Skip to main content

Automatic Breast Lesion Segmentation Using Continuous Max-Flow Algorithm in Phase Preserved DCE-MRIs

  • Conference paper
  • First Online:
Health Information Science (HIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13079))

Included in the following conference series:

  • 644 Accesses

Abstract

In this work, we propose a framework for the automatic and accurate segmentation of breast lesions from the Dynamic Contrast Enhanced (DCE) MRI. The framework is built using max flow and min cut problems in the continuous domain over phase preserved denoised images. The proposed method is achieved via three steps. First, post-contrast and pre-contrast images are subtracted, followed by image registrations that benefit to enhancing lesion areas. Second, a phase preserved denoising and pixel-wise adaptive Wiener filtering technique is used, followed by max flow and min cut problems in a continuous domain. A denoising mechanism clears the noise in the images by preserving useful and detailed features such as edges. Then, lesion detection is performed using continuous max flow. Finally, a morphological operation is used as a post-processing step to further delineate the obtained results. The efficiency of the proposed method is verified with a series of qualitative and quantitative experiments carried out on 21 cases with two different MR image resolutions. Performance results demonstrate the quality of segmentation obtained from the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akram, M., Iqbal, M., Daniyal, M., Khan, A.U.: Awareness and current knowledge of breast cancer. Biol. Res. 50(1), 33 (2017)

    Article  Google Scholar 

  2. Welch, H.G., Prorok, P.C., O’Malley, A.J., Kramer, B.S.: Breast-cancer tumor size, overdiagnosis, and mammography screening effectiveness. N. Engl. J. Med. 375(15), 1438–1447 (2016)

    Article  Google Scholar 

  3. Abdel-Nasser, M., Melendez, J., Moreno, A., Omer, O.A., Puig, D.: Breast tumor classification in ultrasound images using texture analysis and super-resolution methods. Eng. Appl. Artif. Intell. 59, 84–92 (2017)

    Article  Google Scholar 

  4. Cheng, J.Z., et al.: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 (2016)

    Article  Google Scholar 

  5. Zhang, J., Saha, A., Zhu, Z., Mazurowski, M.A.: Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics. IEEE Trans. Med. Imaging 38(2), 435–447 (2019)

    Article  Google Scholar 

  6. Wan, T., Cao, J., Chen, J., Qin, Z.: Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features. Neurocomputing 229, 34–44 (2017)

    Article  Google Scholar 

  7. Pandey, D., Yin, X., Wang, H., Su, M.Y., Chen, J.H., Wu, J., et al.: Automatic and fast segmentation of breast region-of-interest (ROI) and density in MRIs. Heliyon. 4(12), e01042 (2018)

    Article  Google Scholar 

  8. Bhattacharjee, R., et al.: Comparison of 2D and 3D U-net breast lesion segmentations on DCE-MRI, p. 10 (2021)

    Google Scholar 

  9. Khalil, F., Wang, H., Li, J.: Integrating Markov model with clustering for predicting web page accesses, pp. 63–74 (2007)

    Google Scholar 

  10. Hu, H., Li, J., Wang, H., Daggard, G.: Combined gene selection methods for microarray data analysis. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4251, pp. 976–983. Springer, Heidelberg (2006). https://doi.org/10.1007/11892960_117

    Chapter  Google Scholar 

  11. Li, H., Wang, Y., Wang, H., Zhou, B.: Multi-window based ensemble learning for classification of imbalanced streaming data. World Wide Web 20(6), 1507–1525 (2017). https://doi.org/10.1007/s11280-017-0449-x

    Article  Google Scholar 

  12. Khalil, F., Li, J., Wang, H.: An integrated model for next page access prediction. Int. J. Knowl. Web Intell. 1, 48–80 (2009). https://doi.org/10.1504/IJKWI.2009.027925

    Article  Google Scholar 

  13. Sarki, R., Ahmed, K., Wang, H., Zhang, Y., Ma, J., Wang, K.: Image preprocessing in classification and identification of diabetic eye diseases. Data Sci. Eng. (6), 1–17 (2021). https://doi.org/10.1007/s41019-021-00167-z

  14. Bzdok, D., Krzywinski, M., Altman, N.: Points of significance: machine learning: supervised methods (2018)

    Google Scholar 

  15. Du, S., Zhang, F., Zhang, X.: Semantic classification of urban buildings combining VHR image and GIS data: an improved random forest approach. ISPRS J. Photogramm. Remote Sens. 105, 107–119 (2015)

    Article  Google Scholar 

  16. Fabelo, H., et al.: SVM optimization for brain tumor identification using infrared spectroscopic samples. Sensors 18(12), 4487 (2018)

    Article  Google Scholar 

  17. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)

    Google Scholar 

  18. Conte, L., Tafuri, B., Portaluri, M., Galiano, A., Maggiulli, E., De Nunzio, G.: Breast cancer mass detection in DCE-MRI using deep-learning features followed by discrimination of infiltrative vs. in situ carcinoma through a machine-learning approach. Appl. Sci. 10(17), 6109 (2020)

    Google Scholar 

  19. Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00125-5

    Article  Google Scholar 

  20. Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from twitter. Health Inf. Sci. Syst. 7(1), 1–7 (2019). https://doi.org/10.1007/s13755-019-0084-2

    Article  Google Scholar 

  21. He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23(5), 2835–2850 (2020). https://doi.org/10.1007/s11280-019-00776-9

    Article  Google Scholar 

  22. Wang, K., et al.: Use of falls risk increasing drugs in residents at high and low falls risk in aged care services. J. Appl. Gerontol. 40, 073346481988884 (2019). https://doi.org/10.1177/0733464819888848

    Article  Google Scholar 

  23. Wang, K., Bell, J., Tan, E., Gilmartin-Thomas, J., Dooley, M., Ilomaki, J.: Statin use and fall-related hospitalizations among residents of long-term care facilities: a case-control study. J. Clin. Lipidol. 14. (2020). https://doi.org/10.1016/j.jacl.2020.05.008

  24. Aganj, I., Harisinghani, M.G., Weissleder, R., Fischl, B.: Unsupervised medical image segmentation based on the local center of mass. Sci. Rep. 8(1), 13012 (2018)

    Article  Google Scholar 

  25. Ayaz, M., Shaukat, F., Raja, G.: Ensemble learning based automatic detection of tuberculosis in chest x-ray images using hybrid feature descriptors. Phys. Eng. Sci. Med. 44(1), 183–194 (2021). https://doi.org/10.1007/s13246-020-00966-0

    Article  Google Scholar 

  26. Wadhwa, A., Bhardwaj, A., Verma, V.S.: A review on brain tumor segmentation of MRI images. Magn. Reson. Imaging 61, 247–259 (2019)

    Article  Google Scholar 

  27. Siuly, S., Khare, S., Bajaj, V., Wang, H., Zhang, Y.: A computerized method for automatic detection of schizophrenia using EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 1, 1 (2020)

    Google Scholar 

  28. Yuan, J., Bae, E., Tai, X.C.A.: Study on continuous max-flow and min-cut approaches. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2217–2224. IEEE (2010)

    Google Scholar 

  29. Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22(6), 2545–2560 (2018). https://doi.org/10.1007/s11280-018-0639-1

    Article  Google Scholar 

  30. Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8(1), 1–15 (2020). https://doi.org/10.1007/s13755-020-00129-1

    Article  Google Scholar 

  31. Villringer, K., et al.: Subtracted dynamic MR perfusion source images (sMRP-SI) provide collateral blood flow assessment in MCA occlusions and predict tissue fate. Eur. Radiol. 26(5), 1396–1403 (2016)

    Article  Google Scholar 

  32. Hu, H., Li, J., Wang, H., Daggard, G.E., Shi, M.: A maximally diversified multiple decision tree algorithm for microarray data classification. Intell. Syst. Bioinform. 73, 35–38 (2006)

    Google Scholar 

  33. Khalil, F., Li, J., Wang, H.: Integrating Markov model with clustering for predicting web page accesses. In: AusWeb 2007: 13th Australasian World Wide Web Conference (2007)

    Google Scholar 

  34. Brock, K.K., Mutic, S., McNutt, T.R., Li, H., Kessler, M.L.: Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM radiation therapy committee task group no. 132. Med. Phys. 44(7), e43–e76 (2017)

    Google Scholar 

  35. Vaishali, S., Rao, K.K., Rao, G.S.: A review on noise reduction methods for brain MRI images. In: 2015 International Conference on Signal Processing and Communication Engineering Systems, pp. 363–365. IEEE (2015)

    Google Scholar 

  36. Pandey, D., Yin, X., Wang, H., Zhang, Y.: Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising. Comput. Vis. Image Underst. 155, 162–172 (2017)

    Article  Google Scholar 

  37. Hou, G., Pan, H., Zhao, R., Hao, Z., Liu, W.: Image segmentation via the continuous max-flow method based on Chan-Vese model. In: Wang, Y., et al. (eds.) IGTA 2017. CCIS, vol. 757, pp. 232–242. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7389-2_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, D., Wang, H., Yin, X., Wang, K., Zhang, Y., Shen, J. (2021). Automatic Breast Lesion Segmentation Using Continuous Max-Flow Algorithm in Phase Preserved DCE-MRIs. In: Siuly, S., Wang, H., Chen, L., Guo, Y., Xing, C. (eds) Health Information Science. HIS 2021. Lecture Notes in Computer Science(), vol 13079. Springer, Cham. https://doi.org/10.1007/978-3-030-90885-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90885-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90884-3

  • Online ISBN: 978-3-030-90885-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics