Skip to main content

Towards Efficient Shape Analysis with Tree Automata

  • Conference paper
  • First Online:
Book cover Networked Systems (NETYS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12754))

Included in the following conference series:

  • 234 Accesses

Abstract

We discuss our proposal of a formalism for representing classes of graphs based on tree automata. We aim at a formalism and an entailment algorithm that could be used in verification of pointer programs, that would be efficient, have well defined completeness guarantees, and be general. We believe that building the formalism on top of tree automata will make it possible to use existing advanced tree automata implementation techniques. We sketch the basic ideas behind the formalism and an entailment decision procedure, and outline some related research challenges.

This work was supported by the Czech Science Foundation (project No. 19-24397S) and the FIT BUT internal project FIT-S-20-6427.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulla, P.A., Bouajjani, A., Holík, L., Kaati, L., Vojnar, T.: Computing simulations over tree automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_8

    Chapter  MATH  Google Scholar 

  2. Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_14

    Chapter  MATH  Google Scholar 

  3. Almeida, R., Holík, L., Mayr, R.: Reduction of nondeterministic tree automata. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 717–735. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_46

    Chapter  MATH  Google Scholar 

  4. Berdine, J., et al.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3_22

    Chapter  Google Scholar 

  5. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by means of bi-abduction. ACM Trans. Comput. Log. 58, 26:1–26:66 (2011)

    Google Scholar 

  6. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant checkers. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2_24

    Chapter  Google Scholar 

  7. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990)

    Article  MathSciNet  Google Scholar 

  8. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list manipulation. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 215–237. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9_13

    Chapter  Google Scholar 

  9. Echenim, M., Iosif, R., Peltier, N.: Entailment checking in separation logic with inductive definitions is 2-exptime hard. In: LPAR 2020. EPiC Series in Computing, vol. 73, pp. 191–211. EasyChair (2020)

    Google Scholar 

  10. Echenim, M., Iosif, R., Peltier, N.: Decidable entailments in separation logic with inductive definitions: beyond establishment. In: CSL 2021. LIPIcs, vol. 183, pp. 20:1–20:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  11. Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata for verification of heap manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 424–440. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_34

    Chapter  MATH  Google Scholar 

  12. Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata for verification of heap manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 424–440. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_34

    Chapter  MATH  Google Scholar 

  13. Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata for verification of heap manipulation. Formal Methods Syst. Design 1, 83–106 (2012)

    Article  Google Scholar 

  14. Heinen, J., Jansen, C., Katoen, J.-P., Noll, T.: Juggrnaut: using graph grammars for abstracting unbounded heap structures. Formal Methods Syst. Design 47(2), 159–203 (2015)

    Article  Google Scholar 

  15. Holík, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forester: shape analysis using tree automata. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 432–435. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_37

    Chapter  Google Scholar 

  16. Holík, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Run forester, run backwards! In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 923–926. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_61

    Chapter  Google Scholar 

  17. Holík, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forester: from heap shapes to automata predicates. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 365–369. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_24

    Chapter  MATH  Google Scholar 

  18. Holík, L., Hruška, M., Lengál, O., Rogalewicz, A., Vojnar, T.: Counterexample validation and interpolation-based refinement for forest automata. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 288–309. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_16

    Chapter  MATH  Google Scholar 

  19. Holík, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully automated shape analysis based on forest automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 740–755. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_52

    Chapter  Google Scholar 

  20. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 21–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_2

    Chapter  Google Scholar 

  21. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 201–218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_15

    Chapter  Google Scholar 

  22. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 201–218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_15

    Chapter  Google Scholar 

  23. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 21–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_2

    Chapter  Google Scholar 

  24. Katelaan, J., Matheja, C., Zuleger, F.: Effective entailment checking for separation logic with inductive definitions. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 319–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_18

    Chapter  Google Scholar 

  25. Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52–68. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_4

    Chapter  Google Scholar 

  26. Lengál, O., Šimáček, J., Vojnar, T.: VATA: a library for efficient manipulation of non-deterministic tree automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 79–94. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_7

    Chapter  MATH  Google Scholar 

  27. Matheja, C., Jansen, C., Noll, T.: Tree-like grammars and separation logic. In: Feng, X., Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 90–108. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26529-2_6

    Chapter  MATH  Google Scholar 

  28. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine, vol. 36, pp. 221–231. ACM, New York (2001)

    Google Scholar 

  29. Pagel, J., Matheja, C., Zuleger, F.: Complete entailment checking for separation logic with inductive definitions (2020)

    Google Scholar 

  30. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_47

    Chapter  Google Scholar 

  31. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: LICS 2002, pp. 55–74. IEEE Computer Society (2002)

    Google Scholar 

  32. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hruška .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hruška, M., Holík, L. (2021). Towards Efficient Shape Analysis with Tree Automata. In: Echihabi, K., Meyer, R. (eds) Networked Systems. NETYS 2021. Lecture Notes in Computer Science(), vol 12754. Springer, Cham. https://doi.org/10.1007/978-3-030-91014-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91014-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91013-6

  • Online ISBN: 978-3-030-91014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics