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Abstract. We study the synthesis of inductive half spaces (IHS). These
are linear inequalities that form inductive invariants for Petri nets, ca-
pable of disproving reachability or coverability. IHS generalize classic
notions of invariants like traps or siphons. Their synthesis is desirable
for disproving reachability or coverability where traditional invariants
may fail.
We formulate a CEGAR-loop for the synthesis of IHS. The first step is
to establish a structure theory of IHS. We analyze the space of IHS with
methods from discrete mathematics and derive a linear constraint sys-
tem closely over-approximating the space. To discard false positives, we
provide an algorithm that decides whether a given half space is indeed in-
ductive, a problem that we prove to be coNP-complete. We implemented
the CEGAR-loop in the tool Inequalizer and our experiments show
that it is competitive against state-of-the-art techniques.

1 Introduction

A major task of today’s program verification is to formulate and prove safety
properties. Such a property describes the desirable and undesirable behavior of
a program, often expressed in terms of safe and unsafe states. A safety property
is satisfied if all executions of a program explore only safe states. Phrased differ-
ently, it is violated if an unsafe state is reachable via an execution. Testing reach-
ability is usually a rather complex problem and often undecidable [7,27,52,50].

To restore decidability, the behavior of a program is often over-approximated.
Intuitively, an over-approximation describes a property that holds for all reach-
able states but fails for unsafe states. Hence, over-approximations act like a
separator between reachable and unsafe states and therefore provide a proof
for the non-reachability of the latter. Computing over-approximations is often
achieved by generating some type of invariant [17,28,4,49]. The challenge is to
find a type that admits an efficient generation and that is expressive enough
to separate reachable from unsafe states. Inductive invariants are a prominent
example [3,9,25]. If an inductive invariant holds for some state, then it also holds
for any successor after a step of an execution. Hence, if an inductive invariant is
satisfied initially, it holds for all reachable states.

We generate inductive invariants for Petri nets, a well-established model of
concurrent programs [44,42]. Here, safety verification is usually expressed in
terms of the Petri net reachability or coverability problem. The former is known
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to be ACKERMANN-complete [11,35,10,36], the latter is EXPSPACE-complete [46,37,6].
Despite the ongoing algorithmic development, in particular for coverability [30,29,53,22,47],
computational requirements of solving both problems often exceeds practical
limits. This has led to the development of classic Petri net invariants like traps,
siphons, or place invariants [44] that may help to solve both problems more ef-
ficiently. Typically, these invariants are based on linear dependencies of places
or transitions and can be synthesized easily by incorporating tools and solvers
from linear programming.

The trade-off for the efficient synthesis of these classic invariants is that their
expressiveness is limited and often not sufficient to prove non-reachability of a
marking. We study inductive half spaces (IHS) [48,51], a type of invariants with
increased expressiveness. These consist of a tuple (k, c), where k is a vector over
the places of the Petri net and c is an integer. The corresponding half space is
a subset of the space of markings, containing all markings m that satisfy the
inequality k · m ≥ c. It is called inductive if the markings that are in the half
space do not leave it after firing a transition. Inductive half spaces generalize
many of the classical Petri net invariants [51] and preserve their linear nature.
However, the synthesis of IHS remained an open problem.

Our contribution is a method for the synthesis of inductive half spaces. More
precise, we compute IHS that separate an initial marking m0 from a final marking
mf , proving the latter non-reachable. This task is formalized in the linear safety
verification problem LSV(R). Given m0 and mf , it asks for an IHS (k, c) such
that k · m0 ≥ c and k · mf < c. The problem was first considered in [48] for
continuous Petri nets. The synthesis of IHS is much easier in the continuous
case. In fact, an entire subclass we call non-trivial inductive half spaces does not
occur in this setting. So far, LSV(R) has not been considered in its full generality
and its decidability is still unknown.

We provide a semi-decision procedure for LSV(R) using counter example
guided abstraction refinement (CEGAR) [8], a state-of-the-art technique in pro-
gram verification. We illustrate the approach in Fig. 1. Suppose we are given

Petri net N , markings m0,mf

SMT-solver

Checker ✔k ·m ≥ c

✘

c

φ

k¬mul(k)

Fig. 1: The CEGAR loop.

a Petri net N , an initial marking m0, and
a marking mf for which we want to dis-
prove reachability from m0. Our approach
attempts to synthesize an IHS that sepa-
rates mf from the reachable markings of N .
It begins by constructing a formula φ of lin-
ear constraints from the given information
and passes it to an SMT-solver. Roughly,
φ describes necessary conditions for solu-
tions of LSV(R). For each solution (k, c) of
LSV(R), the vector k is a solution of φ. If
the SMT-solver does not find a solution to φ, then no separating IHS exists. Oth-
erwise we find a vector k of a half space candidate. We then determine whether
there exists a c ∈ Z such that (k, c) is indeed inductive. In order to synthesize
such a c, we developed a constant generation algorithm (CGA). If CGA is suc-



cessful, we have found a separating IHS (k, c). Otherwise, k does not admit a
suitable constant c and we apply a refinement. We set φ = φ ∧ ¬mul(k), where
¬mul(k) is a linear constraint that excludes all multiples of k and repeat the
above process. Note that the loop may not terminate. But if it does, we obtain
an answer to LSV(R).

To realize the CEGAR-loop, we make the following main contributions.

– We develop a structure theory of inductive half spaces. It decomposes the
space of IHS into trivial and non-trivial half spaces. While the synthesis of
trivial IHS is simple, the synthesis of non-trivial ones is challenging. By em-
ploying techniques from discrete mathematics, we can determine necessary
conditions for non-trivial IHS and construct the required formula φ.

– We present two algorithms: the inductivity checker (ICA) and the constant
generation algorithm (CGA). The former determines whether a given half
space is inductive, a problem that we prove coNP-complete. This answers
an open question from [51]. ICA combines structural properties of IHS with
dynamic programming. The algorithm CGA synthesizes a constant c for
a solution k of φ. CGA is an instrumentation of ICA. As termination ar-
gument, it uses an interesting connection between IHS and the Frobenius
number.

– We implemented the CEGAR-loop in the tool Inequalizer. Employing it,
we disproved reachability and coverability for a benchmark of widely used
concurrent programs. The results are compared to algorithms implemented
in Mist [43] and show Inequalizer to be competitive.

Related Work The reachability problem of Petri nets is a central problem in
theoretical computer science. Its complexity was finally resolved after 45 years
and proven to be ACKERMANN-complete. The upper bound is due to Leroux
and Schmitz [36]. The authors refined several classical algorithms for reachability
like the one by Kosaraju [32], Mayr [38,39], and Lambert [33]. Hardness was first
considered by Lipton [37]. He proved reachability EXPSPACE-hard. Czerwinski
et al [10] improved the lower bound to non-elementary. A new result due to
Leroux, Czerwinski, and Orlikowski [35,11] closes the gap completely.

Many safety verification tasks can be phrased in terms of coverability. The
EXPSPACE-completeness of the problem was determined by Rackoff [46] and Lip-
ton [37]. Despite this, efficient algorithms keep getting developed [30]. Modern ap-
proaches are based on forward or backward state space exploration [20,23,29,31,53].
A method that has drawn interest are so-called unfoldings [14,40,15,34]. Notably,
Abdulla et al [1] solve coverability by constructing an unfolding that represents
backwards reachable states. They analyze it using an SMT-formula.

Profiting from advances in SMT-solving, deriving program properties by con-
straint solving has become popular [26,1,13,25]. In [45], ranking functions are
synthesized by solving linear inequalities. Synthesis methods for Petri nets involv-
ing SMT-solving often simplify the task by using continuous values. In [13], Es-
parza et al generate inductive invariants disproving co-linear properties. Sankara-
narayanan et al [48] synthesize IHS over continuous Petri nets. Compared to the



latter, we generate a larger class of invariants: non-trivial IHS do not occur
in [48] but can be necessary for discrete nets (see Fig. 2). The structure of IHS
was first considered by Triebel and Sürmeli [51]. The authors show that IHS
generalize notions like traps, siphons, and place invariants.

Outline In Section 2, we introduce the necessary notions around Petri nets.
The structure of IHS is examined in Section 3. In Section 4, we formulate the
SMT-formula in the CEGAR loop. The algorithms ICA and CGA are given in
Section 5. Experimental results are presented in Section 6. For brevity, we omit
a number of formal proofs. They can be found in the appendix.

2 Linear Safety Verification

We introduce the linear safety verification problems for Petri nets. They formal-
ize the question of whether there exists an inductive half space which disproves
reachability or coverability of a certain marking. To this end, we formally intro-
duce half spaces and the necessary notions around Petri nets.

Petri Nets A Petri net is a tuple N = (P, T, F ), where P is a finite set of
places, T is a finite set of transitions, and F : (P × T ) ∪ (T × P ) → N is a flow
function. We denote the number of places |P | by n. The places are numbered.
For convenience, we use a place pi and their numeric value i interchangeably:
Given a vector x ∈ Nn, we denote its i-th component as both x(i) and x(pi). For
a transition t ∈ T , we define vectors t−, t+ ∈ Nn. The i-th component of t−, with
pi ∈ P , is defined to be F (pi, t), written t−(i) = t−(pi) := F (pi, t). Similarly,
t+(i) = t+(pi) := F (t, pi). The vector t∆ captures the difference t∆ := t+ − t−.

The semantics of a Petri net N is defined in terms of markings. A marking
m is a vector in Nn. Intuitively, it puts a number of tokens in each place. A
marking is said to enable a transition t if m(p) ≥ t−(p) for each place p ∈ P ,
written m ≥ t−. The set of all markings that enable t is called the activation
space of t and is denoted by Act(t). Note that Act(t) = {t− + v | v ≥ 0}. If
m ∈ Act(t), then t can be fired, resulting in the new marking m′ = m + t∆.
This constitutes the firing relation, written as m[t〉m′. We lift the relation to
sequences of transitions σ = t1 . . . tk ∈ T ∗ where convenient, writing m[σ〉m′.
A marking mf is called reachable from a marking m0 if there is a sequence of
transitions σ such that m0[σ〉mf . We use post∗(m0) to denote the markings
reachable from m0 and pre∗(mf ) are the markings from which mf is reachable.
The upward closure of mf is ↑mf = {m ∈ Nn | m ≥ mf}. A marking mf is
coverable from m0, if there is a sequence of transitions σ and an m ∈ ↑mf such
that m0[σ〉m.

(Inductive) Half Spaces We describe sets of markings by means of half spaces.
Let N = (P, T, F ) be a Petri net, k ∈ Zn a vector, and c ∈ Z an integer.
The half space defined by k and c is Sol(k, c) = {m ∈ Zn | k · m ≥ c}. Here,
k ·m =

∑

p∈P k(p) ·m(p) is the usual scalar product. We also refer to the tuple



(k, c) as half space. Note that we could also define half spaces via k·m ≤ c. This is
of course equivalent since k ·m ≥ c if and only if −k ·M ≤ −c. We are interested
in half spaces that are inductive in the sense that they cannot be left by firing
transitions. A half space (k, c) is t-inductive if for any m ∈ Act(t) ∩ Sol(k, c) we
have m+ t∆ ∈ Sol(k, c). A half space (k, c) is inductive if it is t-inductive for all
t ∈ T . We use IHS as a shorthand for inductive half space.

A half space (k, c) is not t-inductive if and only if it contains a marking m
with k ·m ≥ c that enables t, i.e. m ≥ t−, and from which we leave the half space
by firing t: k · (m+ t∆) < c. Since m ≥ t− if and only if there is an x ∈ Nn with
m = t− + x, we can state inductivity in terms of an infeasibility requirement:

Theorem 1. A half space (k, c) is t-inductive iff there is no vector x ∈ Nn with

c ≤ k · x+ k · t− < c− k · t∆.

Theorem 1 provides a way of disproving inductivity of a half space by finding
a suitable vector x. It is a key ingredient of our further development.

p1 p2t
2 2

u

4

2

v2

Fig. 2: Petri net with places p1, p2, tran-
sitions u, t, v. Edges are entries of the
flow function F . We omit the label if it
is 1.

t− m0

mf
t∆

e

Fig. 3: Geometric interpretation of
the half space (k, c) in Z2. It is induc-
tive and separates m0 from mf .

Example We provide some geometric intuition. Consider the Petri net in Fig. 2.
Focus on transition t. The vectors describing t are t− = (2, 1) (incoming edges),
t+ = (1, 2) (outgoing edges), and t∆ = (−1, 1). The activation space of t is
Act(t) = {(2, 1) + (x, y) | x, y ∈ N}. It is visualized by the yellow area in Fig. 3.
Let m0 = (3, 1) and mf = (0, 4). Consider the half space defined by k = (3, 2)
and c = 9. In Fig. 3, it is indicated by the diagonal line k ·x = c, x ∈ R2. The set
of integer vectors above it is Sol(k, c). Clearly, m0 ∈ Sol(k, c) and mf /∈ Sol(k, c),
the half space separates the markings. The markings in Act(t) ∩ Sol(k, c) are
colored blue in Fig. 3. The half space is t-inductive: if m ∈ Act(t) ∩ Sol(k, c),
firing t does not lead to a marking below the line. As we will see in Section 3,
(k, c) is also u and v-inductive. Hence, it proves non-reachability of mf from m0.



Linear Safety Verification Our goal is to find inductive half spaces that disprove
reachability or coverability. Given a Petri net N and two markings m0,mf , we
study two corresponding algorithmic problems: the linear safety verification prob-
lem LSV(R) for reachability and its coverability variant LSV(C).

LSV(R): Is there an IHS (k, c) with m0 ∈ Sol(k, c) and mf /∈ Sol(k, c)?
LSV(C): Is there an IHS (k, c) with m0 ∈ Sol(k, c) and ↑mf ∩ Sol(k, c) = ∅?

The reader familiar with separability will note that disproving reachability
of mf from m0 amounts to finding a separator between post∗(m0) and pre∗(mf ).
A separator is a set S ⊆ Nn so that post∗(m0) ⊆ S and S ∩ pre∗(mf ) = ∅. The
difference between separability and linear safety verification is that separators
are neither required to be half spaces nor required to be inductive.

The choice for half spaces and inductivity is motivated by the constraint-
based approach to safety verification that we pursue. Half spaces can be given in
terms of (k, c), a format that is computable by a solver. Inductivity yields a local
check for separation. Indeed, if (k, c) is inductive and m0 ∈ Sol(k, c), we already
have post∗(m0) ⊆ Sol(k, c). Similarly, if (k, c) is inductive and mf /∈ Sol(k, c),
then pre∗(mf )∩Sol(k, c) = ∅. Hence, Sol(k, c) is indeed a separator. But there are
separators that are neither half spaces nor inductive. To see the latter, consider
a transition that is not enabled in post∗(m0) but in a separator S. Firing the
transition may lead to a marking outside of S and violate inductivity.

While reachability and coverability are decidable for Petri nets, decidability
of LSV(R) and LSV(C) is unknown. Our approach semi-decides both problems.

3 Half Spaces

In order to synthesize inductive half spaces, we consider the structure of the
space of IHS in more detail. Our goal is to derive a linear constraint system that
closely approximates the structure of the space. The system can then be passed
to an SMT-solver to synthesize candidates of half spaces.

Since IHS require inductivity for all transitions, their structure can be convo-
luted. Therefore, we do not immediately consider the space of all IHS. Instead,
we first focus on half spaces that are inductive for a single transition. We derive
linear constraints describing these half spaces. They are combined in Section 4
in order to obtain the desired SMT-formula for the space of all IHS.

The set of half spaces that are inductive for a given transition splits into
two parts: the trivial half spaces and the non-trivial ones. We first focus on
the former. Trivial half spaces were already described in [48,51]. They satisfy
one of three conditions that immediately imply inductivity and can be easily
synthesized. We provide a formal definition below.

The first condition for triviality describes the fact that the vector k and
the transition t point into the same direction. The half space (k, c) is oriented
towards transition t if k · t∆ ≥ 0. Since the scalar product provides information
about the angle between k and t∆, the condition means that firing transition
t moves a marking in the half space further away from the border. To give an



example, consider the half space (k, c) with k = (3, 2) from Fig. 3. It is oriented
towards transitions u and v. We have u∆ = (−1, 2) and v∆ = (1, 1), hence k ·u∆

and k · v∆ are both non-negative. The half space is not oriented towards t since
t∆ = (−1, 1). Firing t means moving closer to the border of the half space.

It easy to see that a half space which is oriented towards a transition t
is actually t-inductive. This observation is a first step in the synthesis of IHS.
In fact, note that generating a half space (k, c) that separates two markings m0

and mf and that is oriented towards t amounts to finding a solution (k, c) of the
linear constraint system k ·m0 ≥ c ∧ k ·mf < c ∧ k · t∆ ≥ 0.

The second condition for triviality uses the fact that for k ≥ 0, the function
k ·m is monotone on markings. We call a half space (k, c) monotone for transition
t if k ≥ 0 and k · (t− + t∆) ≥ c. Note that with larger markings, k · m grows.
This means if the smallest marking in the half space enabling t, namely t−, stays
within the half space after firing t, the same holds for all larger markings. The
requirement is captured in the inequality k · (t−+ t∆) ≥ c. Hence, monotone half
spaces are inductive and can be synthesized as solutions of k ≥ 0∧k·(t−+t∆) ≥ c.

The last condition is dual to monotonicity. A half space (k, c) is antitone for
transition t if k ≤ 0 and k · t− < c. The latter requirement describes that t−

does not lie in the half space. Since k ≤ 0 this means that Act(t) ∩ Sol(k, c) = ∅.
Hence, antitone half spaces are inductive. Moreover, they can be generated as
solutions to the linear constraints k ≤ 0 ∧ k · t− < c. We summarize:

Definition 1. A half space (k, c) is trivial wrt. t if one of the following holds:
(k, c) is oriented towards t, (k, c) is monotone for t, or (k, c) is antitone for t.

Theorem 2. ([51]) If (k, c) is trivial with respect to t then it is t-inductive.

Non-trivial half spaces are not automatically t-inductive. As an example,
consider the half space from Fig. 3. Recall that k = (3, 2) and c = 9. If we
replace c by c′ = 8, we get that (k, c′) is a non-trivial half space that is not
t-inductive. We have k · t− = 8 = c′ but k · (t− + t∆) = 7 < c′. Hence, when
firing t from t−, we leave (k, c′). This has two implications. First, we need an
algorithm to test whether a non-trivial half space is indeed inductive. Second,
we cannot hope for a simple synthesis as for trivial half spaces. The former is
resolved by the algorithm ICA which we show in Section 5. For the latter, we
develop an independent structure theory in the subsequent section.

3.1 Non-Trivial Half Spaces

We consider half-spaces that are non-trivial but inductive. These are neither
oriented towards the transition of interest, nor monotone, nor antitone. Our first
insight is a structural theorem which strongly impacts the synthesis of non-trivial
IHS. In fact, we show that a half space (k, c) which is not oriented towards a
transition t but t-inductive cannot have positive and negative entries in k. This
means we can restrict to k ≥ 0 or k ≤ 0 when synthesizing non-trivial IHS.

Theorem 3. Let (k, c) be a half space that not oriented towards a transition t
but t-inductive. Then, we have k ≥ 0 or k ≤ 0.



The proof of the theorem relies on the notion of syzygies known from commu-
tative algebra [24]. We adapt it to our setting. A syzygy of k is a vector s ∈ Zn

with k ·s = 0. This means that adding a syzygy to a marking m does not change
the scalar product with k. We have k ·m = k · (m + s). Hence, if m ∈ Sol(k, c),
we get that m+ s ∈ Sol(k, c) for all syzygies s of k. We proceed with the proof.

Proof. Assume (k, c) is t-inductive and not oriented towards t but there are
i 6= j with k(i) > 0 and k(j) < 0. We show that (k, c) cannot be t-inductive
which contradicts the assumption. The idea is as follows. We set u(i) = ⌈ c

k(i) ⌉

and u(ℓ) = 0 for ℓ 6= i. Note that u ∈ Sol(k, c). From u, we construct a vector
v ∈ Zn that lies in Sol(k, c) but v + t∆ /∈ Sol(k, c). Note that v might not be
a proper marking. By adding non-negative syzygies to v, we obtain a marking
m ∈ Act(t) ∩ Sol(k, c) with m+ t∆ /∈ Sol(k, c). Hence, (k, c) is not t-inductive.

The vector v is defined by v = u + ⌊ c−k·u
k·t∆ ⌋ · t∆ ∈ Zn. Since (k, c) is not

oriented towards t, we have k · t∆ < 0. Hence, v is well-defined. By ⌊x⌋ ≥ x− 1,
we obtain the following inequality showing that v ∈ Sol(k, c):

k · v ≥ k · u+
(c− k · u

k · t∆
− 1

)

· k · t∆ = c− k · t∆ ≥ c.

Similarly, by ⌊x⌋ ≤ x, we obtain that v + t∆ /∈ Sol(k, c):

k · (v + t∆) ≤ k · u+
c− k · u

k · t∆
· k · t∆ + k · t∆ = c+ k · t∆ < c.

Note that v is not yet a counter example for t-inductivity. Indeed, we cannot
ensure that v is a marking that enables t. But we can construct such a marking
by adding syzygies to v. For a place p ∈ P let ep denote the p-th unit vector.
This means ep(p) = 1 and ep(q) = 0 for q 6= p. For any place p, we construct a
syzygy sp defined as follows. If k(p) > 0, we set sp = −k(j) · ep + k(p) · ej . If
k(p) < 0, we set sp = −k(p) · ei + k(i) · ep. For the case k(p) = 0, we simply set
sp = ep. Note that for all places p, we have sp ≥ 0 and k · sp = 0.

The syzygies sp allow for adding non-negative values to each component of
v without changing the scalar product with k. Hence, there exist µp ∈ N such
that v +

∑

p∈P µp · sp ≥ t−. By setting m = v +
∑

p∈P µp · sp, we get a marking

in Act(t) that satisfies k ·m = k ·v ≥ c and k · (m+ t∆) = k · (v+ t∆) < c. Hence,
m contradicts t-inductivity of (k, c) and we obtain the desired contradiction. ⊓⊔

The theorem allows us to assume k ≥ 0 or k ≤ 0 when synthesizing non-
trivial inductive half spaces. However, we cannot hope for a compact linear
constraint system like we have for trivial half spaces. The reason is as follows.
Assume we have a constraint system L(k, c) of polynomial size describing the
space of t-inductive non-trivial half spaces. Each solution of L(k, c) corresponds
to such a half space and vice versa. We can then decide, in polynomial time,
whether a given half space (k, c) is t-inductive. Indeed, an algorithm would first
decide whether (k, c) is trivial or non-trivial. In the former case, t-inductivity
immediately follows. In the latter case, the algorithm checks if (k, c) is a solution



to L(k, c). All these steps can clearly be carried out in polynomial time. How-
ever, the algorithm would contradict the coNP-hardness of checking t-inductivity,
which we prove in Section 5. Hence, the system L(k, c) of polynomial size cannot
exist.

Although a concise constraint system for the space of non-trivial IHS seems
out of reach, we can give a close linear approximation. To this end, we derive
two necessary conditions for non-trivial IHS that can be formulated in terms
of linear constraints. The first one is given in the following lemma. The proof
follows from Theorem 3 and from inverting the constraints for trivial half spaces.

Lemma 1. A t-inductive half space (k, c) that is non-trivial for t either satisfies
(a) k ≥ 0 and k · t− < c− k · t∆ or (b) k ≤ 0 and k · t− ≥ c.

The lemma provides geometric intuition to separate non-trivial from trivial
half spaces. If (k, c) is non-trivial, Sol(k, t)∩Act(t) is a strict non-empty subset of
the activation space Act(t). This stands in contrast to the trivial case. Here, (k, c)
is either oriented towards t or the following holds. If (k, c) is monotone, we have
Sol(k, t)∩Act(t) = Act(t) and if (k, c) is antitone, we have Sol(k, t)∩Act(t) = ∅.

We employ Lemma 1 to derive a further necessary condition for non-trivial
half spaces. It provides a lower bound for the absolute values of the vector k.

Lemma 2. Let (k, c) be a t-inductive half space that is non-trivial for t. For
any entry k(i) of k, with |k(i)| denoting its absolute value, we have:

k(i) = 0 ∨ |k(i)| ≥ −k · t∆ (5)

The idea behind the lemma is the following. If the absolute value of an entry
of k is too small then we can construct a vector x ∈ Nn such that k · x + k · t−

lies between c and c−k · t∆− 1. This violates the condition stated in Theorem 1.

4 Generating Invariants

We combine the conditions from Section 3 to formulate a linear SMT-formula
φ approximating the space of inductive half spaces. A solution to φ is a vector
k that potentially forms an IHS. To keep the constraints in the formula linear,
we cannot generate a corresponding constant c immediately. Instead, we replace
c by bounds imposed by LSV(R) and LSV(C) and generate candidates for c in
a second synthesis step with the algorithm CGA. The algorithm is given in
Section 5.

Recall that in LSV(R), we are interested in finding an inductive half space
(k, c) that separates an initial marking m0 from a marking mf . Phrased dif-
ferently, we want m0 ∈ Sol(k, c) and mf /∈ Sol(k, c). The former implies that
k ·m0 ≥ c, the latter implies k ·mf < c. The inequalities yield that k ·m0 > k ·mf

and impose two bounds on c, namely c ∈ [k ·mf+1, k ·m0]. We apply the bounds



to the constraints obtained for trivial half spaces and derive the following condi-

tions: k ·m0 > k ·mf (0)

k · t∆ ≥ 0 (1)

k ≤ 0 ∧ k · t− < k ·m0 (2)

k ≥ 0 ∧ k · t− > k ·mf − k · t∆ (3)

Each of the conditions (1), (2), and (3) models a type of trivial half spaces.
For instance, (1) describes half spaces that are oriented towards t. Together
with (0), we ensure t-inductivity for some c within the bounds. To describe non-
trivial half spaces, we employ Theorem 3 and Lemma 2. We derive the following
constraints:

k ≥ 0 ∨ k ≤ 0 (4) ∀i k(i) = 0 ∨ |k(i)| ≥ −k · t∆ (5)

We collect all the constraints in the SMT-formula φt in order to find the
desired inductive half space. Note that the half space must be separating (0).
Moreover, it is either trivial, so it satisfies one out of (1), (2), and (3), or it is
non-trivial and satisfies (4) and (5). We construct the formula accordingly:

φt := (0) ∧ ((1) ∨ (2) ∨ (3) ∨ ((4) ∧ (5))).

As mentioned above, it is not possible to construct a linear constraint system
of polynomial size that captures all t-inductive half spaces and yields k and c.
However, φt is a tight approximation. In fact, its solutions are precisely those
vectors k that can form a t-inductive half space which separates m0 from mf .

Lemma 3. There exists a constant c ∈ Z such that (k, c) is a t-inductive half
space with k ·m0 ≥ c and k ·mf < c if and only if k is a solution to φt.

Our goal is to synthesize an IHS that separates m0 from mf . Since IHS are
t-inductive for all transitions t, we join all φt in a conjunction φ :=

∧

t∈T φt.
The SMT-formula φ describes the desired linear approximation of the space of
IHS. It is a main ingredient of our CEGAR loop outlined in Fig. 1. According
to Lemma 3, solutions to φ are those vectors k that admit a constant ct for each
transition t such that (k, ct) is t-inductive. The problem is that these ct may
be different for each transition. Hence, φ generates half space candidates and
what is left to find is a single value c such that (k, c) is t-inductive for each t.
We can compute all possible values for c with the algorithm CGA. A detailed
explanation is given in Section 5. Once a common c is found, we have synthesized
the desired IHS. Otherwise, the CEGAR loop starts the refinement.

If a solution k of φ does not have a suitable constant c to form an IHS, then
neither does any multiple of k. This means we can exclude all multiples in future
iterations of the CEGAR loop. Let mul(k) be the formula satisfied by a k′ ∈ Zn

if and only if there exists an a ∈ N such that a · k = k′. Then, the refinement
performs the update φ := φ ∧ ¬mul(k). The following lemma states correctness.

Lemma 4. Let k′ := a · k with a ∈ N. If (k′, c) is an IHS, then so is (k, ⌈ c
a
⌉).



The presented CEGAR approach generates inductive half spaces. In order to
semi-decide LSV(R), our approach needs to yield an IHS whenever we are given
a yes-instance. This means we need to ensure that any candidate vector k is
generated by the SMT-solver at some point so that we do not miss possible IHS.
This is achieved by adding a constraint imposing a bound on the absolute values
of the entries of k. If the formula becomes unsatisfiable, the bound is increased.
It remains to show how our semi-decider for LSV(R) can be adapted to LSV(C).

Coverability Recall that a solution k of φ satisfies Condition (0). It ensures the
existence of a value c such that k ·m0 ≥ c and k ·mf < c, meaning m ∈ Sol(k, c)
and mf /∈ Sol(k, c). While this is sufficient for disproving reachability, it is not
for coverability. When we solve LSV(C), we need to additionally guarantee that
↑mf ∩ Sol(k, c) is empty. It turns out that this requirement can be captured by
a simple modification of φ. We only need to ensure that k is negative.

Theorem 4. Let (k, c) be a half space (not necessarily inductive) such that mf /∈
Sol(k, c). Then we have ↑mf ∩ Sol(k, c) = ∅ if and only if k ≤ 0.

The intuition is as follows. If k ≤ 0 does not hold, then we can start with m := mf

and put tokens into a place i with ki > 0 until k ·m ≥ c. This means k ≤ 0 is
sufficient and necessary. Each solution k of φ satisfies mf /∈ Sol(k, c) for some c.
In order to disprove coverability, we apply Theorem 4 and add constraint k ≤ 0
to φ. This ensures that any synthesized IHS separates m0 from ↑mf .

5 Checking Inductivity

We present the algorithms ICA and CGA. The former decides t-inductivity for
a given half space (k, c) and transition t. The latter is an instrumentation of
ICA capable of synthesizing all constants c such that (k, c) is t-inductive, if only
the vector k is given. CGA constitutes the remaining bit of our CEGAR loop.
Finally, we show that deciding t-inductivity is an coNP-complete problem. The
proof once again employs a connection to discrete mathematics.

5.1 Algorithms

We start with the inductivity checker (ICA). Fix a half space (k, c) and a tran-
sition t. We need to decide whether (k, c) is t-inductive. If (k, c) is trivial with
respect to t, then inductivity follows from Theorem 2. Hence, we assume that
(k, c) is non-trivial. The idea of ICA is to algorithmically check the constraint
formulated in Theorem 1 via dynamic programming. Roughly, the algorithm
searches for a value k · m, where m ∈ ACT (t), that lies in the target interval
[c, c−k · t∆−1]. If such a value can be found, (k, c) is not t-inductive. Otherwise,
it is t-inductive.

To state ICA, we adapt Theorem 1. Let K := {k(i) | i ∈ [1, n]} contain all
entries of the the given vector k. We consider sequences k1 . . . kℓ ∈ K∗. Note
that ki does not denote the i-th entry of k but the i-th element in the sequence.



Then, (k, c) is t-inductive if and only if there does not exist a sequence k1 . . . kℓ
with

c ≤ k · t− +

ℓ
∑

i=1

ki < c− k · t∆. (6)

Algorithm 1: Inductivity Checker (ICA)

1 queue.add(k · t−);
2 reached[k · t−]:= True;
3 repeat

4 current:=queue.remove();

5 if c ≤ current < c− k · t∆ then

6 return Not inductive;

7 for k ∈ K do

8 if (current+ k < c− k · t∆ ∧ k ≥ 0)
9 ∨(current+ k ≥ c ∧ k ≤ 0) then

10 if ¬reached[current + k] then

11 queue.add(current+ k);
12 reached[current+ k]:=True

13 until queue.isEmpty ;
14 return Inductive

ICA is stated as Algorithm 1. It searches for a sequence in K∗ satisfying (6).
Recall that we assumed (k, c) to be non-trivial. Then, according to Theorem 3,
k does not contain both, positive and negative entries. ICA starts at k · t− and
iteratively adds values of K until it either reaches the target interval [c, c − k ·
t∆ − 1] or finds that none such value is reachable. To this end, ICA employs
dynamic programming. This avoids recomputing the same value and speeds up
the running time. An example of a run of ICA is illustrated in Fig. 4. If the
currently reached value lies below the target interval, at least one value of K
has yet to be added. Once we overshoot the target interval, we can exclude the
current value and go to the next one in the queue. When we hit the interval, we
can report non-inductivity.

In the appendix we show that ICA is correct. Moreover, we prove that it
runs in pseudopolynomial time. That is, polynomial in the values k,c, and t,
or exponential in their bit size. Note that this does not contradict the coNP-
hardness of checking t-inductivity which we prove below.
Constant Generation Given a vector k and a transition t, ICA can be instru-
mented to compute all values c such that (k, c) is t-inductive. We refer to the
instrumentation as constant generation algorithm (CGA). CGA computes all

necessary sums k · t− +
∑ℓ

i=1 ki with k1 . . . ki ∈ K∗ and returns all c such that
[c, c−k ·t∆−1] does not contain any of the computed sums. Intuitively, we fit the
interval between these sums. Note that each of the returned values c satisfies the



k · t−

k1 k2
target

ki

Fig. 4: Example run of Algorithm 1 (ICA) in the case k ≥ 0. It starts at value k · t−.
The algorithm adds values of K until it either overshoots the target interval or hits it.

characterization of t-inductivity as stated in (6). We show that CGA is correct
and terminates.

For termination, we need the so-called Frobenius number [5]. Let a ∈ Nn be a
vector such that gcd(a) = gcd(a(1), . . . , a(n)) = 1. Here, gcd denotes the greatest
common divisor. The Frobenius number of a is the largest integer that cannot
be represented as a positive linear combination of a(1), . . . , a(n). The number
exists and is bounded by amax · amin, where amax is the largest and amin the
smallest entry of a [5]. Note that this means that each value x ≥ amax · amin can
be represented as a positive linear combination x = a ·m with m ∈ Nn.

This has implications for CGA. Assume we are given a vector k ≥ 0 with
gcd(k) = 1. The possible values of c such that (k, c) is t-inductive cannot exceed
k · t− + kmax · kmin. Otherwise, the interval [c, c − k · t∆ − 1] will contain a

linear combination of the form k · t− +
∑ℓ

i=1 ki which breaks the inductivity
requirement (6). The argument can be generalized for any gcd(k) ≥ 1:

Theorem 5. Let (k, c) be a non-trivial t-inductive half space and let kmax, kmin

denote the entries of k with maximal and minimal absolute value.

1. If k ≥ 0, we have c < kmax · kmin + k · t−.
2. If k ≤ 0, we have c ≥ −kmax · kmin + k · t−.

The theorem enforces termination and correctness of CGA. In fact, we only
need to compute sums k · t− +

∑ℓ

i=1 ki with k1 . . . ki ∈ K∗ up to the limit given
in the theorem and still find all values c such that (k, c) is t-inductive. Since
the limit is polynomial in the values of k and t, CGA runs in pseudopolynomial
time.

We employ CGA within our CEGAR loop. Assume we have a solution k to
our SMT-formula φ. It is left to decide whether there exists a c ∈ N such that
(k, c) is an IHS. We apply CGA to k and each transition t. This yields a set
Ct containing all ct such that (k, ct) is t-inductive and separates m0 from mf .
Hence, the intersection

⋂

t∈T Ct contains all c such that (k, c) is an IHS that
separates m0 from mf . Algorithmically, we only need to test the intersection for
non-emptiness.

5.2 Complexity

We prove that deciding t-inductivity for a half space (k, c) and transition t is
coNP-complete. Membership follows from a non-deterministic variant of ICA.



Further analyses show that the problem also lies in FPT and in coCSL, where
CSL is the class of languages accepted by context-sensitive grammars. For unary
input, it is in coNL and — if the dimension of k is fixed — in L. We provide details
in the appendix. The interesting part is coNP-hardness for which we establish a
reduction from the unbounded subset sum problem [21].

Theorem 6. Checking t-inductivity of a half space (k, c) is coNP-complete.

Before we elaborate on the reduction, we introduce the unbounded subset sum
problem (USSP). An instance consists of a vector w ∈ Nn and an integer d ∈ N.
The task is to decide whether there exists a vector x ∈ Nn such that w · x = d.
The problem is NP-complete [21]. To prove Theorem 6, we reduce from USSP to
the complement of checking t-inductivity. This yields the desired coNP-hardness.

Proof. Let (w, d) be an instance of USSP. We construct a half space (k, c) and
a Petri net with a transition t such that (k, c) is not t-inductive if and only if
there is an x ∈ Nn such that w · x = d. We rely on the inductivity criterion
from Theorem 1. The main difference between this criterion and USSP is that
the latter requires reaching a precise value d, while the former requires reaching
an interval. The idea is to define an appropriate half space (k, c) and a transition
t such that in the corresponding interval only one value might be reachable.

We set k = w. Note that we can assume that d is a multiple of gcd(k).
Otherwise, (w, d) is a no-instance of USSP since each linear combination w · x
is a multiple of gcd(k). By using the Euclidean algorithm, we can compute an
a ∈ Zn such that k · a = gcd(k) in polynomial time [2]. We construct a Petri
net with n places and one transition t with t−(i) := a(i) if a(i) > 0, t+ := −a if
a(i) < 0, and 0 otherwise. It holds t∆ = −a. Set c = d+ k · t−. It is left to show
that (k, c) is not t-inductive if and only if (w, d) is a yes-instance of USSP.

Assume that (k, c) is not t-inductive. Then there exists a vector x ∈ Nn such
that c ≤ k ·x+k · t− < c−k · t∆. By plugging in the above definitions, we obtain
that d ≤ k · x < d + gcd(k). Since d, d + gcd(k), and k · x are all multiples of
gcd(k), we obtain that d = k · x = w · x. Hence, (w, d) is a yes-instance of USSP.

For the other direction, let w ·x = d. We obtain that d ≤ k ·x < d+gcd(k). As
above, we can employ the definitions and derive that c ≤ k ·x+k · t− < c−k · t∆.
This shows non-inductivity of (k, c) and proves correctness of the reduction. ⊓⊔

6 Experiments

We implemented the CEGAR loop in our Java prototype tool Inequalizer [16].
It employs Z3 [41] as a back-end SMT-solver. The tool makes use of incremental
solving as well as minimization, a feature of Z3 that guides the CEGAR loop
towards more likely candidates of IHS. Incremental solving reuses information
learned from previous queries to Z3 and minimization prioritizes solutions with
minimal values. Before Inequalizer starts the CEGAR loop, it uses an SMT-
query to check whether there is a separating IHS (k, c) that is trivial for all
transitions. We use minimization to get half spaces that are non-trivial with



Benchmark |P | |T | Inequalizer
Mist

backward ic4pn tsi eec eec-cegar

BasicME 5 4 0.6 0.1 0.1 0.1 0.1 0.1
Kanban 16 14 0.7 0.1 0.2 0.8 0.1 0.2
Lamport 11 9 T/O 0.1 0.1 0.1 0.1 0.1
Manufacturing 13 6 0.6 1.9 0.1 0.1 0.1 0.1
Petersson 14 12 T/O 0.2 0.1 0.1 0.1 0.1
Read-write 13 9 0.5 0.1 1 0.1 0.9 0.5
Mesh2x2 32 32 1.2 0.3 0.1 48.6 0.8 0.2
Mesh3x2 52 54 2.1 2.2 0.2 T/O T/O 2.2
Multipool 18 21 0.8 0.3 2 2.2 1 2.3

Table 1: Inequalizer vs. Mist.

respect to fewer transitions. The reason is that non-trivial half spaces are harder
to find and typically only a few values for c ensure inductivity in this case. Before
we show the applicability of Inequalizer on larger benchmarks, let us consider
the Petri net in Fig. 2. When executing Inequalizer, we find that there are
no trivial separating IHS. Using incremental solving, Inequalizer performs
three iterations of the CEGAR loop and returns the non-trivial separating IHS
with k = (53, 52) and c = 209. When enabling minimization, we only require two
iterations and obtain k = (8, 5), c = 22. The difference in iterations is due to that
we expect minimization to choose vectors k that are trivial for many transitions.
This increases the chance of finding a suitable c. On the other hand, incremental
solving improves the running time in executions with more iterations.

We evaluated Inequalizer for LSV(C) on a benchmark suite and compared
it to various methods for coverability implemented in Mist [43,23,19,18,12]. Re-
sults are given in Table 1. The experiments were performed on a 1,7 GHz Intel
Core i7 with 8GB memory. The running times are given in seconds. For en-
tries marked as T/O, the timeout was reached. The running times of Inequal-

izer are similar to Mist although the former has a small overhead from gener-
ating the SMT-query. In each of the listed Petri nets, the unsafe marking is not
coverable. Except for the mutual exclusion nets Petersson and Lamport, In-

equalizer reliably finds separating IHS. Surprisingly, each found IHS is trivial.
We suspect that the cases where Inequalizer timed out are actually negative
instances of LSV(C).

The experiments show that many practical instances admit trivial IHS, which
we synthesize using only one SMT-query. To test the generation of non-trivial
IHS, we ran Inequalizer on a list of nets that do not admit trivial ones. The
results are given in the appendix. They show that Inequalizer finds non-trivial
IHS within few iterations of the CEGAR loop.

7 Conclusion and Outlook

We considered an invariant-based approach to disprove reachability and cover-
ability in Petri nets. The idea was to synthesize an inductive half space that



over-approximates the reachable markings of the net and separates them from
unsafe markings. For the synthesis, we established a structure theory of IHS and
derived an SMT-formula which linearly approximates the space of IHS. We pro-
vided two algorithms, ICA and CGA. The former decides whether a half space
is inductive, the latter generates suitable constants that guarantee inductivity.
The SMT-formula and the algorithm CGA were then combined in a CEGAR
loop which attempts to synthesize IHS. We implemented the loop into our tool
Inequalizer. It combines SMT-queries with efficient heuristics and was capable
of solving practical instances in our experiments.

We expect that further structural studies of IHS will improve the efficiency of
the CEGAR loop. This may lead to a tighter approximation of the space of IHS
or to an improved refinement step eliminating more than multiples. It is also an
intriguing question whether the problems LSV(R) and LSV(C) are decidable. To
tackle this, we are currently examining equivalence classes and normal forms of
half spaces and their connection to well-quasi orderings.
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A Proof of Theorem 1

Theorem 1. A half space (k, c) is t-inductive iff there is no vector x ∈ Nn with

c ≤ k · x+ k · t− < c− k · t∆.

Proof. We use the following property:

∃m ∈ Nn : m ≥ t− ⇔ ∃x ∈ NS : m = x+ t−. (1)

According to the definition of t-inductivity, a half space is not t-inductive iff
there is a marking m that satisfies the following condition:

∃m ∈ Nn : k ·m ≥ c ∧m ≥ t− ∧ k ·m+ k · t∆ < c

(1)
⇔ ∃x ∈ Nn : k · x+ k · t− ≥ c ∧ k · x+ k · t− + k · t∆ < c

⇔ ∃x ∈ Nn : k · x+ k · t− ≥ c ∧ k · x+ k · t− < c− k · t∆

∃x ∈ Nn : c ≤ k · x+ k · t− < c− k · t∆

B Proofs for Section 3

Lemma 5. Let (k, c) be oriented towards t. If m ∈ Act(t) ∩ Sol(k, c), then m+
t∆ ∈ Sol(k, c).

Proof. The lemma holds by k · (m+ t∆) = k ·m+ k · t∆ ≥ k ·m ≥ c. The first
equality is by distributivity of the scalar product, the following inequality is by
the definition of orientation towards t, and the last inequality is by m ∈ Sol(k, c).
Finally, (m + t∆) ∈ Sol(k, c) follows from k · (m + t∆) ≥ c according to the
definition of Sol(k, c).

Lemma 6. Let (k, c) be monotone for t. If m ∈ Act(t)∩Sol(k, c), then m+t∆ ∈
Sol(k, c).

Proof. Note that membership m ∈ Act(t) implies m = t− + v with v ∈ Nn. We
have k · (m+ t∆) = k · (t− + t∆ + v) = k · (t− + t∆)+ k · v ≥ c. The first equality
rearranges the terms of m+ t∆, the second is distributivity, the third is by the
fact that k · (t− + t∆) ≥ c and k · v ≥ 0. The former holds by the definition of
monotonicity for half spaces, the latter is by the fact that k, c, v ≥ 0. It holds
m+ t∆ ∈ Sol(k, c) since k · (m+ t∆) ≥ c.

Lemma 7. If (k, c) is antitone for t, then Act(t) ∩ Sol(k, c) = ∅.

Proof. Note that membership m ∈ Act(t) means m = t− + v for some v ∈ Nn.
Now k ·m = k · (t−+ v) = k · t−+k ·v < c follows. The inequality is by k · t− < c
and k · v ≤ 0. The former holds by the definition of antitone half spaces, the
latter by k ≤ 0 and v ≥ 0.



Lemma 2. Let (k, c) be a t-inductive half space that is non-trivial for t. For
any entry k(i) of k, with |k(i)| denoting its absolute value, we have:

k(i) = 0 ∨ |k(i)| ≥ −k · t∆ (5)

Proof. Assume towards contradiction that there is a k(i) with 0 < |k(i)| ≤ −k·t∆

Since it is non-trivial, we can apply Lemma 1 and either (a) or (b) holds. For
both cases, we define a value z such that c ≤ k · t− + z · k(i) < c − k · t∆ is
satisfied.

Case (a) k · t− < c − k · t∆ and k ≥ 0: There is a smallest z ∈ N such that
c ≤ k·t−+z ·k(i). If k·t− ≥ c, then z = 0 holds trivially. Note that k·t−+z ·k(i) =
k · t− < c− k · t∆ holds by (a). If k · t− < c, then z exists since k(i) > 0. Assume
towards contradiction that c− k · t∆ ≤ k · t− + z · k(i). It holds

k · t− + (z − 1) · k(i) ≥ c− k · t∆ − k(i) ≥ c.

The first inequality is by the assumption c−k ·t∆ ≤ k ·t−+z ·k(i) and the second
is by |k(i)| ≤ −k · t∆. This means z − 1 also satisfies the condition which is a
contradiction to z being smallest. The condition c ≤ k · t− + z · k(i) < c− k · t∆

is satisfied either way.

Case (b) k · t− ≥ c and k ≤ 0: There is a smallest z ∈ N such that k · t− +
z · k(i) < c − k · t∆. Since z is smallest and |k(i)| ≤ −k · t∆ holds it follows
c ≤ k · t− + z · k(i) < c− k · t∆ as well. The detailed proof is omitted since it is
analogue to (a).

We define the vector x ∈ Nn as x = z · ei. According to Theorem 1, this
implies that (k, c) is not t-inductive which is a contradiction. ⊓⊔

C Proofs for Section 4

In order to prove Lemma 3, we first require the following lemma which examines
the non-trivial case:

Lemma 8. Let k be an non-mixed vector with k · t∆ < 0 and |k(i)| > −k · t∆

for all k(i) 6= 0. Then there is a c ∈ Z so that k ·m ≥ c is t-inductive.

Proof. We examine both cases for the non-mixed vector k: k ≥ 0 and k ≤ 0.

k ≥ 0: First, we assume k ≥ 0 and set c := k · t− + 1. From k · t∆ < 0 and
|k(i)| > −k · t∆ follows k(i) > 1 for all k(i) 6= 0. We check if the condition
in Theorem 1 is satisfied for any x ∈ Nn:

c ≤ k · x+ k · t− < c− k · t∆.

If x is the vector 0n then it follows c = k · t− + 1 � k · x+ k · t− = k · t−.
Let x contain an entry x(i) > 0. If k(i) = 0 for all such entries then the case
is analogue to x = 0n. If there is an i ≤ n with x(i) > 0 and k(i) > 0 (and
thus k(i) ≥ −k · t∆ + 1 ), then it holds

k · x+ k · t− ≥ k(i) + k · t− ≥ −k · t∆ + 1 + k · t− = c− k · t∆.



k ≤ 0: We define c := k · t− + k · t∆. If x is the vector 0n, then it follows
k · x+ k · t− = k · t− ≮ kt− = c− k · t∆. Let x contain an entry x(i) > 0. If
k(i) = 0 for all such entries then the case is analogue to x = 0n. If there is
an i ≤ n with x(i) > 0 and k(i) < 0 (and thus k(i) < k · t∆ ), then it holds

k · x+ k · t− ≤ k(i) + k · t− < k · t∆ + k · t− = c.

This means the condition is not satisfied in either case and the half space is
t-inductive according to Theorem 1.

We recall the Theorem 1 from Section 4:

Lemma 3. There exists a constant c ∈ Z such that (k, c) is a t-inductive half
space with k ·m0 ≥ c and k ·mf < c if and only if k is a solution to φt.

Proof. Now, we examine the formula φ. Let (k, c) be separating, meaning m0 ∈
Sol(k, c) and m0 /∈ Sol(k, c), and t-inductive. Since it is separating, condition (0)
holds and c is in the interval (k ·mf , k · m0]. If it is trivial, it follows that one
of the conditions (1)-(3) holds. If it is non-trivial, conditions (4) and (5) hold. It
follows that k is a satisfying assignment of φt.

Let k be a solution of φt. We show that there is a value c such that (k, c) is
t-inductive:

– If k satisfies (1), it is t-inductive for any c and since (0) holds, we can choose
a c such that it is separating.

– If k satisfies (2) then we set c = k · m0 and thus (k, c) is separating and
antitone.

– Condition (3) is analogue, here we set c = k · mf + 1 and thus (k, c) is
separating and monotone.

– If k satisfies Conditions (4) and (5), than the property holds according to
the following Lemma.

Lemma 4. Let k′ := a · k with a ∈ N. If (k′, c) is an IHS, then so is (k, ⌈ c
a
⌉).

Proof. We use contraposition. Given a marking m that violates t-inductivity of
(k, ⌈ c

a
⌉). We show that it violates t-inductivity of (k′, c) as well.

If it holds k · m ≥ ⌈ c
a
⌉, then it follows k · m ≥ c

a
from ⌈ c

a
⌉ ≥ c

a
and thus

k′ ·m ≥ c. If it holds k · (m+ t∆) < ⌈ c
a
⌉ then it follows k · (m+ t∆) + 1 ≤ ⌈ c

a
⌉.

Finally, we conclude k′ · (m+ t∆) < c using ⌈ c
a
⌉ ≤ c

a
+ 1. ⊓⊔

Theorem 7. Let (k, c) be such that mf /∈ Sol(k, c). It holds mf ↑ ∩Sol(k, c) = ∅
iff k ≤ 0.

Proof. "⇒:" Let mf ↑ ∩Sol(k, c) = ∅. We assume towards contradiction that
k(i) > 0 holds for some i ≤ n. Let m be such that m(i) = mf (i) + (c − k ·mf )
and m(j) = mf(j) for all j ≤ n with j 6= i. Then k ·m = k ·mf +k(i) ·(c−k ·mf ).
Since k(i) > 0 and (c− k ·mf ) > 0, it follows k ·m ≥ k ·mf + 1 · (c− k ·mf ) =
k · mf + c − k · mf = c ≥ c and thus m ∈ mf ↑ ∩Sol(k, c) 6= ∅. This is a
contradiction to mf ↑ ∩Sol(k, c) = ∅.
"⇐:" Let k ≤ 0 and m ∈ mf ↑ and thus m ≥ mf . It follows k ·m ≤ k ·mf < c
and thus m /∈ Sol(k, c). This means mf ↑ ∩Sol(k, c) = ∅.



D Proofs for Section 5

We recall Theorem 8 as well as Algorithm 1.

Theorem 8. A half space (k, c) is t-inductive iff

∄k1 . . . kl ∈ K∗ : c ≤ k · t− +
l

∑

i=1

ki < c− k · t∆

Proof. We use the following property: For any sum
∑l

i=1 ki over K with x(j)
the number of occurrences of value kj in the sum, it holds

l
∑

i=1

ki =

n
∑

j=1

k(j) · x(j) = k · x. (2)

Obviously, we can construct a sum with value k · x for any vector x. It follows:

∃x ∈ Nn : k · x = z ⇔ ∃k1 . . . kl ∈ K∗ :

l
∑

i=1

ki = z (3)

A half space is not t-inductive iff there is a marking x that violates Theorem 1:

∃x ∈ Nn : c ≤ k · x+ k · t− < c− k · t∆

(3)
⇔ ∃k1 . . . kl ∈ K∗ : c ≤

l
∑

i=1

ki + k · t− < c− k · t∆

Lemma 9. The algorithm is correct.

Proof. Assume the algorithm returns "Not inductive". It holds c ≤ current <
c−k · t∆ and current was derived by adding elements of K to the starting value
k · t−. It follows that there is a sequence k1 . . . kl ∈ K∗ and c ≤ k · t−+

∑l

i=1 ki <
c − k · t∆. This violates the condition of Theorem 8 and thus the half space is
not t-inductive.

Lemma 10. The algorithm is complete.

Proof. We show that the algorithm identifies any half space that is not t-inductive.
We know that k is not mixed. We now examine the case k ≥ 0. Let k1 . . . kl be
a sequence that satisfies the condition of Theorem 8. W.l.o.g., we can assume
that k1 . . . kl is the shortest sequence that reaches the target area. We examine
its prefixes k1 . . . ki with i < l. It follows that k · t− +

∑i

j=1 kj < c holds for all

i < l and k · t− +
∑l

j=1 kj < c− k · t∆.
We now apply a induction over the sequence to show that the algorithm

processes k · t− +
∑l

j=1 kj or returns "Not inductive" before that:

Induction basis: The algorithm processes k · t− (Line 1 and 2).



Induction hypothesis: The algorithm processes current = k · t− +
∑i

j=1 kj .

Induction step: We know current+ki+1 = k·t−+
∑i+1

j=1 kj < c−k·t∆ holds and
thus the condition in Line 8 is satisfied. It is added to the queue (Line 11) and
it is either processed later or the algorithm returns "Not inductive" before
that. The argument is analogue for k ≤ 0. Here, the condition in Line 9 is
satisfied.

It follows that unless "Not inductive" is returned earlier, k · t− +
∑l

j=1 kj is
processed. It meets the condition in Line 5 and the algorithm returns "Not in-
ductive".

Theorem 9. The run-time of Algorithm 1 is polynomial in the input values.

Proof. We show that the algorithm’s runtime is polynomial in the input values.
The processing time of one value is linear in |K|. Either the lowest processed
value is the starting value k · t− and the highest is some value at most c− k · t∆

(garanteed by the condition in Line 8) or the highest processed value is the
starting value k · t− and the lowest is at least c (garanteed by the condition in
Line 9). It follows that the algorithm only processes values in the polynomial
sized segment

[min(k · t−, c),max(k · t−, c− k · t∆)].

Since every processing step reaches a new unprocessed value in the segment, the
number of processing steps are limited by the seqment size

ls := |max(k · t−, c− k · t∆)−min(k · t−, c)|.

We continue by analyzing the space-complexity of the problem. We study the
complexity class L which denotes problems that can be solved deterministically
using an amount of memory space that is logarithmic in the size of the input.
The class NL describes problems that can be solved non-deterministically in
logarithmic space. The problems that can be solved non-deterministically using
space that is linear in the input size are in CSL. For any class of problems C,
we denote the class of their complements as co-C.

Theorem 10. A half space is not t-inductive if and only if there is a vector x
that violates Theorem 1 and x(j) ≤ ls for all j ≤ n

Proof. Since there are ls many possible values, and the algorithm processes a
value only once, the algorithm constructs a sum of length at most ls iff it is not
t-inductive. It follows from (Equation 2) that if (Theorem 1) is violated, than it
is violated by some vector x with |x| ≤ ls.

It follows from Theorem 10 that deciding inductivity is in co-NP. Choosing some
vector x with values at most ls non-deterministically and checking if it violates
Theorem 1 takes polynomial time.

We assume the dimension n of k (which is the number of places in the Petri
net) is a fixed parameter and introduce a new algorithm that solves t-inductivity



in logarithmic space. It simply iterates all possible vectors x that satisfy x(j) ≤ ls
for all j ≤ n and checks whether they satisfy the inequality. The successor
function succ handles the vector x ≤ ls like a number with n digits to the basis
ls and works like a standard successor. It starts at the first value and if it is less
than ls it adds one and terminates, if the current value is ls, it sets it to 0 and
handles the next one.

Algorithm 2: Inductivity-LogSpace

1 x = 0n;
2 repeat

3 if c ≤ k · x+ k · t− < c− k · t∆ then

4 return Not inductive
5 x = succls(x);

6 until x = lns ;
7 return Inductive

The value of ls is linear in every input variable and thus it can be stored in
logarithmic space. Any vector x with x(j) ≤ ls for all j ≤ n can also be stored
in logspace.

Theorem 11. Deciding inductivity of a half space is in L for unary encoded
input and fixed dimension of k.

A nondeterministic version of the inductivity algorithm has to store only the
current value and the number of executed steps and it executes at most ls steps.

Theorem 12. Deciding inductivity of a half space is in co-NL for unary en-
coded input.

For binary encoded input, it follows from Theorem 12:

Theorem 13. Deciding inductivity of a half space is in co-CSL for binary
encoded input.

For an instance of the inductivity problem given by a half space and a transi-
tion we introduce the parametrized instance with the greatest total value kmax

of k as the parameter.

Theorem 14. The parametrized inductivity problem is fixed parameter tractable.

Proof. For any vector x ∈ Nn with xi ≥ k1 it holds

k · x = k · (x1 + ki, . . . , xi−1, xi − k1, xi+1, . . . , xn)
T

We iterate this argument and it follows that if there is a vector that satisfies the
condition of Theorem 1 then it is also satisfied by a vector x with x2, . . . xn ≤ k1.
We assume k ≥ 0 and k · t− < c.



k · t− + k · x = k · t− + k1 · x1 +

n
∑

i=2

ki · xi ≥ c

⇒ k1 · x1 ≥ c− k · t− −
n
∑

i=2

ki · xi ≥ c− k · t− − k1 ·
n
∑

i=2

ki

⇒ x1 ≥ ⌈
c− k · t− − k1 ·

∑n

i=2 ki
k1

⌉

Instead of imposing a lower bound on x1 we introduce x′ with x1 = x′
1 −

⌈
c−k·t−−k1·

∑n
i=2

ki

k1

⌉ and x′
i = xi for i > 1:

k · x = k · x′ + k1 · ⌈
c− k · t− − k1 ·

∑n

i=2 ki
k1

⌉

It follows that an half space k ·m ≥ c is t-inductive iff the following half space

is t-inductive: k ·m ≥ c− k1 · ⌈
c−k·t−−k1·

∑n
i=2

ki

k1

⌉. Note that the new half space
is only bounded by kmax and not c:

c− k1 · ⌈
c− k · t− − k1 ·

∑n
i=2 ki

k1
⌉ ≤ k · t− + k1 ·

n
∑

i=2

ki

The construction for k ≤ 0 and k · t− > c is analogue.

D.1 Proofs for Generating c

The main contribution of this subsection is the proof of Theorem 5. This requires
the following two technical lemmas.

Lemma 11.

| gcdk| ≤ |k · t∆|

Proof. It holds k · t∆ = t∆(1) ·k(1)+ . . .+ t∆(n) ·k(n) = z ·gcd k for some z ∈ Z.
It follows |k · t∆| ≥ | gcdk|.

Lemma 12. Let (k, c) be a non-trivial t-inductive half space and let y ∈ N
denote the Frobenius number of k(1)

gcd(k) , . . . ,
k(n)
gcd(k) .

a) If k ≥ 0, it holds k · t− + k · t∆ < c ≤ gcd(k) · y + k · t−.
b) If k ≤ 0, it holds gcd(k) · y + k · t− ≤ c < k · t−.

Proof. We prove the lower and upper bounds for both cases.

a) The lower bound follows immediately from Lemma 1. For the upper bound,

we assume c > gcd(k) ·y+k ·t− and thus c−k·t−

gcd(k) > y. Since y is the Frobenius

number, there is a vector b ∈ Nn such that ⌊ c−kt−

gcd(k) ⌋ =
kT

gcd(k) · b. This means

c− k · t− ≤ k · b < c− k · t− + gcd(k).



According to Lemma 1, it holds k · t∆ < 0. We apply Lemma 11 and get
−k · t∆ ≥ gcd(k). This means that c ≤ k · b+ kt− < c− k · t∆ holds and thus
the vector b satisfies Theorem 1. This is a contradiction to inductivity.

b) The upper bound follows immediately from Lemma 1. For the lower bound,

we assume c < gcd(k) · y + k · t− and thus c−kt−

gcd(k) > y. The remainder is

analogue to a).

We recall Theorem 5:

Theorem 5. Let (k, c) be a non-trivial t-inductive half space and let kmax, kmin

denote the entries of k with maximal and minimal absolute value.

1. If k ≥ 0, we have c < kmax · kmin + k · t−.
2. If k ≤ 0, we have c ≥ −kmax · kmin + k · t−.

Proof. Let y denote the Frobenius number of k(1)
gcd(k) , . . . ,

k(n)
gcd(k) . By Lemma 2 and

Lemma 11, we know that |k(i)| > −k · t∆ ≥ |gcd(k)|. From this we obtain that
k(i)

gcd(k) = |k(i)|
|gcd(k)| ≥ 2. Now we apply the definition of the Frobenius number and

get: y ≤ ( kmax

gcd(k) − 1)( kmin

gcd(k) − 1).

Now assume that k ≥ 0. We give an estimation for gcd(k) · y:

gcd(k) · y ≤ gcd(k) · (
kmax

gcd(k)
− 1)(

kmin

gcd(k)
− 1)

≤ gcd(k)2 · (
kmax

gcd(k)
− 1)(

kmin

gcd(k)
− 1)

≤ (kmax − gcd(k))(kmin − gcd(k))

≤ kmax · kmin.

We now combine this with the bound proven in Lemma 12 and derive the crite-
rion of Theorem 5

c < kmax · kmin + k · t−.

If k ≤ 0, we derive a similar bound. Note that it holds gcd(k) < 0). We now

derive a lower bound of gcd(k) · y:

gcd(k) · y ≥ gcd(k) · (
kmax

gcd(k)
− 1) · (

kmin

gcd(k)
− 1)

≥ − gcd(k)2 · (
kmax

gcd(k)
− 1) · (

kmin

gcd(k)
− 1)

≥ −(kmax − gcd(k)) · (kmin − gcd(k))

≥ −kmax · kmin.

Like above, we apply this to the bound on c from Lemma 12 and get

c ≥ −kmax · kmin + k · t−



E Non-Trivial Petri Nets

Since the benchmark suite did not require non-trivial separating IHS, it did not
accurately present our CEGAR method. We would like a better understanding
of which Petri nets require non-trivial separating IHS. For this purpose, we
construct a simple Petri net that has a non-trivial separating IHS but not a
trivial one. We begin by collecting sufficient conditions of a Petri net that ensure
non-triviality for any separating IHS.

Lemma 13. Let a ∈ Rm
+ be such that mf = m0 +

∑m
i=1 a(i) · t

∆
i . For any

separating half space, there is a transition that is not oriented towards it.

Proof. Since the half space is separating, it holds k ·m0 ≥ c > k ·mf and thus
0 > k · (mf −m0) =

∑m

i=1 a(i) ·k · t
∆
i . One element in the sum has to be negative:

∃i<m : a(i) ·k · t∆i < 0. Since a(i) can not be negative, it follows ∃i<m : k · t∆i < 0.
So (k, c) is not oriented towards ti.

It follows that, for any separating half space, one of the transitions ti with
an associated value ai greater than zero is not oriented towards it. In order to
ensure that the separating half space is not trivial, we require two additional
properties: it can neither be antitone, nor monotone.

For any ti with ai > 0 we require t−i ≤ m0, i.e. the transition is activated in
the initial marking. This means Act(t)∩Sol(k, c) 6= ∅ and thus it is not antitone.

For any ti with ai > 0 we require t−i + t∆i ≤ mf , which means there is
a marking from which ti can be fired in order to reach mf . Assume there is
separating half space (k, c) that is monotone for ti. Then it holds k ≥ 0 and thus
k · mf ≥ k · (t−i + t∆i ). Since k · mf < c, it follows k · (t−i + t∆i ) < c. This is a
contradiction to monotonicity for ti.

In summary, if the marking equation has a continuous solution such that the
used transitions can all be fired from the initial marking and they can all be
fired to reach mf , then there are no trivial separating half spaces.

This sufficient condition for non-triviality is useful, because it is not much
stronger than the following necessary condition for unreachability. If no solution
of the marking equation exists where at least one used transition can be fired
in the beginning and one in the end, then mf is unreachable. This condition is
very easy to check. This comparison suggests that for a Petri net where it is not
immediately obvious that mf is unreachable, a non-trivial half space is likely to
be required.

Example We now construct a minimal non-trivial example for larger dimensions.
We introduce a Petri net Nn of size n ≥ 3 that has a non-trivial separating
half space but no trivial separating half spaces (see Fig. 5). Furthermore, if one
transition is removed, a trivial separating invariant exists.

We set m0 = 1n,mf = 2n, meaning we start with one token in each place
and ask whether we can avoid getting having tokens in each place. Then, we
choose some j ≤ n and we define n transition t1, ...tn such that each transition



ti removes one token from each place and then puts n tokens in place pi. The
exception is tj which puts n+ 1 tokens into pj .

Formally, this means t−i = 1n for all i ≤ n and t∆i (i) = n− 1, t∆i (k) = −1 for
k ≤ n, k 6= i. For tj , it holds t∆j (i) = −1 for i ≤ n, i 6= j and t∆j (j) = n.

p1 · · · pi · · · pj · · ·

ti

tj

n

n+ 1

pn

Fig. 5: A non-trivial Petri net

Lemma 14. The Petri net Nn has a separating non-trivial IHS but no separat-
ing trivial IHS.

Proof. Let c = −n · (n + 1), k(j) = −n, and k(i) = −(n + 1) for i 6= j, i ≤ n.
The half space is separating, since it holds k · m0 = −(n + 1) · (n − 1) − n =
−n · (n+1)+1 > c and k ·mf = −(n+1) · (n−1) ·2−2n = −2(n+1) ·n+2 < c.

We show that the half space is a IHS using Theorem 8. Since k · t∆j = (n +

1) · (n− 1)− n2 = −1 it holds k · t−j = k ·m0 ≥ c− k · t∆j . If we add any ki then

we get k · t−j + ki = −n · (n+1)+1−n < c and if we add kj or additional values
of k we get an even smaller value.

Let (k, c) be any separating half space. Since k ·m0 > k ·mf , it holds −k1 . . .−
kn > 0. Let kl = min(k1, . . . kn) be the negative entry of k with the largest
absolute value. If l = j , then k ·t∆l = −k1...−kn+n·kl+kl ≤ −n·kl+n·kl+kl =
kl < 0.

If l 6= j, then k · tl = −k1...− kn + n · kl = kl. If all entries of k are not equal,
then it holds −k1 + ... − kn > n · kl and thus k · ti < 0. If all entries of k are
equal then they are also negative and it holds

k · tj = −k1...− kn + n · kj + kj = −n · kj + n · kj + kj = kj < 0.

It follows that any separating half space is oriented towards at least one transi-
tion.

Obviously all transitions are enabled at m0 and the half space is not antitone.
According to −k1 . . .− kn > 0, it holds k � 0 and thus it is not monotone either.



|P | Iterations Time

3 2 0.4
4 113 6.9
5 2 0.4
6 2 0.4
7 6 0.6
8 3 0.6
9 378 205.2

10 2 0.5

Table 2: Inequalizer on non-trivial Petri nets.

We evaluate the performance of Inequalizer for reachability on the non-
trivial Petri nets of sizes three to ten in Table 2. We give the number of iterations
of the CEGIS loop performed by the tool. We do not include the run-time results
of Mist for these Petri nets in the table since they were all well below 0.1
second. We use incremental solving and find that our tool usually computes the
IHS quickly using few iterations. There are only two diverging results where the
SMT-solver returns a number of unusable vectors k.
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