment n, copy the values
at n in the current ∆ and µ to the next n and finally update pc.

An execution of a program is a sequence π generated using the transition
rules in Fig. 3.

3.2 Adversary model

In addition to the rules above, we require a model of the adversary’s capabilities.
Again, we follow Cheang et al. [5] and formalise an adversary model capable of

8 M. Griffin and B. Dongol

RegUpdate

¬ resolve(n, β, pc) ι = r := e D = ∆n[r 7→ JeK∆n]
pc′ = pc[n 7→ pcn + 1] ω′ = ω · 〈ρ,⊥〉

〈Π ,∆, µ, pc, ω, β, n〉 〈Π ,∆[n 7→ D], µ, pc′, ω′, β, n〉

Load

¬ resolve(n, β, pc) ι = r := mem[e] a = JeK∆n

D = ∆n[r 7→ µn(a)] pc′ = pc[n 7→ pcn + 1] ω′ = ω · 〈ρ, a〉
〈Π ,∆, µ, pc, ω, β, n〉 〈Π ,∆[n 7→ D], µ, pc′, ω′, β, n〉

Store

¬ resolve(n, β, pc) ι = mem := mem[e1 → e2] a = Je1K∆n

D = µn[a 7→ Je2K∆n] pc′ = pc[n 7→ pcn + 1] ω′ = ω · 〈ρ, a〉
〈Π ,∆, µ, pc, ω, β, n〉 〈Π ,∆, µ[n 7→ D], pc′, ω′, β, n〉

BranchT

¬ resolve(n, β, pc) ι = if e goto c ¬ mispred(n, β, pc) JeK∆n

pc′ = pc[n 7→ c] ω′ = ω · 〈ρ,⊥〉 β′ = update(n, β, pc)

〈Π ,∆, µ, pc, ω, β, n〉 〈Π ,∆, µ, pc′, ω′, β′, n〉)

BranchF

¬ resolve(n, β, pc) ι = if e goto c ¬ mispred(n, β, pc) ¬JeK∆n

pc′ = pc[n 7→ pcn + 1] ω′ = ω · 〈ρ,⊥〉 β′ = update(n, β, pc)

〈Π ,∆, µ, pc, ω, β, n〉 〈Π ,∆, µ, pc′, ω′, β′, n〉

MisPredT

¬ resolve(n, β, pc) ι = if e goto c mispred(n, β, pc) JeK∆n

pc′ = pc[n 7→ c, n′ 7→ pcn + 1] ω′ = ω · 〈ρ,⊥〉
β′ = update(n, β, pc) n′ = n+ 1

〈Π ,∆, µ, pc, ω, β, n〉 〈Π ,∆[n′ 7→ ∆n], µ[n′ 7→ µn], pc′, ω′, β′, n′〉

MisPredF

¬ resolve(n, β, pc) ι = if e goto c mispred(n, β, pc) ¬JeK∆n

pc′ = pc[n 7→ pcn + 1, n′ 7→ c] ω′ = ω · 〈ρ,⊥〉
β′ = update(n, β, pc) n′ = n+ 1

〈Π ,∆, µ, pc, ω, β, n〉 〈Π ,∆′, µ′, pc′, ω′, β′, n′〉

Goto

¬ resolve(n, β, pc) ι = goto c pc′ = pc[n 7→ c]
ω′ = ω · 〈ρ,⊥〉 β′ = update(n, β, pc)

〈Π ,∆, µ, pc, ω, β, n〉 〈Π ,∆, µ, pc′, ω′, β′, n〉

SpecFence

¬ resolve(n, β, pc) ι = specfence ∆′ = ∆ � 0 µ′ = µ � 0
pc′ = if n = 0 then pc[n 7→ pcn + 1] else pc � 0 ω′ = ω · 〈ρ,⊥〉

〈Π ,∆, µ, pc, ω, β, n〉 〈Π ,∆′, µ′, pc′, ω′, β, 0〉

Resolve
resolve(n, β, pc) β′ = update(n, β, pc) n′ = n− 1

〈Π ,∆, µ, pc, ω, β, n〉 〈Π ,∆[n 7→ ⊥], µ[n 7→ ⊥], pc[n 7→ ⊥], ω, β′, n′〉

Fig. 3. Transition rules of the operational semantics, recall that ρ is defined to be pcn.
We define A � a

.
= λx. if x = a then A(a) else ⊥.

reading from architectural registers and non-secret memory. To this end, we
use a tuple A = 〈Tρ, EP,ST ,Uµrd ,Uµwr 〉, where Tρ ⊆ AddrΠ refers to the set of
trusted instruction memory addresses, EP : AddrΠ ∈ Tρ is the trusted program’s
entrypoint, ST ⊆ Addrµ is the secret memory addresses, Uµrd ⊆ Addrµ and Uµwr ⊆
Addrµ are the adversary readable and writable addresses.

In our development, we must define some restrictions on the adversary’s
capabilities. We assume that that adversary can only read from the addresses in
the set Uµrd and write to addresses in Uµwr . To enforce this we define the following

Verifying Secure Speculation in Isabelle / HOL 9

state predicates. Note that we leave the state s implicit in the definitions.

conformantLoadA
.
= (ι = r := mem[e]) −→ JeK∆n

∈ Uµrd
conformantStoreA

.
= (ι = mem := mem[e1 → e2]) −→ Je1K∆n

∈ Uµwr

Both predicates are only required to hold if the program is not speculating
or executing an untrusted instruction. Thus, we define conformantLSA

.
= ρ /∈

Tρ ∧ ¬ speculating −→ conformantLoadA ∧ conformantStoreA.
A further constraint of the program memory is that any transition to an

address in Tρ must target an element in EP. This is to prevent the bypass of
speculative fences. The entrypoint from EP must exist at the boundary between
an untrusted and trusted instruction. This is a property of an execution π, and
is formalised by the following predicate:

conformantEPA(π)
.
= ∀i. πi.ρ /∈ Tρ ∧ πi+1.ρ ∈ Tρ −→ πi+1.ρ = EP

The definitions above allow us to formalise the notion of a conformant trace,
which is designed to remove spurious counterexamples. We specify that the initial
state must not be speculating and satisfy some predicate init(π0). This is shown
in the equation below:

conformantA(π)
.
= ¬speculating(π0) ∧ init(π0) ∧

conformantEPA(π) ∧ (∀i. conformantLSA(πi))

We say any execution π that satisfies conformantA(π) is a trace of the program.

3.3 Formalising TPOD

In this section, we formalise the components used in the definition of TPOD as
given in §2.2. The presentation in §2.2 leaves the adversary implicit. Following
§3.2, we have an explicit adversary model, thus formalise the components of
TPOD in terms of this adversary.

The set of traces with no misprediction is defined as follows: T
.
= {π ∈ Tr |

∀i. ¬ mispred(πi.n, πi.β, πi.pc)}.
Next we define the low and high operations. Recall that Tρ is the set of

trusted instruction addresses with respect to an adversary A. The low operations
are given by opAL (s)

.
= if s.pc0 /∈ Tρ then Π (s.pc0) else ⊥, where s.pc0 is the

architectural program counter for the current non-speculative instruction.
The high operations return both an instruction and the memory read. The

instruction itself is given by instAT (s)
.
= if s.pc0 ∈ Tρ then Π (pc0) else ⊥ and the

memory by PAT (s)
.
= λa. if a /∈ ST then µ0(a) else ⊥, recalling that ST denotes

the secret memory addresses of A. Moreover, we can determine the architectural
memory using µ0, which is the memory where no speculation is taking place.
Formally, a high operation returns a tuple opAH(s)

.
= 〈instT (s),PT (s)〉

We define low equivalence of two states s1 and s2 as follows:

s1 ≈L s2
.
= (¬speculating(s1) ∨ ¬speculating(s2)) ∧ (opL(s1) 6= ⊥) −→

(∀a ∈ Uµrd . s1.µ0(a) = s2.µ0(a)) ∧
s1.∆0 = s2.∆0 ∧ s1.β = s2.β ∧ s1.ω = s2.ω

10 M. Griffin and B. Dongol

Low-equivalence of traces is defined by pointwise lifting as discussed in §2.2.

4 Mechanisation Techniques

Our proofs are constructed using the proof assistant Isabelle/HOL, which over-
comes the limitations of finite traces and the specific properties present in prior
works, which used the UCLID5 model checker [24]. Our Isabelle/HOL theories
act as a library, offering re-usability. The proofs themselves require very little
human interaction.

Our workflow (see Fig.1) is similar to that of Rasmussen [21], but we generate
Isabelle/HOL theories instead of a UCLID5 representation. First, the C code
is compiled to assembly. This step could target any compiler and architecture
compatible with BAP [1]. In our work, we use the MSVC compiler to translate
the C code into x86 assembly. Second the assembly code is fed into the Binary
Analysis Platform (BAP) to generate the corresponding BIL [1]. Finally, we
generate the optimised Isabelle/HOL theory for the given BIL. For this final
translation step, we have developed an automatic translation tool from BIL to
Isabelle/HOL that instantiates the theorems necessary to prove TPOD.

4.1 Program specification

In our development, we provide an Isabelle/HOL representation of each BIL
instruction (see Fig. 4 for an example). All data types are represented as unin-
terpreted 64-bit words, with expression evaluation handled by Isabelle/HOL’s
built-in Word_Lib theories. We define a well-formed predicate which ensures that
the program memory is valid and verifiable. Well-formed predicates extend to
other components of the system state, such as the program counter, trusted set
of addresses, and entry point.

We have developed a set of theorems to discharge trivial cases automatically.
Below, we describe the most interesting of such trivial programs for which a
well formed TPOD proof obligation can be discharged without a complex step-
wise, inductive proof. We ask the interested reader to consult our Isabelle/HOL
theories [10] for other examples.

Theorem 1. TPOD holds for any well-formed Π if any of the following hold:

1. ∀ι ∈ Π . ι 6= if e goto c,
2. ∀ι ∈ Π . ι /∈ {r := mem[e],mem := mem[e1 → e2]},
3. ∀ρ ∈ Π . ρ ∈ Tρ.

This theorem has been verified in Isabelle/HOL.
Intuitively speaking, condition 1 ensures that Π contains no branch instruc-

tions. TPOD assumes that we start in a state without speculation and branching
introduces speculation. Therefore, if Π contains no branch instructions, there
can be no speculation and no violation of TPOD. Condition 2 ensures that Π
contains no load or store instructions. Recall that (4) in Fig. 2 assumes that

Verifying Secure Speculation in Isabelle / HOL 11

1 definition "ex01_Π_vulnerable ≡ [

2 0 7→ RAX := mem[Const array1_size_addr , el]:u64 ,

3 1 7→ CF := (BinOp (Reg RDI) (air_lt) (Reg RAX)),

4 2 7→ when (Reg CF) goto (ProgramAddress 4),

5 3 7→ goto (ProgramAddress 19),

6

7 4 7→ RAX := mem[Const array2_addr , el]:u64 ,

8 5 7→ RDX := mem[Const array1_addr , el]:u64 ,

9 6 7→ RCX := (Reg RDI),

10 7 7→ RCX := (BinOp (Reg RCX) (air_shiftl) (Const 3)),

11 8 7→ (V 274) := (Reg RCX),

12 9 7→ RDX := (BinOp (Reg RDX) (+) (Reg (V 274))) ,

13 10 7→ RDX := mem[Reg RDX , el]:u64 ,

14 11 7→ RDX := (BinOp (Reg RDX) (air_shiftl) (Const 12)),

15 12 7→ (V 284) := (Reg RDX),

16 13 7→ RAX := (BinOp (Reg RAX) (+) (Reg (V 284))) ,

17 14 7→ RDX := mem[Reg RAX , el]:u64 ,

18 15 7→ RAX := mem[Const temp_addr , el]:u64 ,

19 16 7→ RAX := (BinOp (Reg RAX) (AND) (Reg RDX)),

20 17 7→ mem := mem with [Const temp_addr , el]:u64 <- (Reg RAX),

21 18 7→ goto (ProgramAddress 19),

22

23 19 7→ goto Halt

24]"

Fig. 4. Isabelle/HOL program memory for Example 1

the speculative traces are initially architecturally equivalent, thus the absence
of memory operations prevents these traces from diverging. Condition 3 ensure
that all instructions are trusted. Any two high states are trivially low equivalent
to the adversary even if their states differ and would otherwise violate TPOD.

4.2 Operational semantics

We represent the operational semantics defined in §3 in our Isabelle/HOL the-
ories using Hoare-style triples ({P} S {Q}), similar to those introduced in the
Isabelle/HOL proofs for the seL4 kernel [15]. In our model, we define the precon-
dition P and postcondition Q as state predicates and the statement S as a state
transformer. Moreover, since the instructions to be executed can be determined
from the pre-state s using s.ι, we consider predicate transformers of the form
{P} {Q}.

We introduce halting, defined by halting
.
= pcn /∈ Π to describe a state with

a program counter that does not point to an instruction in Π. At this point
the program cannot advance and must resolve if speculating. We say a state s
has terminated (terminates(s)) iff it is halting and not speculating such that
terminates(s)

.
= halting(s) ∧ ¬speculating(s). If the system terminates it will

stutter, at which point we can trivially infer {P} {P}.

12 M. Griffin and B. Dongol

speculating ss ss s′s
(sns, ss) 2 (sns, s′s)

¬ speculating ss ss s′s sns s′ns

(sns, ss) 2 (s′ns, s
′
s)

(s1, s3) 2 (s′1, s
′
3) (s2, s4) 2 (s′2, s

′
4)

(s1, s2, s3, s4) 4(s′1, s
′
2, s

′
3, s

′
4)

Fig. 5. Transition rules for the states in the four traces of TPOD, where ss and sns

are states with and without speculation, respectively

As TPOD is a four-trace hyperproperty, we are required to transition each
of the four system states simultaneously. This means that for a system with k
transition rules, we must consider k4 cases across all the four traces which quickly
becomes intractable. Many of theses cases are spurious and cannot occur within
a well-formed TPOD execution. For example, state pairs (s1, s3) and (s2, s4)
are operationally equivalent if the execute the same low and high operations
and therefore maintain the same architectural state. Operationally equivalent
state pairs can be transitioned synchronously using a new transition rule 2,
which is defined using (see Fig. 5). This reduces the quadratic complexity of
checking two traces to a linear check. This reduction can be performed on both
speculating and non-speculating states, leading to a 4-way synchronous check
 4, which reduced k4 interleavings to a linear check as well.

By the definition of low equivalence of states sa ≈L sb, sa and sb may have
architectural differences iff these are high states or the program is speculating.
Transitions only ever append to the set of program and memory addresses ω,
an architectural system component verified in low equivalence. If at any point
the predicate violation≈L(sa, sb)

.
= sa.ω � sb.ω ∨ sb.ω � sa.ω does not hold

(where � denotes subsequence) then there exists no future transition in which
sa.ω = sb.ω. Given a future transition in which we terminate in the low state
s.t. terminates(s) ∧ opL(s) 6= ⊥, we violate sa ≈L sb. In the case of the non
speculative states s1 and s2 this will lead to an invalid trace, for the speculative
states s3 and s4 this will violate TPOD.

We discuss execution traces in §4.3, and how we apply these predicates to
catch invalid traces and violations of TPOD early.

4.3 Program execution

Using concatenation rules for Hoare triples ({P} S1 {Q} ∧ {Q} S2 {R} =⇒
{P} S1;S2 {R}) we construct an inductive predicate that defines a partial ex-
ecution across four traces execute(π1, π2, π3, π4) from any given system state
given below. An execution is valid iff its traces are well-formed and each contain
a single state, or the last two states in each trace are a valid transition. These
execution traces are not required to satisfy the initial state requirements of the
conformantA(π) predicate introduced in §3.2.

We use a predicate wfs to indicate that a state is well-formed. By showing
that {wfs} {wfs} we build invariants that minimize spurious transitions and
discharge trivially unreachable executions. This is extended to 2 and 4 for

Verifying Secure Speculation in Isabelle / HOL 13

two and four-trace hyperproperties.

execute(π1, π2, π3, π4)
.
=

if πi = [si], i ∈ {1, 2, 3, 4} then wfs4(s1, s2, s3, s4) ∧ violation≈L(s1, s2)
if πi = (π′i · si) · s′i, i ∈ {1, 2, 3, 4} then (s1, s2, s3, s4) 4 (s′1, s

′
2, s
′
3, s
′
4) ∧

execute(π′1 · s1, π′2 · s2, π′3 · s3, π′4 · s4) ∧
violation≈L(s1, s2)

The theory below, proven in Isabelle/HOL describes the trivial cases which
when satisfied can discharge a proof of low equivalence π3 ≈L π4 across partial
executions.

Theorem 2. TPOD holds for any partial execution execute(π1, π2, π3, π4) given
any of the following hold:

1. ¬speculating(π0
3) ∧ ¬speculating(π0

4) ∧ π0
3 ≈L π0

4 ∧
((∀i. ¬speculating(πi3)) ∨ (∀i. ¬speculating(πi4))),

2. ∀i. opH(πi3) 6= ⊥,
3. ∀i. speculating(πi3) ∧ speculating(πi4).

This theorem has been verified in Isabelle/HOL. Condition 1 inherently en-
sures that traces π3 or π4 do not speculate. Without speculation in traces π3
and π4 the architectural state remains constant and we satisfy low equivalence.
Given we assume the initial states are not speculating and are architecturally
equivalent we can infer for any i that speculating(πi3) iff speculating(πi4) as branch
predictor will make the same prediction across all four traces. Therefore, we sat-
isfy TPOD if π3 or π4 do not speculate. Conditions 2 and 3 ensures all states
in a trace execute high operations or are speculative respectively. As the adver-
sary cannot observe the trusted ‘high’ state or any speculative state then low
equivalence will trivially hold, even if the architectural state is not equivalent.

We can join two partial executions given the first execution ends in four
parallel states that transition (via 4) to the initial four states in the second
execution. This allows us to simplify TPOD proof obligations by joining trivially
low equivalent partial executions with complex partial executions that require
stepwise proofs. Using overloading, we also use · notation to mean sequence
concatenation and sequence prepending.

execute(π1 · s1, π2 · s2, π3 · s3, π4 · s4)
execute(s′1 · π′1, s′2 · π′2, s′3 · π′3, s′4 · π′4)

(s1, s2, s3, s4) 4 (s′1, s
′
2, s
′
3, s
′
4)

execute(π1 · [s1, s′1] · π′1, π2 · [s2, s′2] · π′2, π3 · [s3, s′3] · π′3, π4 · [s4, s′4] · π′4)

Finally, we define the predicate executeTPOD(π1, π2, π3, π4) which ensures a
full and conformant (according to §3.2) execution of a program which eventually
terminates in a low state. Given this, we can infer that if ∃i.violation≈L(πi1, π

i
2)

holds then our execution is invalid and if ∃i.violation≈L(πi3, π
i
4) holds we violate

π3 ≈L π4. It is sufficient to verify that TPOD holds for all execution traces that
satisfy executeTPOD(π1, π2, π3, π4) to show that the program is secure in the
context of TPOD.

14 M. Griffin and B. Dongol

1 00000336: when x >= array1_length goto %00000330

2 00001 bb8: specfence // compiler generated (sub -optimal)

3 00001 bbd: RAX := mem[array2 , el]:u64

4 00001 bc4: RDX := mem[array1 , el]:u64

5 00001 bdc: ... // some processing on the index of array1 RDX

6 00001 c1c: RDX := mem[RDX , el]:u64

7 00001 c54: ... // some processing on the index of array2 RAX

8 00001 c6d: RDX := mem[RAX , el]:u64

9 00001 c54: ... // some processing on the index of array2 RAX

10 00000330: ... // end of program

Listing 1.3. Excerpt of MSVC solution in BIL. The placement of the specfence is
sub-optimal and can be moved so that it is executed immediately before 00001c6d

5 Case studies

Paul Kocher provided 15 victim functions [16] to test the effectiveness of MSVC’s
Spectre mitigations and placement of speculative fences, realised as lfence in
Intel x86 and CSDB in ARM. These examples are variations on the vulnerable
code discussed in §2.1. We have used our framework to show that all 15 examples
contain secure speculation vulnerabilities.

We also verify correctness Examples 1, 2 and 8 from [16] (see §A). Of these,
examples 1 and 2 compile to the same BIL, thus only require one proof in
Isabelle/HOL. Example 8 uses a ternary operator to perform a bounds check,
which changes the logical flow such that array1 and array2 are always indexed
even if the program is out-of-bounds.

MSVC correctly identifies and fixes the secure speculation vulnerability in
examples 1 and 2 by placing a speculative fence immediately after the branch
statement shown in Listing 1.3. However, placement of the speculative fence is
not optimal. It occurs prior to either of the memory reads and any of the other
non-vulnerable instructions. A more optimal solution is to move the specfence

so that it is executed immediately before 00001c6d. This optimised version of
the program has also been proven correct using our Isabelle/HOL framework.

MSVC is unable to correctly place a specfence for the remaining 13 exam-
ples. We manually insert the necessary fences in example 8, and prove that this
modified program satisfies secure speculation.

6 Related Work

Proving correctness of secure speculation has received a lot of attention in re-
cent years. Abstract models capable of describing Spectre-like attacks have been
developed using CSP [7] and pomsets [8]. Such models are further removed from
the original programs, and hence, additional work is required to link proofs with
the programs themselves. In contrast, our workflow (Fig.1) ensures that we verify
the compiled assembly generated from the original program.

Verifying Secure Speculation in Isabelle / HOL 15

Correctness of secure speculation is of particular interest in the context of
cryptographic code [4, 11, 27]. The properties of interest for cryptographic code
are stronger than TPOD, making these proofs simpler since violations are easier
to detect. We are interested in general programs making TPOD more applicable.

Many of the analysis techniques have associated tools. For hardware, this
includes SAT-based approaches [26] and Unique Program Execution Checking
(UPEC) [9]. For languages, tools include those based on static analysis [4], static
typing [27], concolic analysis [12] and model checking [5]. Such tools are fine-
tuned to handle a specific property (often more restrictive than TPOD) with a
fixed execution semantics, and there is no guarantee that tools themselves are
correct. Our theorem proving-based approach is more transparent. Moreover, we
also have flexibility to openly change the operational semantics (to incorporate
other architectural features) and the properties being verified independently.

Our proofs do not yet consider more sophisticated behaviours, e.g., out-of-
order executions, thus we do not yet check the full range of Spectre variants.
However, the introduction of out-of-order executions introduces a large amount
of non-determinism meaning existing tools (including [4, 12, 28]) become infea-
sible [12]. It will be interesting to see the impact of these (more permissive)
behaviours for our current proof technique in future work.

7 Conclusions

This paper has presented a mechanisation of a recently developed operational
semantics by Cheang et al. [5] in Isabelle/HOL. The mechanisation integrates
with an existing workflow (Fig. 1) that allows one to trace the Isabelle/HOL
theories back to original C programs. One of our core contributions is a trans-
lation tool that generates Isabelle/HOL theories for BIL representations of the
C program. As discussed in §6 existing tools on verifying secure speculation are
generally based on symbolic or static analysis of the programs, in contrast to
our methods, which are based on Hoare-logic encodings within a deductive proof
environment. Our mechanisation closely follows Cheang et al. [5], but it also re-
veals some minor issues in their presentation, and alternative characterisations
for some aspects of the operational semantics, as discussed earlier.

The most challenging aspect of our development has been the state space
explosion caused by the fact that for a state transition with k possible transi-
tion rules, since TPOD is a four-trace hyperproperty, a naive expansion would
required one to consider k4 cases for each step, which is infeasible. Our solution
is described in §4.3. Further proof optimisation has been achieved by identifying
programs and partial executions that that trivially satisfy TPOD, which allows
one to discharge proofs of large sections of code automatically (see §4.3).

In future work, we will extend our approach to understand and verify the
requirements of a Spectre-safe library as well as considering next generation
Spectre vulnerabilities mitigated by recompilation. We also aim to move our
approach forward with the modern web, e.g., WebAssembly, into our model and
verifying that this too is secure against Spectre.

16 M. Griffin and B. Dongol

References

1. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis
platform. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. Lecture Notes in Com-
puter Science, vol. 6806, pp. 463–469. Springer (2011), https://doi.org/10.1007/
978-3-642-22110-1_37

2. Bulck, J.V., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F.,
Silberstein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extract-
ing the keys to the Intel SGX kingdom with transient out-of-order exe-
cution. In: Enck, W., Felt, A.P. (eds.) USENIX Security Symposium. pp.
991–1008. USENIX Association (2018), https://www.usenix.org/conference/

usenixsecurity18/presentation/bulck
3. Canella, C., Genkin, D., Giner, L., Gruss, D., Lipp, M., Minkin, M., Moghimi,

D., Piessens, F., Schwarz, M., Sunar, B., Bulck, J.V., Yarom, Y.: Fallout: Leaking
data on Meltdown-resistant CPUs. In: Cavallaro, L., Kinder, J., Wang, X., Katz,
J. (eds.) CCS. pp. 769–784. ACM (2019), https://doi.org/10.1145/3319535.

3363219
4. Cauligi, S., Disselkoen, C., von Gleissenthall, K., Tullsen, D.M., Stefan, D., Rezk,

T., Barthe, G.: Constant-time foundations for the new spectre era. In: Donaldson,
A.F., Torlak, E. (eds.) PLDI. pp. 913–926. ACM (2020), https://doi.org/10.

1145/3385412.3385970
5. Cheang, K., Rasmussen, C., Seshia, S.A., Subramanyan, P.: A formal approach

to secure speculation. In: CSF. pp. 288–303. IEEE (2019), https://doi.org/10.
1109/CSF.2019.00027

6. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010), https://doi.org/10.3233/JCS-2009-0393

7. Colvin, R.J., Winter, K.: An abstract semantics of speculative execution for rea-
soning about security vulnerabilities. In: Sekerinski, E., Moreira, N., Oliveira,
J.N., Ratiu, D., Guidotti, R., Farrell, M., Luckcuck, M., Marmsoler, D., Cam-
pos, J., Astarte, T., Gonnord, L., Cerone, A., Couto, L., Dongol, B., Kutrib,
M., Monteiro, P., Delmas, D. (eds.) FM 2019 International Workshops. Lecture
Notes in Computer Science, vol. 12233, pp. 323–341. Springer (2019), https:

//doi.org/10.1007/978-3-030-54997-8_21
8. Disselkoen, C., Jagadeesan, R., Jeffrey, A., Riely, J.: The code that never ran:

Modeling attacks on speculative evaluation. In: IEEE S&P. pp. 1238–1255. IEEE
(2019), https://doi.org/10.1109/SP.2019.00047

9. Fadiheh, M.R., Müller, J., Brinkmann, R., Mitra, S., Stoffel, D., Kunz, W.: A
formal approach for detecting vulnerabilities to transient execution attacks in out-
of-order processors. In: IEEE DAC. pp. 1–6. IEEE (2020), https://doi.org/10.
1109/DAC18072.2020.9218572

10. Griffin, M., Dongol, B.: Isabelle files for “Verifying Secure Speculation
in Isabelle/HOL” (2021), https://gitlab.eps.surrey.ac.uk/mg00634-phd/

formal-secure-spec
11. Guanciale, R., Balliu, M., Dam, M.: Inspectre: Breaking and fixing microarchitec-

tural vulnerabilities by formal analysis. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) CCS. pp. 1853–1869. ACM (2020), https://doi.org/10.1145/3372297.
3417246

12. Guarnieri, M., Köpf, B., Morales, J.F., Reineke, J., Sánchez, A.: Spectector: Prin-
cipled detection of speculative information flows. In: 2020 IEEE Symposium on
Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. pp.
1–19. IEEE (2020), https://doi.org/10.1109/SP40000.2020.00011

https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1109/CSF.2019.00027
https://doi.org/10.1109/CSF.2019.00027
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-030-54997-8_21
https://doi.org/10.1007/978-3-030-54997-8_21
https://doi.org/10.1109/SP.2019.00047
https://doi.org/10.1109/DAC18072.2020.9218572
https://doi.org/10.1109/DAC18072.2020.9218572
https://gitlab.eps.surrey.ac.uk/mg00634-phd/formal-secure-spec
https://gitlab.eps.surrey.ac.uk/mg00634-phd/formal-secure-spec
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1109/SP40000.2020.00011

Verifying Secure Speculation in Isabelle / HOL 17

13. Intel: Transient execution attacks & related security issues by cpu. Tech.
rep., Intel (2019), https://software.intel.com/security-software-guidance/
processors-affected-transient-execution-attack-mitigation-product-cpu-model,
accessed 5 May, 2021

14. Kiriansky, V., Lebedev, I.A., Amarasinghe, S.P., Devadas, S., Emer, J.S.: DAWG:
A defense against cache timing attacks in speculative execution processors. In: MI-
CRO. pp. 974–987. IEEE Computer Society (2018), https://doi.org/10.1109/
MICRO.2018.00083

15. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: sel4: formal verification of an OS kernel. In: Matthews, J.N., Ander-
son, T.E. (eds.) SOSP. pp. 207–220. ACM (2009), https://doi.org/10.1145/

1629575.1629596

16. Kocher, P.: Spectre mitigations in microsoft’s c/c++ compiler (2018), https:

//www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html,
accessed 5 May, 2021

17. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks:
Exploiting speculative execution. In: IEEE S&P. pp. 1–19. IEEE (2019), https:
//doi.org/10.1109/SP.2019.00002

18. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,
Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading
kernel memory from user space. In: Enck, W., Felt, A.P. (eds.) USENIX Security
Symposium. pp. 973–990. USENIX Association (2018), https://www.usenix.org/
conference/usenixsecurity18/presentation/lipp

19. McLean, J.: Proving noninterference and functional correctness using traces. J.
Comput. Secur. 1(1), 37–58 (1992), https://doi.org/10.3233/JCS-1992-1103

20. Prout, A., Arcand, W., Bestor, D., Bergeron, B., Byun, C., Gadepally, V., Houle,
M., Hubbell, M., Jones, M., Klein, A., Michaleas, P., Milechin, L., Mullen, J.,
Rosa, A., Samsi, S., Yee, C., Reuther, A., Kepner, J.: Measuring the impact of
spectre and meltdown. In: IEEE HPEC. pp. 1–5. IEEE (2018), https://doi.org/
10.1109/HPEC.2018.8547554

21. Rasmussen, C.: Secure Speculation: From Vulnerability to Assurances with
UCLID5. Master’s thesis, EECS Department, University of California,
Berkeley (May 2019), http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/

EECS-2019-95.html

22. Ren, X., Moody, L., Taram, M., Jordan, M., Tullsen, D.M., Venkat, A.: I see dead
µops: Leaking secrets via Intel/AMD micro-op caches. In: ISCA (2021), https:
//www.cs.virginia.edu/venkat/papers/isca2021a.pdf

23. Roscoe, A.W.: CSP and determinism in security modelling. In: IEEE S&P. pp. 114–
127. IEEE Computer Society (1995), https://doi.org/10.1109/SECPRI.1995.

398927

24. Seshia, S.A., Subramanyan, P.: UCLID5: integrating modeling, verification, syn-
thesis and learning. In: MEMOCODE. pp. 1–10. IEEE (2018), https://doi.org/
10.1109/MEMCOD.2018.8556946

25. Taram, M., Venkat, A., Tullsen, D.M.: Context-sensitive fencing: Securing specu-
lative execution via microcode customization. In: Bahar, I., Herlihy, M., Witchel,
E., Lebeck, A.R. (eds.) ASPLOS. pp. 395–410. ACM (2019), https://doi.org/
10.1145/3297858.3304060

https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.3233/JCS-1992-1103
https://doi.org/10.1109/HPEC.2018.8547554
https://doi.org/10.1109/HPEC.2018.8547554
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-95.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-95.html
https://www.cs.virginia.edu/venkat/papers/isca2021a.pdf
https://www.cs.virginia.edu/venkat/papers/isca2021a.pdf
https://doi.org/10.1109/SECPRI.1995.398927
https://doi.org/10.1109/SECPRI.1995.398927
https://doi.org/10.1109/MEMCOD.2018.8556946
https://doi.org/10.1109/MEMCOD.2018.8556946
https://doi.org/10.1145/3297858.3304060
https://doi.org/10.1145/3297858.3304060

18 M. Griffin and B. Dongol

26. Trippel, C., Lustig, D., Martonosi, M.: Security verification via automatic
hardware-aware exploit synthesis: The checkmate approach. IEEE Micro 39(3),
84–93 (2019), https://doi.org/10.1109/MM.2019.2910010

27. Vassena, M., Disselkoen, C., von Gleissenthall, K., Cauligi, S., Kici, R.G., Jhala,
R., Tullsen, D.M., Stefan, D.: Automatically eliminating speculative leaks from
cryptographic code with blade. Proc. ACM Program. Lang. 5(POPL), 1–30 (2021),
https://doi.org/10.1145/3434330

28. Wang, G., Chattopadhyay, S., Biswas, A.K., Mitra, T., Roychoudhury, A.:
Kleespectre: Detecting information leakage through speculative cache attacks via
symbolic execution. ACM Trans. Softw. Eng. Methodol. 29(3), 14:1–14:31 (2020),
https://doi.org/10.1145/3385897

https://doi.org/10.1109/MM.2019.2910010
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3385897

Verifying Secure Speculation in Isabelle / HOL 19

A Verified victim functions

A.1 Example 1 and 2

1 void victim_function_v01(size_t x) {

2 if (x < array1_size) {

3 temp &= array2[array1[x] * 512];

4 }

5 }

Listing 1.4. Example 1 in C

1 void leakByteLocalFunction_v02(uint8_t k) {

2 temp &= array2 [(k)* 512];

3 }

4

5 void victim_function_v02(size_t x) {

6 if (x < array1_size) {

7 leakByteLocalFunction(array1[x]);

8 }

9 }

Listing 1.5. Example 2 in C

1 0000030d: RAX := mem[0x4050 , el]:u64

2 0000031d: CF := mem[RBP - 8, el]:u64 < RAX

3 00000336: when ~CF goto %00000330

4 00001 e19: goto %00001 bb8

5

6 00001 bb8:

7 00001 bbd: RAX := mem[0x4040 , el]:u64

8 00001 bc4: RDX := mem[0x4038 , el]:u64

9 00001 bcb: RCX := mem[RBP - 8, el]:u64

10 00001 bdc: RCX := RCX << 3

11 00001 c00: #313 := RCX

12 00001 c03: RDX := RDX + #313

13 00001 c1c: RDX := mem[RDX , el]:u64

14 00001 c2d: RDX := RDX << 0xC

15 00001 c51: #318 := RDX

16 00001 c54: RAX := RAX + #318

17 00001 c6d: RDX := mem[RAX , el]:u64

18 00001 c74: RAX := mem[0x4058 , el]:u64

19 00001 c81: RAX := RAX & RDX

20 00001 c9a: mem := mem with [0x4058 , el]:u64 <- RAX

21 00001 e1a: goto %00000330

22

23 00000330:

Listing 1.6. Example 1 and 2 in BIL, secure after placing a specfence immediately
prior to the memory load at program address 00001c6d.

20 M. Griffin and B. Dongol

A.2 Example 8

1 void victim_function_v08(size_t x) {

2 temp &= array2[array1[x < array1_size ? (x + 1) : 0] *

512];

3 }

Listing 1.7. Example 8 in C

1 0000083d: RDX := mem[0x4040 , el]:u64

2 00000844: RCX := mem[0x4038 , el]:u64

3 0000084b: RAX := mem[0x4050 , el]:u64

4 0000085b: CF := mem[RBP - 8, el]:u64 < RAX

5 00000874: when ~CF goto %0000086e

6 00001 e2e: goto %00001681

7

8 0000086e:

9 0000087e: RAX := 0

10 00001 e2f: goto %00000880

11

12 00001681:

13 00001686: RAX := mem[RBP - 8, el]:u64

14 00001697: RAX := RAX + 1

15 000016 ba: RAX := RAX << 3

16 000016 d3: goto %00000880

17

18 00000880:

19 00000890: #92 := RCX

20 00000893: RAX := RAX + #92

21 000008 ac: RAX := mem[RAX , el]:u64

22 000008 bd: RAX := RAX << 0xC

23 000008 e1: #97 := RDX

24 000008 e4: RAX := RAX + #97

25 000008 fd: RDX := mem[RAX , el]:u64

26 00000904: RAX := mem[0x4058 , el]:u64

27 00000911: RAX := RAX & RDX

28 0000092a: mem := mem with [0x4058 , el]:u64 <- RAX

29 00000935: goto %00000330

30

31 00000330:

Listing 1.8. Example 8 in BIL, secure after placing a specfence immediately prior to
the memory load at program address 000008fd.

	Verifying Secure Speculation in Isabelle / HOL

