Skip to main content

Defending Medical Image Diagnostics Against Privacy Attacks Using Generative Methods: Application to Retinal Diagnostics

  • Conference paper
  • First Online:
Book cover Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning (DCL 2021, PPML 2021, LL-COVID19 2021, CLIP 2021)

Abstract

Machine learning (ML) models used in medical imaging diagnostics can be vulnerable to a variety of privacy attacks, including membership inference attacks, that lead to violations of regulations governing the use of medical data and threaten to compromise their effective deployment in the clinic. In contrast to most recent work in privacy-aware ML that has been focused on model alteration and post-processing steps, we propose here a novel and complementary scheme that enhances the security of medical data by controlling the data sharing process. We develop and evaluate a privacy defense protocol based on using a generative adversarial network (GAN) that allows a medical data sourcer (e.g. a hospital) to provide an external agent (a modeler) a proxy dataset synthesized from the original images, so that the resulting diagnostic systems made available to model consumers is rendered resilient to privacy attackers. We validate the proposed method on retinal diagnostics AI used for diabetic retinopathy that bears the risk of possibly leaking private information. To incorporate concerns of both privacy advocates and modelers, we introduce a metric to evaluate privacy and utility performance in combination, and demonstrate, using these novel and classical metrics, that our approach, by itself or in conjunction with other defenses, provides state of the art (SOTA) performance for defending against privacy attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Bagdasaryan, E., Shmatikov, V.: Differential privacy has disparate impact on model accuracy. arXiv preprint arXiv:1905.12101 (2019)

  3. Burlina, P., Freund, D.E., Dupas, B., Bressler, N.: Automatic screening of age-related macular degeneration and retinal abnormalities. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3962–3966. IEEE (2011)

    Google Scholar 

  4. Burlina, P.M., Joshi, N., Pekala, M., Pacheco, K.D., Freund, D.E., Bressler, N.M.: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 135(11), 1170–1176 (2017)

    Article  Google Scholar 

  5. Carlini, N., et al.: An attack on instahide: is private learning possible with instance encoding? arXiv preprint arXiv:2011.05315 (2020)

  6. Carlini, N., et al.: Extracting training data from large language models. arXiv preprint arXiv:2012.07805 (2020)

  7. Esteva, A.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  8. EyePACS: Diabetic retinopathy detection (2015). Data retrieved from Kaggle. https://www.kaggle.com/c/diabetic-retinopathy-detection

  9. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in pharmacogenetics: an end-to-end case study of personalized warfarin dosing. In: USENIX Security Symposium (2014)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural. Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  11. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. IEEE (2013)

    Google Scholar 

  12. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium (2018)

    Google Scholar 

  15. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  16. Jia, J., Salem, A., Backes, M., Zhang, Y., Gong, N.Z.: Memguard: defending against black-box membership inference attacks via adversarial examples. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 259–274 (2019)

    Google Scholar 

  17. Joshi, C.: Generative adversarial networks (GANs) for synthetic dataset generation with binary classes (2019). https://datasciencecampus.ons.gov.uk/projects/generative-adversarial-networks-gans-for-synthetic-dataset-generation-with-binary-classes

  18. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2(6), 305–311 (2020)

    Article  Google Scholar 

  19. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. arXiv preprint arXiv:2006.06676 (2020)

  20. Li, J., Li, N., Ribeiro, B.: Membership inference attacks and defenses in supervised learning via generalization gap. arXiv preprint arXiv:2002.12062 (2020)

  21. Li, L., Verma, M., Nakashima, Y., Nagahara, H., Kawasaki, R.: IterNet: retinal image segmentation utilizing structural redundancy in vessel networks. In: The IEEE Winter Conference on Applications of Computer Vision (WACV), March 2020

    Google Scholar 

  22. Liu, K., Tan, B., Garg, S.: Subverting privacy-preserving GANs: hiding secrets in sanitized images (2020)

    Google Scholar 

  23. Nasr, M., Shokri, R., Houmansadr, A.: Machine learning with membership privacy using adversarial regularization. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 634–646 (2018)

    Google Scholar 

  24. Pekala, M., Joshi, N., Liu, T.A., Bressler, N.M., DeBuc, D.C., Burlina, P.: Deep learning based retinal OCT segmentation. Comput. Biol. Med. 114, 103445 (2019)

    Article  Google Scholar 

  25. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  26. Rogers, A., Kovaleva, O., Rumshisky, A.: A primer in BERTology: what we know about how BERT works. Trans. Assoc. Comput. Linguist. 8, 842–866 (2021)

    Article  Google Scholar 

  27. Salem, A., Zhang, Y., Humbert, M., Fritz, M., Backes, M.: ML-leaks: model and data independent membership inference attacks and defenses on machine learning models. In: Network and Distributed Systems Security Symposium 2019. Internet Society (2019)

    Google Scholar 

  28. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  29. Ting, D.S.W., et al.: Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 103(2), 167–175 (2019)

    Article  Google Scholar 

  30. Ting, D.S., et al.: Deep learning in ophthalmology: the technical and clinical considerations. Prog. Retin. Eye Res. 72, 100759 (2019)

    Article  Google Scholar 

  31. Topol, E.J.: High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25(1), 44–56 (2019)

    Article  Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  33. Vizitiu, A., Niţă, C.I., Puiu, A., Suciu, C., Itu, L.M.: Towards privacy-preserving deep learning based medical imaging applications. In: 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2019)

    Google Scholar 

  34. Yeom, S., Giacomelli, I., Fredrikson, M., Jha, S.: Privacy risk in machine learning: analyzing the connection to overfitting. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 268–282. IEEE (2018)

    Google Scholar 

  35. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  36. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Acknowledgments

We thank Drs. Bressler, Liu (John Hopkins University (JHU) School of Medicine) and Delalibera (Eye Hospital, Brasilia, Brazil) for their help assessing images in Fig. 3. This work was funded by the JHU Institute for Assured Autonomy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paul, W., Cao, Y., Zhang, M., Burlina, P. (2021). Defending Medical Image Diagnostics Against Privacy Attacks Using Generative Methods: Application to Retinal Diagnostics. In: Oyarzun Laura, C., et al. Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning. DCL PPML LL-COVID19 CLIP 2021 2021 2021 2021. Lecture Notes in Computer Science(), vol 12969. Springer, Cham. https://doi.org/10.1007/978-3-030-90874-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90874-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90873-7

  • Online ISBN: 978-3-030-90874-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics