Skip to main content

Multi-label Anomaly Classification Based on Electrocardiogram

  • Conference paper
  • First Online:
  • 699 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13079))

Abstract

Under the background of 5G and AI, it is particularly important to use cloud computing, Internet of things and big data technology to analyze massive physiological signals of patients in real time. Arrhythmia can cause some major diseases, such as heart failure, atrial fibrillation and so on. It’s difficult to analysis them quickly. In this paper, a deep learning model of multi-label classification based on optimized temporal convolution network is proposed to detect abnormal electrocardiogram. The experimental results show that the accuracy of the model is 0.960, and the Micro F1 score is 0.87.

Supported in part by the National Natural Science Foundation of China (Grants No 61702274) and PAPD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Almalchy, M.T., ALGayar, S.M.S., Popescu, N.: Atrial fibrillation automatic diagnosis based on ECG signal using pretrained deep convolution neural network and SVM multiclass model. In: 2020 13th International Conference on Communications (COMM), pp. 197–202 (2020)

    Google Scholar 

  2. Sun, L., Wang, Y., He, J., Li, H., Peng, D., Wang, Y.: A stacked LSTM for atrial fibrillation prediction based on multivariate ECGS. Health Inf. Sci. Syst. 8(1), 1–7 (2020)

    Article  Google Scholar 

  3. Baydoun, M., Safatly, L., Abou Hassan, O.K., Ghaziri, H., El Hajj, A., Ismaeel, H.: High precision digitization of paper-based ECG records: a step toward machine learning. IEEE J. Transl. Eng. Health Med. 7, 1–8 (2019)

    Article  Google Scholar 

  4. Bulbul, H.I., Usta, N., Yildiz, M.: Classification of ECG arrhythmia with machine learning techniques. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 546–549 (2017)

    Google Scholar 

  5. Nan, D., et al.: FM-ECG: A fine-grained multi-label framework for ECG image classification. Inf. Sci. 549, 164–177 (2021)

    Article  MathSciNet  Google Scholar 

  6. Feng, Y., Vigmond, E.: Deep multi-label multi-instance classification on 12-lead ECG. In: 2020 Computing in Cardiology, pp. 1–4 (2020)

    Google Scholar 

  7. Islam, M.R., Bhuiyan, R.A., Ahmed, N., Islam, M.R.: PCA and ICA based hybrid dimension reduction model for cardiac arrhythmia disease diagnosis. In: 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pp. 1–7 (2018)

    Google Scholar 

  8. Jambukia, S.H., Dabhi, V.K., Prajapati, H.B.: Classification of ECG signals using machine learning techniques: a survey. In: 2015 International Conference on Advances in Computer Engineering and Applications, pp. 714–721. IEEE (2015)

    Google Scholar 

  9. Demir, F., Şengür, A., Bajaj, V., Polat, K.: Towards the classification of heart sounds based on convolutional deep neural network. Health Inf. Sci. Syst. 7(1), 1–9 (2019). https://doi.org/10.1007/s13755-019-0078-0

    Article  Google Scholar 

  10. Sadek, I., Biswas, J., Abdulrazak, B.: Ballistocardiogram signal processing: a review. Health Inf. Sci. Syst. 7(1), 1–23 (2019). https://doi.org/10.1007/s13755-019-0071-7

    Article  Google Scholar 

  11. Li, C., Zhao, H., Wei, L., Leng, X., Wang, L., Lin, X., Pan, Y., Jiang, W., Jiang, J., Sun, Y., Wang, J., Xiang, J.: DEEPECG: image-based electrocardiogram interpretation with deep convolutional neural networks. Biomed. Sig. Process. Control 69, 102824 (2021)

    Article  Google Scholar 

  12. Li, R., et al.: Arrhythmia multiple categories recognition based on PCA-KNN clustering model. In: 2019 8th International Symposium on Next Generation Electronics (ISNE), pp. 1–3 (2019)

    Google Scholar 

  13. Cai, J., Sun, W., Guan, J., You, I.: Multi-ECGNET for ECG arrhythmia multi-label classification. IEEE Access 8, 110848–110858 (2020)

    Article  Google Scholar 

  14. Li, Y., Zhang, Z., Zhou, F., Xing, Y., Li, J., Liu, C.: Multi-label classification of arrhythmia for long-term electrocardiogram signals with feature learning. IEEE Trans. Instrumen. Measure. 70, 1–11 (2021)

    Google Scholar 

  15. Natarajan, A., et al.: A wide and deep transformer neural network for 12-lead ECG classification. In: 2020 Computing in Cardiology, pp. 1–4 (2020)

    Google Scholar 

  16. Ran, A., Ruan, D., Zheng, Y., Liu, H.: Multi-label classification of abnormalities in 12-lead ECG using deep learning. In: 2020 Computing in Cardiology, pp. 1–4 (2020)

    Google Scholar 

  17. Rong, P., Luo, T., Li, J., Li, K.: Multi-label disease diagnosis based on unbalanced ECG data. In: 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS), pp. 253–259 (2020)

    Google Scholar 

  18. Salem, M., Taheri, S., Yuan, J.-S.: ECG arrhythmia classification using transfer learning from 2- dimensional deep CNN features. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4 (2018)

    Google Scholar 

  19. Satija, U., Ramkumar, B., Manikandan, M.S.: A new automated signal quality-aware ECG beat classification method for unsupervised ECG diagnosis environments. IEEE Sensors J. 19(1), 277–286 (2019)

    Article  Google Scholar 

  20. Wang, D., Ge, J., Wu, L., Song, X.: Mining frequent patterns for ECG multi-label data by FP-growth algorithm based on spark. In: 2019 7th International Conference on Information, Communication and Networks (ICICN), pp. 171–174 (2019)

    Google Scholar 

  21. Wang, S.-H., Li, H.-T., Wu, A.-Y.A.: Error-resilient reconfigurable boosting extreme learning machine for ECG telemonitoring systems. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2018)

    Google Scholar 

  22. Wong, A.W., Salimi, A., Hindle, A., Kalmady, S.V., Kaul, P.: Multilabel 12-lead electrocardiogram classification using beat to sequence autoencoders. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1270–1274 (2021)

    Google Scholar 

  23. Wu, Z., Feng, X., Yang, C.: A deep learning method to detect atrial fibrillation based on continuous wavelet transform. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1908–1912 (2019)

    Google Scholar 

  24. Yang, S., Xiang, H., Kong, Q., Wang, C.: Multi-label classification of electrocardiogram with modified residual networks. In: 2020 Computing in Cardiology, pp. 1–4 (2020)

    Google Scholar 

  25. Yu, Y., Yang, Z., Li, P., Yang, Z., You, Y.: A real-time ECG classification scheme using anti-aliased blocks with low sampling rate. In: 2020 Computing in Cardiology, pp. 1–4 (2020)

    Google Scholar 

  26. Zhu, Z., et al.: Classification of cardiac abnormalities from ECG signals using SE-RESNET. In: 2020 Computing in Cardiology, pp. 1–4 (2020)

    Google Scholar 

  27. Torres, J.R., De Los Ríos, K., Padilla, M.A.: Cardiac arrhythmias identification by parallel CNNS and ECG time-frequency representation. In: 2020 Computing in Cardiology, pp. 1–4. IEEE (2020)

    Google Scholar 

  28. Smisek, R., Nemcova, A., Marsanova, L., Smital, L., Vitek, M., Kozumplik, J.: Cardiac pathologies detection and classification in 12-lead ECG. In: 2020 Computing in Cardiology, pp. 1–4. IEEE (2020)

    Google Scholar 

  29. He, R., et al.: Automatic classification of arrhythmias by residual network and bigru with attention mechanism. In: 2020 Computing in Cardiology, pp. 1–4. IEEE (2020)

    Google Scholar 

  30. Wei, G., Zhou, Z.H.: On the consistency of multi-label learning. Artif. Intell. 199, 22–44 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Wu, X.Z., Zhou, Z.H.: A unified view of multi-label performance measures (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Sun, L. (2021). Multi-label Anomaly Classification Based on Electrocardiogram. In: Siuly, S., Wang, H., Chen, L., Guo, Y., Xing, C. (eds) Health Information Science. HIS 2021. Lecture Notes in Computer Science(), vol 13079. Springer, Cham. https://doi.org/10.1007/978-3-030-90885-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90885-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90884-3

  • Online ISBN: 978-3-030-90885-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics