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Abstract

Many distributed applications, such as cloud computing, service replication, load
balancing, and distributed ledgers, e.g., Blockchain, require the system to solve con-
sensus in which all processes reliably agree on a single value. Binary consensus, where
the set of values that can be proposed is either zero or one, is a fundamental building
block for other “flavors” of consensus, e.g., multivalued, or vector, and of total order
broadcast. At PODC 2014, Mostéfaoui, Moumen, and Raynal, in short MMR, pre-
sented a randomized signature-free asynchronous binary consensus algorithm. They
demonstrated that their solution could deal with up to t Byzantine processes, where
t < n/3 and n is the number of processes. MMR assumes the availability of a service of
random common coins and fair scheduling of message arrivals, which does not depend
on the current coin values. It completes within O(1) expected time.

Our study, which focuses on binary consensus, aims at the design of an even more
robust consensus protocol. We do so by augmenting MMR with self-stabilization, a
powerful notion of fault-tolerance. In addition to tolerating process and communica-
tion failures, self-stabilizing systems can automatically recover after the occurrence of
arbitrary transient-faults; these faults represent any violation of the assumptions on
which the system was designed to operate (provided that the algorithm code remains
intact).

We present the first loosely-self-stabilizing fault-tolerant asynchronous solution to
binary consensus in Byzantine message-passing systems. This is achieved via an in-
structive transformation of MMR to a self-stabilizing solution that can violate safety
requirements with probability Pr = O(2−M ), where M ∈ Z+ is a predefined constant
that can be set to any positive value at the cost of 3Mn + logM bits of local mem-
ory; n is the number of processes. The obtained self-stabilizing version of the MMR
algorithm considers a far broader fault-model since it recovers from transient faults.
Additionally, the algorithm preserves the MMR’s properties of optimal resilience and
termination, i.e., t < n/3, and O(1) expected decision time. Moreover, any instance
of the proposed solution requires a bounded amount of memory.
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We also offer a recycling mechanism for these asynchronous objects that allows
their reuse once each object completes its task and all non-faulty nodes retrieved the
decided values. This mechanism itself uses synchrony assumptions and is based on
a novel composition of existing techniques as well as a new self-stabilizing Byzatine-
tolerant multivalued consensus algorithm for synchronous systems.

1 Introduction

We propose a loosely-self-stabilizing Byzantine fault-tolerant asynchronous implementation
of binary consensus objects for signature-free message-passing systems.

1.1 Background and motivation

En route to constructing robust distributed systems, rose the need for different (possibly
geographically dispersed) computational entities to take common decisions. Of past and
recent contexts in which the need for agreement appeared, one can cherry-pick applications,
such as service replication, cloud computing, load balancing, and distributed ledgers (most
notably Blockchain). In distributed computing, the problem of agreeing on a single value
after the proposal of values by computational entities, processes (sometimes called nodes or
processors), is called consensus [75, 9]. The most basic form of the consensus problem is
for processes to decide between two possible values, e.g., zero or one. This version of the
problem is called binary consensus [96, Ch. 14]. In the absence of faults, solving consensus is
straightforward, however, in the presence of faults, even benign ones such as crashes, and in
the face of asynchrony, the problem is not solvable deterministically (cf. [62]). This work aims
to fortify consensus protocols with fault-tolerance guarantees that are more powerful than
any existing known solution. Such solutions are imperative for many distributed systems
that run in hostile environments, such as Blockchains.

Over the years, research into the consensus problem has tried to exhaust all the different
possible variations of the problem by tweaking synchrony assumptions, the range of possible
values to be agreed upon, adversarial and failure models, as well as other parameters. To
circumvent known impossibility results, e.g., the celebrated FLP [62], the system models
are also equipped with additional capabilities, such as cryptography, oracles, e.g., perfect
failure detectors, and randomization [32]. Despite the decades-long research, the consensus
problem remains a popular research topic. The most recent spike in interest in consensus
was triggered by the Blockchain “rush” of the past decade. Agreement in a common chain
of blocks is inherently a consensus problem. “Blockchain consensus” [26, 109] is a highly-
researched topic, and all the “proof-of-∗” concepts enclose an underlying consensus-solving
mechanism.
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1.2 Problem definition

The problem of letting all processes to uniformly select a single value among all the values
that they propose is called consensus. When the set, V , of values that can be proposed,
includes just two values, i.e., V = {0, 1}, the problem is called binary consensus. Otherwise,
it is called multivalued consensus.

Definition 1.1 (Binary Consensus) Every process pi has to propose a value vi ∈ V =
{0, 1}, via an invocation of the proposei(vi) operation. Let Alg be an algorithm that solves
binary consensus. Alg has to satisfy safety, i.e., BC-validity and BC-agreement, and liveness,
i.e., BC-completion, requirements.

• BC-validity. The value v ∈ {0, 1} decided by a non-faulty process is a value proposed
by a non-faulty process.

• BC-agreement. Any two non-faulty processes that decide, do so with identical
decided values.

• BC-completion. All non-faulty processes decide.

Starting from the algorithm of Mostéfaoui, Moumen, and Raynal [87], from now on MMR,
this study proposes an even more fault-tolerant consensus algorithm, which is a variant on
MMR. Note that MMR provides randomized liveness guarantees, i.e., with the probability
of 1, MMR satisfies the BC-completion requirement within a finite time that is known only
by expectation. The proposed solution satisfies BC-completion within a time that depends
on a predefined parameter M ∈ Z+. However, it provides randomized safety guarantees,
i.e., with the probability of 1−O(2−M), the proposed solution satisfies the BC-validity and
BC-agreement requirements. Since the number of bits that each process needs to store is
3nM + dlogMe, we note that the probability for violating safety can be made, in practice,
to be extremely small, where n is the number of processes, see Remark 3.1 for details.

We note that the literature often refers to BC-completion property as BC-termination.
In Section 1.5, we explain the reason for this deviation.

Also, Definition 1.1 considers a single instance Binary consensus object. Our implementa-
tion considers an extended version of recyclable Binary consensus objects that can be stored
in a δ-size set, where δ is a predefined constant (Section 4). This set can be repeatedly
recycled once all objects complete their task and all non-faulty nodes retrieved their results
(Section 5). Thus, the proposed solution can be reused an unbounded number of times (and
still, use only a bounded amount of memory).

1.3 Fault model

We study solutions for message-passing systems. We model a broad set of failures that
can occur to computers and networks, e.g., due to procrastination, equivocation, selfishness,
hostile (human) interference, deviation from the program code, etc. Specifically, our fault
model includes up to t process failures, i.e., crashed or Byzantine [75]. In detail, a faulty
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process runs the algorithm correctly, but the adversary completely controls the messages
that the algorithm sends, i.e., it can modify the content of a message, delay the delivery
of a message, or omit it altogether. The adversary’s control can challenge the algorithm by
creating failure patterns in which a fault occurrence appears differently to different system
components. Moreover, the adversary is empowered with the unlimited ability to compute
and coordinate the most severe failure patterns. We assume a known maximum number, t,
of processes that the adversary can capture. We also restrict the adversary from letting a
captured process impersonate a non-faulty one. In addition, we limit the adversary’s ability
to impact the delivery of messages between any two non-faulty processes by assuming fair
scheduling of message arrivals i.e., Fair Communication (FC) between non-faulty processes
is assumed.

1.4 Hybrid synchronous/asynchronous approach

The proposed solution uses a hybridization of two different fault models, which their nota-
tions follow Raynal [96].

• BAMPn,t[−FC, t < n/3,RCCs]. The studied asynchronous solutions are for message-
passing systems where the algorithm cannot explicitly access the local clock or assume
the existence of guarantees on the communication delay. These systems are also prone
to communication failures, e.g., packet omission, duplication, and reordering, as long
as fair communication (FC) holds. For the sake of solvability [75, 92, 106], we also
assume that the number of faulty processes t < n/3 is less than one-third of the
number of processes in the system. This fault model, BAMPn,t[−FC, t < n/3,RCCs], is
called the Byzantine Asynchronous Message-Passing model with at most t (out of n)
faulty processes. The array [−FC, t < n/3,RCCs] denotes the list of all assumptions,
i.e., FC and t < n/3 as well as random common coins (RCCs).

• BSMPn,t[κ−SGC, t < n/3,RCCs]. This model is called the Byzantine synchronous
message-passing with at most t (out of n) faulty processes, and t < n/3. The
BSMPn,t[κ−SGC, t < n/3,RCCs] model is defined by enriching the BAMPn,t[−FC, t < n/3]
model with a κ-state global clock, reliable communication, and a service of RCCs. A
detailed presentation of BSMPn,t[κ−SGC, t < n/3,RCCs] appears in Section 5.1.

1.5 Self-stabilization

In addition to the failures captured by our model, we also aim to recover from arbitrary
transient-faults, i.e., any temporary violation of assumptions according to which the system
and network were designed to operate. This includes the corruption of control variables,
such as the program counter, packet payload, and indices, e.g., sequence numbers, which
are responsible for the correct operation of the studied system, as well as operational as-
sumptions, such as that at least a distinguished majority of processes never fail. Since the
occurrence of these failures can be arbitrarily combined, we assume that these transient-
faults can alter the system state in unpredictable ways. In particular, when modeling the
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system, Dijkstra [37] assumes that these violations bring the system to an arbitrary state
from which a self-stabilizing system should recover, see [3, 42] for details. Dijkstra requires
recovery after the last occurrence of a transient-fault and once the system has recovered, it
must never violate the task specification.

For the case of the studied problem and fault model, there are currently no known
ways to meet Dijkstra’s self-stabilizing design criteria. Loosely-self-stabilizing systems [101]
require that, once the system has recovered, only rarely and briefly can it violate the safety
specifications. Although it is a weaker design criterion than the one defined by Dijkstra,
the violation occurrence can be made to be so rare, that the risk of breaking the safety
requirements of Definition 1.1 becomes negligible.

It is well-known that self-stabilizing systems cannot stop sending messages when the
system’s task has so-called “terminated”, see [42, Chapter 2.3] for details. This impossibility
is, mistakenly, stated as “self-stabilizing system can never terminate”. However, the system’s
task can terminate but the system cannot stop sending messages. In order to avoid this
confusion, as mentioned, we refer to BC-termination as BC-completion.

1.6 Related work

In this paper, the design criteria for non-self-stabilizing Byzantine fault-tolerant solutions
are called BFT, and the ones for self-stabilizing Byzantine fault-tolerant are called SSBFT.
We review the most related BFT and SSBFT solutions for the studied problem.

1.6.1 Impossibilities and lower-bounds

The FLP impossibility result [62] concluded that consensus is impossible to solve determin-
istically in asynchronous settings in the presence of even a single crash failure. In [61] it was
shown that a lower bound of t+ 1 communication steps are required to solve consensus de-
terministically in both synchronous and asynchronous environments. The proposed solution
is a randomized one. In the presence of asynchrony, transient-faults, and (non-Byzantine)
crash failures, there are known problems such as leader election and counting the number of
processes in the system, for which there are no (randomized) self-stabilizing solutions [4, 8].
In this work, we consider weaker design criteria than Dijkstra’s self-stabilization.

In the presence of Byzantine faults, the consensus problem is not solvable if a third
or more of the processes are faulty [75]. Thus, optimally resilient Byzantine consensus
algorithms, such as the one we present, tolerate t < n/3 faulty processes. The task is
also impossible if a process can impersonate some other process in its communication with
the other entities [9]. We assume the absence of spoofing attacks and similar means of
impersonation. In the presence of asynchrony, transient-faults, and Byzantine failures, the
task of unison is known to be unsolvable (unless the strongest fairness assumptions are
made) [55, 56]. As indicated by the above impossibility results, the studied problem remains
challenging even under randomization and fairness assumptions during the recovery period.
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1.6.2 Non-self-stabilizing non-BFT solutions

Paxos [72] is the best-known solution for the consensus problem. Despite becoming notorious
for being complex [74], Paxos was followed by rich literature [108]. Raynal [96] offers a family
of abstractions for solving a number of well-known problems including consensus. This line
of research is easier to understand and supports well-organized implementations. Protocols
implementing total order broadcast are usually built on top of consensus since consensus
and total order broadcast are equivalent [30, 97].

1.6.3 Non-self-stabilizing BFT solutions

BFT consensus was tackled by many protocols [86]. Several variants of Paxos consensus
tolerate such malicious processes, e.g., [73]. State machine replication protocols, such as
PBFT [29] and BFT-SMART [11] incorporate a BFT consensus mechanism.

Randomization can circumvent the FLP impossibility [61], which only entails determin-
istic algorithms. This line of work started with Ben-Or [9] using a local coin (that generated
a required exponential number of communication steps in the general case) and resilience
t < n/5, and by Rabin [95] in the same year, which assumes the availability of RCCs, al-
lowed for a polynomial number of communication steps and optimal resilience, i.e., t < n/3.
We later discuss more extensively the notion of RCCs. Bracha [22] constructed a reliable
broadcast protocol that allowed optimally-resilient binary agreement, but using a local coin
needed an exponential expected number of communication steps. Cachin et al. [25] solve
asynchronous binary consensus using RCCs and cryptographic threshold signatures. They
achieve optimal resilience (t < n/3) and quadratic message-per-round complexity.

In the sequel, we focus on MMR [87] as a signature-free BFT solution for binary consen-
sus. This algorithm is optimal in resilience, uses O(n2) messages per consensus invocation,
and completes within O(1) expected time. MMR can be combined with a reduction of mul-
tivalued consensus to binary consensus [89] to attain multivalued consensus with the same
fault-tolerance properties.

Binary consensus is a fundamental component of total order reliable broadcast, e.g., [24,
31] (see Section 1.7). In what appears as a revival of the topic, several Blockchain consensus
protocols are also using similar approaches. HoneyBadger [85] was the first randomized
BFT protocol for Blockchain. They employ MMR as their binary consensus protocol. The
BEAT [54] suite of protocols for blockchain consensus also uses MMR.

MMR has PODC 2014 [87] and JACM 2015 [88] variations. The latter variation over-
comes an implementation challenge later discussed by Tholoniat and Gramoli [105], which
raised concerns regarding the liveness of the PODC 2014 variation when the adversary is
allowed to control the schedule of message arrivals. Recently, Cachin and Zanolini [27] mod-
ified the MMR variation of PODC 2014 with a couple of simple modifications that cope with
the above liveness concern. Specifically, they suggest imposing FIFO message delivery and
an extra sampling of the arriving values before accessing the RCC. For the sake of a simple
presentation, this work considers the PODC 2014 variation and assumes fair scheduling of
message arrival (which does not depend on the current coin value). Thus, our results do not
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implement the modifications proposed by Cachin and Zanolini.
Duvignau, Raynal, and Schiller [57, Algorithm 3] explain how to implement the FIFO

message ordering in the context of SSBFT. The interested reader is offered to apply the
technique for dynamic value reception proposed by Cachin and Zanolini to the proposed
solution since it preserves MMR’s key algorithmic features.

Non-self-stabilizing BFT services for RCCs Randomized algorithms employ coin flips
to circumvent the FLP impossibility [61], which only entails deterministic algorithms. The
two known coin flip constructions are local coins, where each process only uses a local random
function, and RCCs, where the k-th invocation of the random function by a non-faulty pro-
cess, returns the same bit as to any other non-faulty process. Ben-Or [9] using a local coin,
developed an asynchronous BFT Binary Consensus algorithm with t < n/5 + 1 resilience,
but (as any local-coin-based algorithm) required an exponential number of communication
steps, unless t = O(

√
n) where a polynomial number can be achieved. Rabin [95] was

the first to introduce RCCs demonstrating the possibility of designing asynchronous BFT
binary consensus algorithms with a polynomial number of communication steps and with
constant expected computational rounds. The coin construction is based on Shamir’s secret
sharing [100] and digital signatures for authenticating the messages exchanged. Since then,
RCCs provision has become an essential tool, and many subsequent works have devised ran-
domized coin-flipping algorithms, e.g., [10, 23, 24, 25, 28, 58, 59, 90] as building blocks for
consensus and other related problems, such as clock synchronization. Aspens [7] demon-
strates that agreeing on RCCs is a harder problem than solving consensus, in the sense that
if we can solve it, then we can solve consensus.

An important feature that RCCs algorithm must provide is unpredictability, that is, the
outcome of the random bit at a given round should not be predicted by the Byzantine
adversary before that round. In this respect, two communication models have been used in
devising coin-flipping algorithms. Either private communication is assumed, e.g., [58, 59, 28,
10] or digital signatures and other cryptographic tools are employed, e.g., [100, 90, 24, 25].
In the former, the usual assumption is that processes are connected via private channels
and the Byzantine adversary can have access to the messages exchanged between faulty
and non-faulty processes, but not to the messages exchanged between non-faulty processes,
hence providing confidentiality. In the latter, cryptographic tools (signatures) conceal the
content of a message and only the intended recipient can view its content. Hence, a subtle
difference between the two schemes is that with private channels, a third process does not
even know whether two other processes have exchanged a message, whereas, with signatures,
the third process might be aware of the message exchange, but not the message’s content.
Feldman and Micali [58] show how to compile any protocol assuming private channels to a
cryptographic protocol not assuming private channels which runs exactly the same.

Non-self-stabilizing synchronous BFT multivalued consensus As mentioned, self-
stabilizing systems are required to use bounded memory, and thus, we are interested in
recycling mechanisms for consensus objects (Section 1.2). The proposed recycling mecha-
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nism uses an SSBFT multivalued consensus for the BSMPn,t[κ−SGC, t < n/3,RCCs] model,
which is based on a non-self-stabilizing BFT multivalued consensus. Pease, Shostak, and
Lamport [92] were the first to propose a solution that has optimal resilience to t < n/3
and optimal worst-case t + 1 synchronous rounds with exponential communication costs.
Dolev and Strong [41] proposed the first solution that has optimal resilience and polyno-
mial communication costs but not with optimal worst-case rounds. Garay and Moses [63]
proposed the first solution for binary-valued Byzantine agreement with optimal resilience,
polynomial communication costs, optimal t + 1 rounds, and early termination. Kowalski
and Mostéfaoui [71] proposed the first multivalued optimal resilience, polynomial communi-
cation costs, and optimal t+ 1 rounds, but without early stopping. Abraham and Dolev [1]
advance the state of the art by offering also optimal early stopping. Unlike the above BFT
multivalued consensus solutions, our BFT multivalued solution considers self-stabilization,
and its implementation is an application of the well-known technique of the recomputation
of floating outputs [42, Chapter 2.8].

1.6.4 Self-stabilizing crash-tolerant solutions

Lundström, Raynal, and Schiller [79] presented the first self-stabilizing solution for the prob-
lem of binary consensus for message-passing systems where processes may fail by crashing.
They ensure a line of self-stabilizing solutions [80, 77, 78, 66, 65]. This line follows the ap-
proach proposed by Dolev, Petig, and Schiller [48, 49] for self-stabilization in the presence
of seldom fairness. Namely, in the absence of transient-faults, these self-stabilizing solutions
are wait-free and no assumptions are made regarding the system’s synchrony or fairness of
its scheduler. However, the recovery from transient faults does require fair execution, e.g.,
to perform a global restart, see [64, 65], but only during the recovery period. Our work does
not assume execution fairness either in the presence or absence of arbitrary transient-faults.
As in MMR, our loosely-self-stabilizing BFT solution assumes fair scheduling of message
arrivals and the accessibility to an independent service for RCCs.

We note the existence of other approaches for recovering from transient faults without
assuming execution fairness during the recovery period [99, 44, 2]. However, none of these
results consider both Byzantine fault-tolerance and self-stabilization.

Algorithms for loosely-self-stabilizing systems [102, 103, 104, 68, 53] mainly focus on the
task of leader election and population protocols. Recently, Feldmann, Götte, and Schei-
deler [60] proposed a loosely-self-stabilizing algorithm for congestion control. Considering
a message-passing system prone to Byzantine failures, we implement leaderless binary con-
sensus. Our loosely-self-stabilizing design criterion is slightly weaker than the one studied
in [102, 103, 104, 68, 60] since it requires the loosely-self-stabilizing condition to hold only
eventually.

1.6.5 Self-stabilizing BFT solutions

In the context of this dual design criteria, there are solutions for clock synchroniza-
tion [111, 93, 81, 39, 110, 34, 38, 10, 67, 51, 76, 70], storage [17, 16, 20, 19, 18, 15, 14],
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and gathering of mobile robots [5, 6, 36, 35]. There are also SSBFT solutions for link-
coloring [82, 98], topology discovery [47, 91], overlay networks [40], exact agreement [33]
approximate agreement [21], asynchronous unison [55], communication in dynamic net-
works [83], and reliable broadcast [57, 84]. The most relevant work is the one by Binun
et al. [12, 13] and Dolev et al. [45] for a deterministic BFT emulation of state-machine repli-
cation. Binun et al. present the first self-stabilizing solution for synchronous message-passing
systems and Dolev et al. present the first practically-self-stabilizing solution for partially-
synchronous settings, utilizing failure detectors. We study another problem, which is binary
consensus. Note that in practically-self-stabilizing systems there can be a bounded number
of possible safety violations during any practically infinite period of the system execution,
whereas loosely-self-stabilizing systems recover within a bounded (expected) time with no
further safety violations.

To the best of our knowledge, the only SSBFT RCCs construction is the one by Ben-Or,
Dolev, and Hoch [10], in short BDH, for synchronous (pulse-based) systems with private
channels. They use a pipeline technique to transform the non-self-stabilizing synchronous
BFT coin-flipping algorithm of Feldman and Micali [59] into a self-stabilizing one; the work
in [59] assumes private channels. In [10], BDH have used their SSBFT RCCs construction
as a building block for devising an SSBFT synchronous clock synchronization solution.

Our work borrows several mechanisms from BDH, such as SSBFT RCCs and SSBFT
clock synchronization. We also borrow proof techniques from their random algorithm for
providing SSBFT digital clock synchronization. We note the existence of an earlier SSBFT
algorithm for deterministic digital clock synchronization by Dolev and Welch [52] rather than
BDH’s randomized solution. We decided not to base our solution on the one by Dolev and
Welch since it has exponential stabilization time.

1.7 The studied architecture of asynchronous and synchronous
components

A Blockchain can be seen as a replication service for state-machine emulation in extremely
hostile environments. The stacking of reliable broadcast protocols can facilitate this em-
ulation, see Figure 1 and Raynal [96, Ch. 16 and 19]. Specifically, the order of all state
transitions of the automaton can be agreed by using total order reliable broadcast. The
order of the broadcasts is agreed via multivalued consensus [80]. Whenever multivalued
consensus is invoked, the latter calls binary consensus for a finite number of times.

1.7.1 Using both asynchronous and synchronous components

Existing solutions for binary consensus use either randomization techniques or synchrony
assumptions in order to circumvent the mentioned impossibilities, e.g., FLP. The system as
a whole can avoid communication-related bottlenecks by making design choices that prefer
weaker synchrony assumptions for the components that are more communication demanding.
Binary consensus protocols are inherently communication-intensive since a number of them
can be invoked for every transition of the state-machine and each such invocation has to take
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reliable broadcast 
with FIFO delivery random common coins (RCCs)

binary consensus 

multivalued consensus 

reliable broadcast with total-order delivery

emulation of state-machine replication 

message-passing system

object 
recycling

Figure 1: The hybrid architecture of asynchronous and synchronous components. The stud-
ied problem (which appears in boldface font and is surrounded by a thick frame) assumes no
explicit synchrony, but it requires the availability of a service for RCCs (which appears in
italic font) and fair scheduling of message arrival (which does not depend on the current coin
value). The object recycling mechanism (which appears in italic font and is surrounded by a
dashed frame) assumes synchrony. The other system components mentioned in Section 1.7
are presented in plain font.

at least two communication rounds, due to a lower bound by Keidar and Rajsbaum [69].
Therefore, we select to study the non-self-stabilizing probabilistic MMR algorithm [87] for
solving binary consensus (in asynchronous systems) while assuming access to RCCs.

1.7.2 Random common coins (RCCs)

As already mentioned, BDH presented a synchronous SSBFT RCCs solution for synchronous
message passing systems. Algorithm A, which has the output of randi ∈ {0, 1}, is said to
provide an RCC if A satisfies the following:

• RCC-completion: A provides an output within ∆A ∈ Z+ synchronous rounds.

• RCC-unpredictability: Denote by Ex∈{0,1} the event that for any non-faulty process,
pj, it holds randj = x occurs with constant probability px > 0. Suppose either E0 or E1

occurs at the end of round ∆A. We require that the adversity can predict the output of
A by the end of round ∆A−1 with a probability that is not greater than 1−min{p0, p1}.
Just like MMR’s PODC 2014 variation, this work assumes that p0 = p1 = 1/2.

The correctness of our solution depends on the existence of a self-stabilizing RCC service,
e.g., BDH. BDH considers (progress) enabling instances of RCCs if there is x ∈ {0, 1} such
that for any non-faulty process pi, we have randi = x. BDH correctness proof depends on
the consecutive existence of two enabling RCCs instances.

1.7.3 Recycling and initializing of completed consensus objects

We clarify the advantage of the studied architecture that considers a hybrid model that is
composed of asynchronous, i.e., MMR for the model of BAMPn,t[−FC, t < n/3,RCCs], and
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synchronous, i.e., BDH for the model of BSMPn,t[κ−SGC, t < n/3,RCCs], components.
The proposed solution uses a synchronous mechanism for object recycling, which we

propose in Section 5 using a synchronous RCCs service, such as BDH. That is, whenever an
asynchronous consensus object has completed its task, the synchronous recycling mechanism
re-initializes the object’s state together with the associated instance of an RCCs service—
this synchronous re-initialization facilitates the use of the single instance object in a self-
stabilizing manner. As we explain in sections 2.1.3 and 2.4.1, this simplifies the correctness
proof since it implies that recovery from transient-faults depends only on the completion of
all operations after the occurrence of the last transient fault.

A straightforward extension can further mitigate the effect of the synchronization im-
posed by the recycling mechanism via the recycling of a predefined number of asynchronous
objects at a time (Section 4.2). This way, the communication-intensive components remain
asynchronous and synchronization occurs less often.

We point out another (challenging) extension that can be the subject of future work.
Canetti and Rabin [28, Section 8] present an asynchronous (non-self-stabilizing) version (and
matching implementation) of the synchronous requirements above. The proposed solution
could further increase the degree of asynchrony by using a self-stabilizing variation of Canetti
and Rabin. This would allow to assume that each asynchronous consensus object has its
own instance of an asynchronous RCCs service, such as the one by Canetti and Rabin [28,
Section 8].

1.8 Our contribution

We present a fundamental module for dependable distributed systems: a loosely-self-
stabilizing asynchronous binary consensus algorithm for message-passing systems that are
prone to Byzantine process failures. We obtain this new loosely-self-stabilizing algorithm
via a transformation of the non-self-stabilizing probabilistic MMR algorithm by Mostéfaoui,
Moumen, and Raynal [87] for the BAMPn,t[−FC, t < n/3,RCCs] model. MMR assumes that
t < n/3 and completes within O(1) expected time, where t is the number of faulty processes
and n is the total number of processes. The proposed algorithm preserves these elegant
properties of MMR.

In order to bound the amount of memory required to implement MMR (and our variation
of MMR), we use M ∈ Z+ as a bound on the number of rounds. This implies that with a
probability in O(2−M) the safety requirement of Definition 1.1 can be violated. However, as
we clarify (Remark 3.1), by selecting a sufficiently large value of M , the risk of violating the
safety requirements becomes negligible at affordable costs.

In the absence of transient-faults, our solution achieves consensus within a constant
expected time (without assuming execution fairness). After the occurrence of any finite
number of arbitrary transient-faults, the system recovers within a constant time (in terms of
asynchronous communication rounds) while assuming execution fairness. Unlike in MMR,
each process uses a bounded amount of memory. Moreover, the communication costs of
our algorithm are similar to the non-self-stabilizing MMR algorithm. That is, in every
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communication round, the proposed solution requires every non-faulty process to complete
at least one round-trip with every other non-faulty process.

For the sake of providing a complete solution, this work also provides an SSBFT mecha-
nism for the model of BSMPn,t[κ−SGC, t < n/3,RCCs] that recycles distributed objects, such
as the proposed MMR solution. The proposed recycling mechanism recovers after the oc-
currence of the last transient fault within O(max{κ, 2(t+ 1)}) synchronous rounds, where κ
is a predefined constant (Section 1.4) and t is an upper bound on the number of Byzantine
nodes. We obtain this part of the solution via a novel algorithmic composition of existing
solutions, such as recomputation of floating output, SSBFT multivalued consensus, and a
modified version of SSBFT clock synchronization. In the context of SSBFT, this composition
is of special interest since it can be used not only for object recycling, because it implements
SSBFT unison for the BSMPn,t[κ−SGC, t < n/3,RCCs] model. We also present, to the best
of our knowledge, the first SSBFT synchronous multivalued consensus solution, which is
needed for the implementation of our SSBFT object recycling mechanism.

To the best of our knowledge, we propose the first loosely-self-stabilizing
BFT algorithm for solving the problem of binary consensus in the model of
BAMPn,t[−FC, t < n/3,RCCs] and the SSBFT recycling of these consensus objects in the
model of BSMPn,t[κ−SGC, t < n/3,RCCs]. As we have explained in Section 1.7.3, the com-
position of these two parts of the proposed solution has a long line of distributed applications,
such as service replication and Blockchain. Thus, our contribution can facilitate solutions
that are more fault-tolerant than the existing implementations which they cannot recover
after the occurrence of the last transient fault.

1.9 Document structure

The paper proceeds with the system settings (Section 2). Section 3 briefly explains the MMR
algorithm. It then presents a non-self-stabilizing interpretation of MMR that embodies the
reliability guarantees for broadcast-based communications that the proposed solution uses.
This non-self-stabilizing algorithm is a steppingstone to our loosely-self-stabilizing algorithm
that is featured (along with its correctness poof) in Section 4. Section 5 presents a SSBFT
recycling mechanism for BSMPn,t[κ−SGC, t < n/3,RCCs], and Section 6 concludes the paper.

For the reader’s convenience, Table 1 (given before the bibliography) includes the Glos-
sary, where all abbreviations are listed.

2 System Settings for BAMPn,t[−FC, t < n/3,RCCs]

We consider an asynchronous message-passing system that has no guarantees on the commu-
nication delay. Moreover, there is no notion of global (or universal) clocks and the algorithm
cannot explicitly access the local clock (or timeout mechanisms). The system consists of a
set, P , of n fail-prone nodes (sometimes called processes or processors) with unique iden-
tifiers. Any pair of nodes pi, pj ∈ P has access to a bidirectional communication channel,
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channel j,i, that, at any time, has at most channelCapacity ∈ N packets on transit from pj to
pi (this assumption is due to a well-known impossibility [42, Chapter 3.2]).

In the interleaving model [42], the node’s program is a sequence of (atomic) steps. Each
step starts with an internal computation and finishes with a single communication operation,
i.e., a message send or receive. The state, si, of node pi ∈ P includes all of pi’s variables and
channel j,i. The term system state (or configuration) refers to the tuple c = (s1, s2, · · · , sn).
We define an execution (or run) R = c[0], a[0], c[1], a[1], . . . as an alternating sequence of
system states c[x] and steps a[x], such that each c[x+ 1], except for the starting one, c[0], is
obtained from c[x] by a[x]’s execution.

2.1 Task specifications

Next, we detail the studied task.

2.1.1 Returning the decided value

Definition 1.1 considers the propose(v) operation. We refine the definition of propose(v) by
specifying how the decided value is retrieved. This value is either returned by the propose()
operation (as in the studied algorithm [87]) or via the returned value of the result() operation
(as in the proposed solution). In the latter case, the symbol ⊥ is returned as long as no
value was decided. Also, the symbol Ψ indicates a (transient) error that occurs only when
the proposed algorithm exceeds the bound on the number of iterations that it may take.

2.1.2 Randomized guarantees

The studied algorithm has a randomized guarantee with respect to the liveness require-
ment, i.e., BC-completion. Specifically, MMR states that each non-faulty node de-
cides with probability 1. Also, since MMR is a round-based algorithm, it holds that
limr→+∞(PrMMR[pi decides by round r]) = 1.

In order to bound the amount of memory that the proposed algorithm uses, the
proposed solution allows the algorithm to run for a bounded number of rounds.
Specifically, there is a predefined constant, M ∈ Z+, such that the probability of
Prproposed [pi decides by round M+1] = 1. Due to this, the proposed algorithm provides a
randomized guarantee with respect to the safety requirements, i.e., BC-validity and BC-
agreement. Specifically, Prproposed [pi satisfies the safety requirements] = 1 − O(2−M). In
other words, the proposed solution has weaker guarantees than the studied algorithm with
respect to the safety requirements.

2.1.3 Invocation by algorithms from higher layers

We assume that the studied problem is invoked by algorithms that run at higher layers, such
as multivalued consensus, see Figure 1. This means that eventually there is an invocation, I,
of the proposed algorithm that starts from a well-initialized system state. That is, immedi-
ately before invocation I, all local states of all non-faulty nodes have the (predefined) initial
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values in all variables and the communication channels do not include messages related to
invocation I.

For the sake of completeness, we illustrate briefly how the assumption above can be cov-
ered [94] in the studied hybrid asynchronous/synchronous architecture presented in Figure 1.
Suppose that upon the periodic installation of the common seed, the system also initializes
the array of binary consensus objects that are going to be used with this new installation.
In other words, once all operations of a given common seed installation are done, a new
installation occurs, which also initializes the array of binary consensus objects that are going
to be used with the new common seed installation. Note that the efficient implementation
of a mechanism that covers the above assumption is outside the scope of this work.

2.1.4 Legal executions

The set of legal executions (LE) refers to all the executions in which the requirements of
task T hold. In this work, TbinCon denotes the task of binary consensus, which Definition 1.1
specifies, and LEbinCon denotes the set of executions in which the system fulfills TbinCon’s
requirements.

Due to the BC-completion requirement (Definition 1.1), LEbinCon includes only finite
executions. In Section 2.4.2, we consider executions R = R1◦R2◦, . . . as infinite compositions
of finite executions, R1, R2, . . . ∈ LEbinCon, such that Rx includes one invocation of task
TbinCon, which always satisfies the liveness requirement, i.e., BC-completion, but, with an
exponentially small probability, it does not necessarily satisfy the safety requirements, i.e.,
BC-validity and BC-agreement.

2.2 The fault model and self-stabilization

A failure occurrence is a step that the environment takes rather than the algorithm.

2.2.1 Benign Failures

When the occurrence of a failure cannot cause the system execution to lose legality, i.e., to
leave LE, we refer to that failure as a benign one.

Communication failures and fairness We consider solutions that are oriented towards
asynchronous message-passing systems and thus they are oblivious to the time at which the
packets arrive and depart. We assume that any message can reside in a communication
channel only for a finite period. Also, the communication channels are prone to packet
failures, such as omission, duplication, and reordering. However, if pi sends a message
infinitely often to pj, node pj receives that message infinitely often. We refer to the latter
as the fair communication assumption. We also follow the assumption of MMR regarding
the fair scheduling of message arrivals (also in the absence of transient-faults) that does not
depend on the current coin’s value. I.e., the adversary does not control the network’s ability
to deliver messages to non-faulty nodes.
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We note that MMR assumes reliable communication channels whereas the proposed solu-
tion does not make any assumption regarding reliable communications. Section 3.2 provides
further details regarding the reasons why the proposed solution cannot make this assumption.

Arbitrary node failures Byzantine faults model any fault in a node including crashes,
arbitrary behavior, and malicious behavior [75]. Here the adversary lets each node receive the
arriving messages and calculate its state according to the algorithm. However, once a node
(that is captured by the adversary) sends a message, the adversary can modify the message
in any way, delay it for an arbitrarily long period or even remove it from the communication
channel. Note that the adversary has the power to coordinate such actions without any
limitation on his computational or communication power.

We also note that the studied algorithm, MMR, assumes the absence of spoofing attacks,
and thus authentication is not needed. Also, the adversary cannot change the content of
messages sent from a non-faulty node. Since MMR assumes the availability of a RCCs
service, and since the only available, to the best of our knowledge, self-stabilizing RCCs
algorithm, BDH [10], assumes private channels, we also assume that the communications
between any two non-faulty nodes are private. That is, it cannot be read by the adversary.

For the sake of solvability [75, 92, 106], the fault model that we consider limits only
the number of nodes that can be captured by the adversary. That is, the number, t, of
Byzantine failure needs to be less than one-third of the number, n, of nodes in the system,
i.e., 3t + 1 ≤ n. The set of non-faulty nodes is denoted by Correct and called the set of
non-faulty nodes.

2.2.2 Arbitrary transient-faults

We consider any temporary violation of the assumptions according to which the system was
designed to operate. We refer to these violations and deviations as arbitrary transient-faults
and assume that they can corrupt the system state arbitrarily (while keeping the program
code intact). The occurrence of an arbitrary transient fault is rare. Thus, our model assumes
that the last arbitrary transient fault occurs before the system execution starts [42]. Also,
it leaves the system to start in an arbitrary state.

2.2.3 Dijkstra’s self-stabilization

An algorithm is self-stabilizing with respect to the task of LE, when every (unbounded)
execution R of the algorithm reaches within a finite period a suffix Rlegal ∈ LE that is legal.
Namely, Dijkstra [37] requires ∀R : ∃R′ : R = R′ ◦ Rlegal ∧ Rlegal ∈ LE ∧ |R′| ∈ Z+, where
the operator ◦ denotes that R = R′ ◦R′′ is the concatenation of R′ with R′′. The part of the
proof that shows the existence of R′ is called the convergence (or recovery) proof, and the
part that shows that Rlegal ∈ LE is called the closure proof. The main complexity measure
of a self-stabilizing system is the length of the recovery period, R′, which is counted by the
number of its asynchronous communication rounds during fair executions, as we define in
Section 2.4.
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2.3 Execution fairness and wait-free guarantees

We say that a system execution is fair when every step of a correct node that is applicable
infinitely often is executed infinitely often and fair communication is kept. Self-stabilizing
algorithms often assume that their executions are fair [42]. Wait-free algorithms guarantee
that any operation (that was invoked by non-failing nodes) is always complete in the presence
of asynchrony and any number of node failures. This work assumes execution fairness during
the period in which the system recovers from the occurrence of the last arbitrary transient
fault. In other words, the system is wait-free only during legal executions, which are absent
from arbitrary transient-faults. Moreover, the system recovery from arbitrary transient-
faults is not wait-free, but this bounded recovery period occurs only once throughout the
system execution.

2.4 Asynchronous communication rounds

As explained in Section 1.5, it is well-known that self-stabilizing algorithms cannot (stop
their execution and) stop sending messages [42, Chapter 2.3]. Moreover, their code includes
a do-forever loop. The proposed algorithm uses M communication round numbers. Let
r ∈ {1, . . . ,M} be a round number. We define the r-th asynchronous (communication)
round of an algorithm’s execution R = R′ ◦Ar ◦R′′ as the shortest execution fragment, Ar,
of R in which every correct node pi ∈ P : i ∈ Correct starts and ends its r-th iteration,
Ii,r, of the do-forever loop. Moreover, let mi,r,j,ackReq=True be a message that pi sends to pj
during Ii,r, where the field ackReq = True implies that an acknowledgment reply is required.
Let ai,r,j,True, aj,r,i,False ∈ R be the steps in which mi,r,j,True and mj,r,i,False arrive to pj and pi,
respectively. We require Ar to also include, for every pair of correct nodes pi, pj ∈ P : i, j ∈
Correct , the steps ai,r,j,True and aj,r,i,False. We say that Ar is complete if every correct node
pi ∈ P : i ∈ Correct starts its r-th iteration, Ii,r, at the first line of the do-forever loop. The
latter definition is needed in the context of arbitrary starting system states.

Remark 2.1 For the sake of simplifying the presentation of the correctness proof, when
considering fair executions, we assume that any message that arrives in R without being
transmitted in R does so within O(1) asynchronous rounds in R.

2.4.1 Demonstrating recovery of consensus objects invoked by higher layers’
algorithms

Note that the assumption made in Section 2.1.3 simplifies the challenge of meeting the design
criteria of self-stabilizing systems. Specifically, demonstrating recovery from transient-faults,
i.e., convergence proof, can be done by showing completion of all operations in the presence
of transient-faults. This is because the assumption made in Section 2.1.3 implies that, as
long as the completion requirement is always guaranteed, then eventually the system reaches
a state in which only initialized consensus objects exist.
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2.4.2 Loosely-self-stabilizing systems

Satisfying the design criteria of Dijkstra’s self-stabilizing systems is non-trivial since it is
required to eventually satisfy strictly always the task’s specifications. These severe require-
ments can lead to some impossibility conditions, as in our case of solving binary consensus
without synchrony assumptions [4, 61, 55]

To circumvent such challenges, Sudo et al. [101] proposed the design criteria for loosely-
self-stabilizing systems, which relaxes Dijkstra’s criteria by requiring that, starting from any
system state, the system (i) reaches a legal execution within a relatively short period, and
(ii) remains in the set of legal for a relatively long period. The definition of loosely-self-
stabilizing systems by Sudo et al. considers the task of leader election, which any system
state may, or may not, satisfy. This paper focuses on an operation-based task that has both
safety and liveness requirements. Only at the end of the task execution, can one observe
whether the safety requirements were satisfied. Thus, Definition 2.2 presents a variation of
Sudo et al.’s definition that is operation-based and requires criterion (i) to hold within a
finite time rather than within ‘a short period’.

To that end, Definition 2.1 says what it means for a system S that implements operation
op() to satisfy task Top()’s safety requirements with a probability pS . Definition 2.1 uses
the term correct invocation of operation op(). Recall that in Section 2.1 we define what a
correct invocation of binary consensus is, i.e., it is required that all correct nodes invoke the
propose() operation exactly once during any execution that is in LEbinCon.

Definition 2.1 specifies probabilistic satisfaction of repeated invocations of operation op().

Definition 2.1 For a given system S that aims at satisfying task Top() in a probabilistic
manner, denote by IES(LEop()) the set of all infinite executions that system S can run, such
that for any R ∈ IES(LEop()) it holds that R = R1 ◦ R2◦, . . . is an infinite composition of
finite executions, R1, R2, . . . ∈ LEop(). Moreover, each Rx : x ∈ Z+ includes the correct
invocation of op() that always satisfies Top()’s liveness requirements.

We say that R satisfies task Top()’s safety requirements with probability PrR if (i) for any
x ∈ Z+ it holds that Rx ∈ LEop() with probability PrRx ≤ PrR and (ii) for any x, y ∈ Z+

the event of Rx ∈ LEop() and Ry ∈ LEop() are independent. Furthermore, we say system S
satisfies task Top() with probability PrS if ∀R ∈ IES(LEop()) : PrR ≤ PrS .

Definition 2.2 specifies probabilistic operation-based eventually-loosely-self-stabilizing
systems.

Definition 2.2 (Eventually-loosely-self-stabilizing systems) Let S be a system that
implements a probabilistic solution for task Top(). Let R be any unbounded execution of
S, which includes repeated sequential and correct invocations of op(), such that task Top()
completes within a period of `S steps in R. Suppose that within a finite number of steps
in R, the system S reaches a suffix of R that satisfies Top()’s safety requirements with the
probability PrS = 1− p : p ∈ o(`S). In this case, we say that system S is eventually-loosely-
self-stabilizing, where `S is the complexity measure.
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Definition 2.2 says that any eventually-loosely-self-stabilizing system recovers within a
finite period. After that period, the probability to violate safety-requirement is exponentially
small. This work shows that the studied algorithm has an eventually-loosely-self-stabilizing
variation for which the probability to violate safety can be made so low that it becomes
negligible (Remark 3.1).

3 Non-self-stabilizing MMR for BAMPn,t[−FC, t < n/3,RCCs]

We review the MMR algorithm (Section 3.1). This algorithm considers a communication ab-
straction named BV-broadcast, which we bring before we present the details of MMR. Then,
we present a non-self-stabilizing BFT algorithm (Section 3.2) that serves as a steppingstone
to the proposed SSBFT algorithm (Section 4).

3.1 The MMR algorithm

Algorithm 1 presents the MMR algorithm [87], which considers an underlying communication
abstraction named BV-broadcast. Recall that the set Correct denotes the set of nodes that
do not commit failures.

3.1.1 Broadcasting of binary-values

MMR uses an all-to-all broadcast operation of binary values. That is, the operation,
bvBroadcast(v), assumes that all the correct nodes invoke bvBroadcast(w), where v, w ∈
{0, 1}.

Task definition The set of values that are BV-delivered to node pi are stored in the read-
only variable binV aluesi, which is initialized to ∅. Next, we specify under which conditions
values are added to binV aluesi.

• BV-validity. Suppose that v ∈ binV aluesi and pi is correct. It holds that v has been
BV-broadcast by a correct node.

• BV-uniformity. v ∈ binV aluesi and pi is correct. Eventually ∀j ∈ Correct : v ∈
binV aluesj.

• BV-completion. Eventually ∀i ∈ Correct : binV aluesi 6= ∅ holds.

The above requirements imply that eventually ∃s ⊆ {0, 1} : s 6= ∅ ∧ ∀i ∈ Correct :
binV aluesi = s and the set s does not include values that were BV-broadcast only by
Byzantine nodes.
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Algorithm 1: Non-self-stabilizing MMR algorithm for Binary BFT consensus with
t < n/3, O(n2) messages, and O(1) expected time; code for pi

1 operation bvBroadcast(v) do broadcast bVAL(v);

2 upon bVAL(vJ ) arrival from pj begin
3 if (bVAL(vJ ) received from (t+ 1) different nodes and bVAL(vJ ) not yet

broadcast) then
4 broadcast bVAL(vJ) /* a node echoes a value only once */

5 if (bVAL(vJ ) received from (2t+ 1) different nodes) then
6 binValues ← binValues ∪ {vJ} /* local delivery of a value */

7 operation propose(v) begin
8 (est, r)← (v, 0);

9 do forever begin
10 r ← r + 1;
11 bvBroadcast EST[r](est);
12 wait(binValues [r] 6= ∅) ; /* binValues [r] has not necessarily obtained

its final value when wait returns */

13 broadcast AUX[r](w) where w ∈ binValues [r];
14 wait ∃ a set of binary values, vals , and a set of (n−t) messages AUX[r](x),

such that vals is the set union of the values, x, carried by these (n−t)
messages ∧ vals ⊆ binValues [r];

15 s[r]← randomBit();
16 if (vals = {v}) then % i.e., |vals| = 1 %
17 if (v = s[r]) then
18 decide(v) if not yet done

19 est← v;

20 else est← s[r];

Implementation MMR uses the bvBroadcast(v) operation (line 1) to reliably deliver a
bVAL(v) message containing a single binary value, v. Such values are propagated via a
straightforward “echo” mechanism that repeats any arriving value at most once per sender.
In detail, the mechanism invokes a broadcast of the proposed value v. Upon the arrival of
value vJ from at least t+ 1 distinct nodes, vJ is replayed via broadcast (but only if this was
not done earlier). Also, if vJ was received by at least 2t+1 different nodes, then vJ is added
to a set binValues . On round r of MMR’s operation propose(v), the set binValues appears
as binValues [r].

Note that no correct node can become aware of when its local copy of the set binV alues
has reached its final value. Suppose this would have been possible, consensus can be solved
by instructing each node deterministically select a value from the set binV alues and by that
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contradict FLP [62].

3.1.2 MMR’s binary randomized consensus algorithm

Variables Algorithm 1 uses variable r (initialized by zero) for counting the number of
asynchronous communication rounds. The variable est holds the current estimate of the
value to be decided. As mentioned in Section 1.7.2, the operation randomBit(r) retrieves
the value of the RCC on round r. The set vals ⊆ {0, 1} holds the value received during the
current round. Recall that node pi ∈ P stores the binary values received in a round r via a
bvBroadcast() in the read-only set binV aluesi[r].

Detailed description MMR’s main algorithm (appearing as the propose(v) operation)
comprises three phases. After initialization (line 8), Algorithm 1 enters a do forever loop
(lines 9–20) that executes endlessly, reflecting the non-deterministic nature of its completion
guarantees. Every iteration signifies a new round of the protocol by initiating with a round
number increment (line 10) and is performed via the following phases.

• Query the estimated binary values (lines 11–12): The estimate est is broadcast via
the bvBroadcast() protocol. Due to the BV-completion property, eventually, the set
binValues [r] is populated with at least one binary value, w. Even though the system
might not reach the final value of the set during round r, by BV-validity we know that
any value in the set is an estimated value during round r of at least one correct node.

• Inform about the query results (lines 13–14): The auxiliary message, AUX(w), carrying
the value of binValues [r] is broadcast. Note that all the correct nodes, pj, broadcast
w ∈ valuesj[r], i.e., a value that is estimated by at least one correct node. However,
arbitrary binary values can be broadcast by the Byzantine nodes.

Processor pi then waits for the arrival of AUX(w) messages from n− t distinct nodes,
and gathers their attached values, w, in the set vals . By waiting for n − t arrivals of
these AUX() messages, Algorithm 1 can:

– Sift out values that were sent only by Byzantine nodes, cf. valsi ⊆ binValues i[r]
at line 14.

– Guarantee that, for a given round r, it holds that ∃i ∈ Correct : valsi = {v} =⇒
∀j ∈ Correct : v ∈ valsj. Also, valsi ⊆ {0, 1} and any v ∈ valsi is an estimated
value that was BV-broadcast by at least one correct node.

• Try-to-decide (lines 16–20): If there is a single value in vals , then this value serves as
the estimated value for the next round. This is also the decided value if it coincides with
the output of the RCC and the node has not yet decided. If vals contains both of the
binary values, the RCC output serves as the estimated value for the next round. Note
that deciding on a value does not mean that any node can stop executing Algorithm 1.
(The non-self-stabilizing version of MMR can be found in [87].)
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We end the description of Algorithm 1 by bringing a couple of examples that illustrate
how the try-to-decide phase works. Note that if all correct nodes estimate the same value
during round r, then ∃x ∈ {0, 1} : ∀i ∈ Correct : x ∈ binValues [r]i holds, which means
that ∃x ∈ {0, 1} : ∀i ∈ Correct : valsi = {x} holds during round r. Moreover, the proof of
MMR [87] shows that ∃x ∈ {0, 1} : ∀i ∈ Correct : valsi = {x} holds for any round r′ ≥ r.
Thus, the decision of x depends only on the value of the RCC. In other words, the RCC has
the “correct value” with probability 1/2 and the algorithm decides.

Now suppose that, for any reason, ∃x ∈ {0, 1} : ∀i ∈ Correct : valsi = {x} does not hold
during round r. Then, any node that decides on round r decides the value of the common
coin. Also, the ones that do not decide on round r, since vals = {0, 1}, estimate for round
r+ 1 the value of the common coin. Therefore, BC-agreement holds in this case. Moreover,
all the nodes for which vals = {0, 1} holds during round r select “the correct” estimated
value from the set vals with probability 1/2, and thus, the system reaches a state in which
all nodes have the same estimated value. As discussed above, this state leads to agreement
with probability 1/2. More details can be found in [87].

3.2 The non-self-stabilizing yet bounded version of the studied
algorithm

After reviewing MMR, we transform the code of Algorithm 1 into Algorithm 2, which has
a bound, M , on the number of iterations of the do-forever loop in lines 9 to 20. In this
paper, Algorithm 2 serves as a steppingstone towards the proposed solution, which appears
in Algorithm 3. We start the presentation of Algorithm 2 by weakening the assumptions
that the studied solution has about the communication channels. This will help us later
when presenting the proposed solution.

3.2.1 Variables

Algorithm 2 uses variable r (initialized to zero) for counting the number of asynchronous
communication rounds. During round r, every node pi ∈ P stores in the set esti[r][i] its
estimated decision values, where esti[0][i] = {v} stores its own proposal and esti[M+1][i]
aims to hold the decided value. Since nodes exchange these estimates, esti[r][j] stores the
last estimate that pi received from pj. Note that esti[r][j] ⊆ {0, 1} holds a set of values and
it is initialized by the empty set, ∅. At the end of round r, node pi ∈ P tests whether it is
ready to decide after it selects a single value w ∈ esti[r][i] to be exchanged with other nodes.
In order to ensure reliable broadcast in the presence of packet loss, there is a need to store
w in auxiliary storage, auxi[r][i], so that pi can retransmit w. Note that all entries in aux[][]
are initialized to ⊥.

3.2.2 Transforming the assumptions about the communication channels

MMR assumes reliable communication channels when broadcasting in a quorum-based man-
ner, i.e., sending the same message to all nodes in the system and then waiting for a reply
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Algorithm 2: Non-self-stabilizing BFT binary consensus that uses M iterations
and violates safety with a probability that is in O(1/2M); code for pi.

21 operations: propose(v) do {(est[0][i], aux[0][i]← ({v},⊥)};
22 result() do {if (est[M+1][i] = {v}) then return v else if (r ≥M ∧ infoResult() 6= ∅) then

returnΨelse return ⊥;}
23 macros: binValues(r, x) return {y ∈ {0, 1} : ∃s ⊆ P : |{pj ∈ s : y ∈ est [r][j]}| ≥ x};
24 infoResult() do {if (∃s ⊆ P : n−t ≤ |s| ∧ (∀pj ∈ s : aux [r][j] ∈ binValues(r, 2t+1))) then return
{aux [r][j]}pj∈s else return ∅};

25 functions: decide(x) begin
26 if (est[M+1][i] = ∅ ∨ aux[M+1][i] = ⊥) then (est[M+1][i], aux[M+1][i])← ({x}, x);

27 tryToDecide(values) begin
28 if (values 6= {v}) then est[r][i]← {randomBit(r)};
29 else {est[r][i]← {v}; if (v = randomBit(r)) then decide(v)};

30 do forever begin
31 if (est[0][i] 6= ∅) then
32 r ← min{r+1,M};
33 repeat
34 foreach pj ∈ P do send EST(True, r, est[r−1][i] ∪ binValues(r, t+1)) to pj
35 if (∃w ∈ binValues(r, 2t+1)) then aux[r][i]← w;

36 until aux[r][i] 6= ⊥;
37 repeat
38 foreach pj ∈ P do send AUX(True, r, aux[r][i]) to pj
39 until infoResult() 6= ∅;
40 tryToDecide(infoResult());

41 upon EST(aJ , rJ , vJ ) arrival from pj do begin
42 est[rJ ][j]← est[rJ ][j] ∪ vJ ;
43 if (aJ ) then send EST(False, rJ , est[rJ−1][i]) to pj ;

44 upon AUX(aJ , rJ , vJ ) arrival from pj do begin
45 if (vJ 6= ⊥) then aux[rJ ][j]← vJ ;
46 if (aJ ) then send AUX(False, rJ , aux[rJ ][i]) to pj ;

from the maximum number of nodes that guarantee never to block forever. After explain-
ing why the proposed algorithm cannot make this assumption, we present how Algorithm 2
provides the needed communication guarantees.

The challenge Without a known bound on the capacity of the communication channels,
self-stabilizing end-to-end communications are not possible [42, Chapter 3]. In the context of
self-stabilization and quorum systems, Dolev, Petig, and Schiller [49] explained that one has
to avoid situations in which communicating in a quorum-based manner can lead to a con-
tradiction with the system assumptions. Specifically, the asynchronous nature of the system
can imply that there is a subset of nodes that are able to complete many round-trips with a
given sender, while the other nodes in P accumulate messages in their communication chan-
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nels, which must have bounded capacity. If such a scenario continues, the channel capacity
might drive the system either to block or remove messages from the communication channel
before their delivery. Therefore, the proposed solution weakens the required properties for
FIFO reliable communications when broadcasting in a quorum-based manner.

Self-stabilizing communications One can consider advanced automatic repeat request
(ARQ) algorithms for reliable end-to-end communications, such as the ones by Dolev et
al. [46, 43]. However, our variation of MMR requires only communication fairness. Thus, we
can address the above challenge by looking at simple mechanisms for assuring that, for every
round r, all correct nodes eventually receive messages from at least n− t nodes (from which
at least n− 2t must be correct). For the sake of a simple presentation, we start by reviewing
these considerations for the AUX() messages before the ones for the EST() messages.

AUX() messages For a given round number, r, sender pj, and receiver pi, the repeat-
until loop in lines 38 to 39 makes sure, even in the presence of packet loss, that pi receives
at least (n − t) messages of AUX(•, rnd = r, aux = w) : auxj[r][j] = w from distinguish-
able senders. This is because line 38 broadcasts the message AUX(ack = True, rnd = r, •)
and upon its arrival to pj, line 46 replies with AUX(ack = False, rnd = r, •). Note that
duplication is not a challenge since, for a given round number r, pj always sends the same
AUX(•, rnd = r, aux = w) : auxj[r][j] = w message. Algorithm 2 deals with packet re-
ordering by storing all information arriving via AUX[]() messages in the array aux[][]. We
observe from the code of Algorithm 2 that FIFO processing is practiced since during the
r-th iteration of the do-forever loop in lines 30 to 40, node pi nodes only the values stored
in auxi[r][].

EST() messages. Recall that Algorithm 1 uses the bvBroadcast() operation for broad-
casting EST[r](est[r]) messages (line 11). The operation bvBroadcast() sends bVAL(v) mes-
sages, where v = est[r−1] and possibly also the complementary value v′ ∈ {0, 1}\{est[r−1]}.

For the sake of a concise presentation, Algorithm 2 embeds the code of operation
bvBroadcast() into its own code. Thus, in Algorithm 2, node pi sends EST(•, rnd = r, est = e)
messages, where the value e of the field est is a set that includes pi’s estimated value,
v : esti[r−1][i] = {v}, from round number r − 1 and perhaps also the complementary value,
v′ ∈ binValues(r, t+1) \ {v}, see line 34 for details (binValues() may return any subset of
{0, 1}). Note that once pi adds the complementary value, v′, to the field est, the value v′

remains in the field est in all future broadcasts of EST(•, rnd = r, est = e).
Thus, the repeat-until loop in lines 33 to 36 has at least one value, v, that appears in

the field est of every EST(•, rnd = r, est = e) message, and a complementary value, v′,
that once it is added, it always appears in e. Thus, eventually, pi broadcasts the same
EST(•, rnd = r, est = e) message. Therefore, packet loss is tolerated due to the broadcast
repetition in lines 33 to 36. Duplication is tolerated due to the union operator that pi
uses for storing arriving information from pj (line 42). Concerning reordering tolerance,
the value esti[r−1][i] always appears in e. Thus, once the value v is added to estj[r−1][i]
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due to the arrival of a EST(•, rnd = r, est = {v, •}) message from pi to pj (line 42), v is
always present in estj[r−1][i]. The same holds for any complementary value, v′, that pi
adds to later on to e due to the union operation (line 42). This means, that reordering of
EST(•, rnd = r, est = {v, •}) messages that do, and do not, include the complementary
value, v′, does not play a role.

3.2.3 Detailed description

As in MMR, Algorithm 2 includes the following three stages.

1. Invocation. An invocation of operation propose(v) (line 21) initializes esti[0][i] with
the estimated value v. No communication or decision occurs before such an invocation
occurs. These actions are only possible through the lines enclosed in the do forever
loop (lines 30 to 40). These lines are not accessible before such an invocation, because
of the condition of line 31. Each iteration of the do forever loop is initiated with a
round increment (line 32); this line ensures that r is bounded by M .

2. Communication. The communication mechanism is detailed in Section 3.2.2. The
first communication phase, which queries the estimated binary values, is implemented
in the repeat-until loop of lines 33–36. The receiver’s side of this communication is
given in the code of lines 41–43. Similarly, the second communication phase, which
informs about the query results through the use of auxiliary messages, is given in the
repeat-until loop of lines 37–39. Lines 44–46 are the receiver side’s actions for this
phase.

3. Decision. The decision phase (line 40) is a call to function tryToDecide(). Lines 27
to 29 are the implementation of tryToDecide(). This exactly maps the Try-to-decide
phase of MMR: (i) If the values set that was composed of the auxiliary messages that
were received is a single value, then this is the estimate of the next round. (ii) If this
is also the output of randomBit() then this is the value to be decided. (iii) If values
is not a single value then the estimate for the next round is the randomBit() output.
The actual decision action (line 26) is for both est[M + 1][i] and aux[M + 1][i] to be
assigned the decided value.

As specified in Section 2.1, the function result() (line 22) aims to return the decided value.
However, the ⊥ symbol is returned when no value was decided. Also, it indicates whether
r has exceeded the limit M, in which case it returns the error symbol Ψ, laying the ground
for the proposed self-stabilizing algorithm presented in Section 4 (Algorithm 3).

3.2.4 Bounding the number of iterations

Algorithm 2 preallocatesO(M) of memory space for every node in the system, whereM ∈ Z+

is a predefined constant that bounds the maximum number of iterations that Algorithm 2
may take. Lemma 3.1 shows that Algorithm 2 may exceed the limit M with a probability
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that is in O(2−M). Once that happens, the safety requirements of Definition 1.1 can be
violated. As an indication of this occurrence, the result() operation returns the transient
error symbol, Ψ, which some nodes might return. Remark 3.1 explains that it is possible to
select a value for M , such that the probability for a safety violation is negligible.

Lemma 3.1 By the end of round r, with probability Pr(r) = 1− (1/2)r, we have resulti() ∈
{0, 1} : pi ∈ P : i ∈ Correct.

Proof Sketch of Lemma 3.1 The proof uses Claim 3.2.

Claim 3.2 ∃v ∈ {0, 1} : ∀i ∈ Correct : esti[r][i] = {v} holds with the probability Pr(r) =
1− (1/2)r.

Proof of Claim 3.2 Let valuesri be the parameter that pi passes to tryToDecide() (line 27)
on round r. If ∀k ∈ Correct : valuesri = {0, 1} or ∀k ∈ Correct : valuesri = {vk(r)} hold,
pk assigns the same value to estk[r][k], which is {randomBitk(r)}, and resp., vk(r). The
remaining case is when some correct nodes assign {vk(r)} to estk[r][k] (line 29), whereas
others assigns {randomBitk(r)} (line 28).

Recall the assumption that the Byzantine nodes have no control over the network or its
scheduler. Due to the RCC properties, randomBitk(r) and randomBitk(r

′) are independent,
where r 6= r′. The assignments of {vk(r)} and {randomBitk(r)} are equal with the probability
of 1

2
. Thus, Pr(r) is the probability that [∃r′ ≤ r : randomBit(r) = v(r)] = 1

2
+ (1 − 1

2
)1
2

+
· · ·+ (1− 1

2
)r−1 1

2
= 1− (1

2
)r. 2Claim 3.2

The complete proof shows that the repeat-until loop in lines 33 to 36 cannot block forever
and that all the correct nodes pi keep their estimated value esti = {v} and consequently the
predicate (valuesr

′
i = {v}) at line 28 holds for round r′, where valuesr

′
i = ∪j∈s{aux i[r][j]}.

With probability Pr(r) = 1 − (1/2)r, by round r, randomBit(r) = v holds. Then, the if-
statement condition of line 28 does not hold and the one in line 29 does hold. Thus, all the
correct nodes decide v. 2Lemma 3.1

Remark 3.1 (safety in practical settings) By Lemma 3.1, it is known that, asymptot-
ically speaking, Pr(M) becomes exponentially small as M grows linearly. Therefore, for a
given system, S, we can select M ∈ Z+ to be, say, 150, so it would take at least `S = 10100

invocations of binary consensus to lead to at most one expected instance in which the require-
ments of Definition 1.1 are violated. Note that for M = 150, the arrays est[] and aux[][]
require the allocation of 57 bytes per node, since each node needs only 3nM + dlogMe bits
of memory. So, S can be implemented as a practical system. We believe that one expected
violation in every `S invocations implies a negligible risk.

4 Self-stabilizing BFT MMR for

BAMPn,t[−FC, t < n/3,RCCs]

Algorithm 3 presents a solution that can recover from transient-faults. We demonstrate the
correctness of that solution in Section 4.3. The boxed lines in Algorithm 3 are relevant
only to an extension (Section 4.1) that accelerates the notification of the decided value.
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Algorithm 3: Recovering from transient-faults

Recall that by Section 2.4.1, the main concern that we have when designing a loosely-self-
stabilizing version of MMR is to make sure that no transient fault can cause the algorithm
to not complete, e.g., block forever in one of the repeat-until loops in lines 33 to 36 and 37
to 39 of Algorithm 2.

Recall that Algorithm 2 is a code transformation of MMR [87] that runs for M iterations
and violates Definition 1.1’s safety requirement with a probability that is in O(2−M). The
proposed solution appears in Algorithm 3. We obtain this solution via code transformation
from Algorithm 2. The latter transformation aims to offer recovery from transient-faults.

Note that a transient fault can corrupt the state of node pi ∈ P by, for example, setting
esti[i] with {0, 1}. Line 71 addresses this concern. Another case of state corruption is when
the round counter, ri, equals to r, but there is r′ < r and entries esti[r

′] or auxi[r
′] that

point to their initial values i.e., ∃r′ ∈ {1, . . . , r−1} : esti[r
′][i] = ∅ ∨ auxi[r′][i] = ⊥. Line 73

addresses this concern. Since we wish not that the for-each condition in line 72 to hold when
a correct node decides, line 62 makes sure that all entries of est[r′] and aux[r′] store the
decided value, where r′ is any round number that is between the current round number, r,
and M+1, which is the entry that stores the decided value.

The last concern that Algorithm 3 needs to address is the fact that the repeat-until loop
in lines 37 to 39 of Algorithm 2 depends on the assumption that auxi[r][i] 6= ⊥, which is
supposed to be fulfilled by the repeat-until loop in lines 33 to 36 of Algorithm 2. However,
a transient fault can place the program counter to point at line 38 without ever satisfying
the requirement of auxi[r][i] 6= ⊥. Therefore, Algorithm 3 combines in lines 70 to 77 the
repeat-until loops of lines 33 to 36 and 37 to 39 of Algorithm 2. Similarly, it combines in
lines 80 to 82 of the upon events in lines 41 to 43 and lines 44 to 46 of Algorithm 2.

4.1 Extension: eventually silent self-stabilization Byzantine fault-
tolerance

Self-stabilizing systems can never stop the exchange of messages until the consensus object
is deactivated, see [42, Chapter 2.3] for details. We say that a self-stabilizing system is even-
tually silent if every legal execution has a suffix in which the same messages are repeatedly
sent using the same communication pattern. We describe an extension to Algorithm 3 that,
once at least t+1 nodes have decided, lets all correct nodes decide and reach the M -th round
quickly. Once the latter occurs, the system execution becomes silent. This property makes
Algorithm 3 a candidate for optimization, as described in [50].

The extension idea is to let node pi wait until at least t+1 nodes have decided. Once
that happens, pi can notify all nodes about this decision because at least one of these t+1
nodes is correct. Algorithm 3 (including the boxed code-lines) does this by setting the round
number, r, to have the value of M+1 when deciding (line 63) and allowing r to have the
value of up to M+1 (line 69). Also, line 79 decides value w whenever it sees that it was
decided by t+1 other nodes, since at least one of the must be correct.

Since a transient fault can cause the nodes to exceed their storage limit, there is a need to
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indicate that to the invoking algorithm. Therefore, the self-stabilizing version of Algorithm 3
uses the operation result() to return the transient error symbol, Ψ. In order to ensure that
∀pi ∈ P : i ∈ Correct ∧ resulti() = Ψ, the self-stabilizing version of Algorithm 3 runs a
completion procedure, that is based on additional synchronization assumptions, which we
define next. We clarify that these additional assumptions impact Algorithm 3 only in the
presence of transient-faults. Otherwise, the system is assumed to be asynchronous.

We assume that in the presence of transient-faults, any pair pi, pj ∈ P of correct nodes
is able to complete at least one round-trip of messages exchange whenever pi is able to
exchange at most θ round trips with all other correct nodes pk ∈ P \ {pi} : k ∈ Correct .
Note that a faulty node pbyz ∈ P can attempt to complete rounds trips with pi much faster
than any correct node pk. For example, pbyz can respond to any messages from pi with all
the θ acknowledgments pi would need to receive for the perspective messages that it is going
to send to pbyz. By flooding the network with responses, pbyz creates scenarios in which pi
believes that it has completed θ round trips without this ever occurring. For this reason, the
proposed completion procedure counts the number of round trips each node, pk, was able to
complete with pi ever since pj has completed a round trip with pi. Moreover, when summing
up the number of these round-trips, pi ignores the t ‘fastest’ node since they might be faulty.

By identifying the faulty nodes that are ‘too slow’, i.e., the ones that do not complete
round trips with pi according to the above synchronization assumption, pi can safely avoid
blocking when waiting for all trusted nodes to respond. Specifically, during the execution of
the completion procedure, only dedicated messages, tEST(phs, ct, val) are to be used, where
phs is a phase number, ct is a round-trip counter, and val is the sender’s latest estimated
value. The procedure uses three phases. Each phase completes (and the next one starts)
when pi receives an acknowledgment from al trusted nodes that they have entered this phase
(or a higher one). This way, when pi phase number changes from zero to one, we know that
all correct nodes were able to share the latest estimation value that they had before starting
the completion procedure. Moreover, when pi phase number changes from one to two, we
know that all correct nodes were able to share the estimated values that they received during
the first phase. Furthermore, when pi phase number changes from two to three, we know
that all correct nodes are aware that the correct nodes were able to exchange all of their
estimated values and the procedure can terminate.

4.1.1 Constants and variables:

Node pi store the round-trip counters in the ct[False,True][0, .., n−1] array, where cti[False][j]
and cti[True][j] store the sender-side, and resp., receiver-side counters of messages that pi
and pj exchange. The rt [0, .., n−1][0, .., n−1] array stores in rt i[j][k] the number of replies pi
received from pk ever since pj has completed its last round-trip with pi (or since the procedure
invocation). Both ct[][] and rt [][] holds integers of at most B = 4(θ + 1)(n + 1) states that
are initialized with the zero value. The array phs [0, .., n−1] holds the phase numbers, where
phs i[i] stores pi’s phase number and phs i[j] stores the highest value received from pj ever
since the invocation of the procedure.
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Part A of Algorithm 3: SSBFT MMR, code for pi.

47 constants: initState := (0, [[∅, . . . , ∅], . . . , [∅, . . . , ∅]], [[⊥, . . . ,⊥], . . . , [⊥, . . . ,⊥]]);

48 operations: propose(v) begin
49 (r, est, aux)← initState; est[0][i]← {v};

50 result() begin
51 if (est[M+1][i] = {v}) then return v;
52 else if (r ≥M ∧ infoResult() 6= ∅) then return Ψ;
53 else return ⊥;

54 macros: binValues(r, x) begin
55 return {y ∈ {0, 1} : ∃s ⊆ P : |{pj ∈ s : y ∈ est [r][j]}| ≥ x}

56 infoResult() begin
57 if (∃s ⊆ P : n−t ≤ |s| ∧ (∀pj ∈ s : aux [r][j] ∈ binValues(r, 2t+1))) then return

{aux [r][j]}pj∈s;
58 else return ∅;;

59 functions: decide(x) begin
60 foreach r′ ∈ {r, . . . ,M+1} do
61 if (est[r′][i] = ∅ ∨ aux[r′][i] = ⊥) then
62 (est[r′][i], aux[r′][i])← ({x}, x)

63 r ←M+1;

64 tryToDecide(values) begin
65 if (values 6= {v}) then est[r][i]← {randomBit(r)};
66 else {est[r][i]← {v}; if (v = randomBit(r)) then decide(v)};

4.2 A recyclable variation on Algorithm 3

Algorithm 4 presents a recyclable variation on Algorithm 3 that is needed for allowing the
system to sequentially instantiate and recycle an unbounded number of Algorithm 3’s objects
using an SSBFT recycling mechanism, which we propose in Section 5. The boxed code lines
highlight the modified code lines with respect to the code of Algorithm 3. Also, as before,
the line numbers of the latter continue the one of the former. We clarify that the correctness
proof (Section 4.3) focuses on Algorithm 3 rather than the straightforward added details of
Algorithm 4.

Algorithm 4 uses the array delivered[P ] (initialized to [False, . . . ,False]) for delivery indi-
cations, where deliveredi[i] : pi ∈ P stores the local indication and deliveredi[j] : pi, pj ∈ P
stores the indication that was last received from pj. This indication is set to True when-
ever a non-⊥ value is returned by result(), see lines 89 and 90. Algorithm 4 updates
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Part B of Algorithm 3: SSBFT MMR, code for pi.

67 do forever begin
68 if ((r, est, aux) 6= initState) then

69 r ← min{r+1,M +1 };
70 repeat
71 if (est[0][i] 6= {v}) then est[0][i]← {w} : ∃w ∈ est[0][i];
72 foreach r′ ∈ {1, . . . , r−1} : est[r′][i] = ∅ ∨ aux[r′][i] = ⊥ do
73 (est[r′][i], aux[r′][i])← (est[0][i], x) : x ∈ est[0][i];

74 if ((∃w ∈ binValues(r, 2t+1) ∧ (aux[r][i] = ⊥ ∨ aux[r][i] /∈
binValues(r, 2t+1))) then

75 aux[r][i]← w;

76 foreach pj ∈ P do send EST(True, r,
est[r−1][i] ∪ binValues(r, t+1), aux[r][i]) to pj;

77 until infoResult() 6= ∅;
78 tryToDecide(infoResult());

79 if (∃w ∈ binValues(M+1, t+1)) then decide(w);

80 upon EST(aJ , rJ , vJ , uJ ) arrival from pj begin
81 est[rJ ][j]← est[rJ ][j] ∪ vJ ; aux[rJ ][j]← uJ ;
82 if aJ then send EST(False, rJ , est[rJ−1][i], aux[r][i]) to pj;

delivered[j] according to the arriving values from pj (lines 112 and 116). The interface
function wasDelivered() (line 85) returns 1 whenever there is a set of at least n − t entries
with the value True in delivered[]. The interface function recycle() (line 86) allows the note
to restart its local state w.r.t. Algorithm 4.

The approach studied here considers the instantiation of one object at a time. A straight-
forward extension is to allow the allocation and recycling of a set of objects. Specifically,
one can run δ concurrent MMR instances, where δ is a parameter for balancing the trade-off
between fault recovery time and the number of MMR instances that can be used (before the
next δ concurrent instances can start).

4.3 Correctness

The correctness proof shows that the solution presented in Section 4 recovers from transient-
faults without blocking (Section 4.3.1) and that any consensus operation always satisfies the
liveness requirements of Definition 1.1 (Section 4.3.2). Also, it satisfies the safety require-
ments of Definition 1.1 in the way that loosely-self-stabilizing systems do (Section 4.3.2),
i.e., any consensus operation satisfies the requirements of Definition 1.1 with probability
Pr(r) = 1− (1/2)−M .

29



Part A of Algorithm 4: A recyclable variation of Algorithm 3; code for pi.

83 constants:
84 initState := (0, [[∅, . . . , ∅], . . . , [∅, . . . , ∅]], [[⊥, . . . ,⊥], . . . , [⊥, . . . ,⊥]],

[False, . . . ,False]);

85 provided interfaces:

wasDelivered() do {if ∃S ⊆ P : n−t ≤ |S| : ∀pk ∈ S : ∃r′ ∈ {0,
. . . , r} : delivered[k] = True then return 1 else return 0;}

86 recycle() do (r, est, aux, delivered)← initState;

87 operations: propose(v) do {recycle(); est[0][i]← {v}};

88 result() do begin

89 if (est[M+1][i] = {v}) then {delivered[i]← True; return v};
90 else if (r ≥M ∧ infoResult() 6= ∅) then {delivered[i]← True; return Ψ};
91 else return ⊥;

92 macros: binValues(r, x) return
{y ∈ {0, 1} : ∃s ⊆ P : |{pj ∈ s : y ∈ est [r][j]}| ≥ x};

93 infoResult() begin
94 if (∃s ⊆ P : n−t ≤ |s| ∧ (∀pj ∈ s : aux [r][j] ∈ binValues(r, 2t+1))) then
95 return {aux [r][j]}pj∈s else return ∅;}

96 functions: decide(x) begin
97 foreach r′ ∈ {r, . . . ,M+1} do
98 if (est[r′][i] = ∅ ∨ aux[r′][i] = ⊥) then (est[r′][i], aux[r′][i])← ({x}, x);

99 tryToDecide(values) begin
100 if (values 6= {v}) then est[r][i]← {randomBit(r)};
101 else {est[r][i]← {v}; if (v = randomBit(r)) then decide(v)};

4.3.1 Transient fault recovery

We say that a system state c is resolved if ∀i ∈ Correct :
∣∣esti[0][i]

∣∣ ∈ {0, 1} ∧ @r′ ∈
{1, . . . , r−1} : esti[r

′][i] = ∅ ∨ auxi[r′][i] = ⊥ and no communication channel that goes
out from pi ∈ P : i ∈ Correct to any other correct node includes EST(rnd = r, est =
W,aux = w) : ri < r ∨W * esti[r][i] ∨ (w 6= ⊥ ∧ w /∈ W ) messages. Suppose that during
execution R, every correct node pi ∈ P invokes proposei() exactly once. In this case, we say
that R includes a complete invocation of binary consensus. Theorem 4.1 shows recovery to
resolved system states and termination during executions that include a complete invocation
of binary consensus. The statement of Theorem 4.1 uses the term active for node pi ∈ P
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Part B of Algorithm 4: A recyclable variation of Algorithm 3; code for pi.

102 do forever begin
103 if ((r, est, aux) 6= initState) then
104 r ← min{r+1,M};
105 repeat
106 if (est[0][i] 6= {v}) then est[0][i]← {w} : ∃w ∈ est[0][i];
107 foreach r′ ∈ {1, . . . , r−1} : est[r′][i] = ∅ ∨ aux[r′][i] = ⊥ do
108 (est[r′][i], aux[r′][i])← (est[0][i], x) : x ∈ est[0][i];

109 if ((∃w ∈ binValues(r, 2t+1) ∧ (aux[r][i] = ⊥ ∨ aux[r][i] /∈
binValues(r, 2t+1))) then

110 aux[r][i]← w;

111 foreach pj ∈ P do
112 send

EST(True, r, est[r−1][i] ∪ binValues(r, t+1), aux[r][i], delivered[i]) to
pj

113 until infoResult() 6= ∅;
114 tryToDecide(infoResult());

115 upon EST(aJ , rJ , vJ , uJ , deliveredJ ) arrival from pj begin

116 delivered[i]← delivered[i] ∨ deliveredJ ;
117 est[rJ ][j]← est[rJ ][j] ∪ vJ ; aux[rJ ][j]← uJ ;
118 if aJ then send EST(False, rJ , est[rJ−1][i], aux[r][i]) to pj;

when referring to the case of esti[0][i] 6= initState.

Theorem 4.1 (Convergence) Let R be an execution of Algorithm 3. (i) Within one com-
plete asynchronous (communication) round, the system reaches a resolved state. Moreover,
suppose that throughout R all correct nodes are active. (ii) Within O(M) asynchronous
(communication) rounds, for every correct node pi ∈ P , it holds that the operation resulti()
returns v ∈ {0, 1,Ψ}, where Ψ is the transient error symbol.

Proof of Theorem 4.1 Lemmas 4.2 and 4.4 demonstrate the theorem.

Lemma 4.2 Invariant (i) holds.

Proof of Lemma 4.2 Let m be a message that in R’s starting system state resides in the
communication channels between any pair of correct nodes. By Remark 2.1, within O(1)
asynchronous rounds, the system reaches a state in which m does not appear. Let us look
at pi’s first complete iteration of the do-forever loop (lines 68 to 78) after m has left the
system. Once that happens, for any message EST(rnd = r, est = W,aux = w) that appears
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in any communication channel that is going out from pi ∈ P : i ∈ Correct , it holds that
r ≤ ri ∧W ⊆ esti[r][i] ∧ (w = ⊥ ∨ w ∈ W ) (due to lines 48 and 76).

Let Ii,r be pi’s first complete iteration in the first complete asynchronous (communication)
round of R. Suppose that in the iteration’s first system state, it holds that ∀i ∈ Correct :
(ri, esti, auxi) = initState. In this case, Invariant (i) holds by definition. In case ∀i ∈
Correct : (ri, esti, auxi) = initState does not hold, lines 71 to 73 imply that Invariant (i)
holds. Invariant (i) also holds when the round number r is incremented. Note that regardless
of which branch of the if-statement in line 65 node pi follows, esti[r][i] is always assigned a
value that is not the empty set at the end of round r, cf. lines 65 and 66. Moreover, the
assignment of w to auxi[r][i] in line 75 is always of a value that is not the empty set due to
the if-statement condition in line 74 and the definition of binValues() (line 55). 2Lemma 4.2

Lemma 4.3 is needed for the proof of Lemma 4.4.

Lemma 4.3 Suppose that R’s states are resolved (Lemma 4.2). The repeat-until loop in
lines 74 to 77 cannot block forever.

Proof of Lemma 4.3 The proof is by contradiction; to prove the lemma to be true, we
begin by assuming it is false and show that this leads to a contradiction, which implies that
the lemma holds. Argument 5 shows the needed contradiction and it uses arguments 1 to 4.
Argument 1: Eventually auxi[r][i] ∈ binValues i(r, 2t+1) holds. Suppose that in R’s start-
ing state, (aux[r][i] 6= ⊥ ∧ aux[r][i] ∈ binValues(r, 2t+1)) does not hold, because otherwise
the proof of the argument is done. There are at least n−t ≥ 2t+1 = (t+1)+t correct nodes
and each of them sends EST(•, rnd = r, est = {w, •}, •) : w ∈ {0, 1} messages to all nodes
(line 76). Therefore, we know that there is v ∈ {0, 1}, such that at least (t+1) correct nodes
send EST(•, rnd = r, est = {v, •}, •) messages to all other nodes.

Since every correct node receives EST(•, rnd = r, est = {v, •}, •) from at least (t+1)
nodes (line 82), we know that eventually every correct node relays the value v via the message
EST(•, rnd = r, est = {v, •}, •) that line 76 sends due to the fact that v ∈ binValues i(r, t+1).

Since n−t ≥ 2t+1 holds, the clause (∃w ∈ binValues(r, 2t+1)) in the if-statement con-
dition at line 74 is eventually satisfied at each correct node pi ∈ P . Thus, if (aux[r][i] =
⊥ ∨ aux[r][i] /∈ binValues(r, 2t+1)) does not hold, line 75 makes sure it does.
Argument 2: Eventually the system reaches a state in which ∃i ∈ Correct : w ∈
binValues i(ri, 2t+1) =⇒ ∃s ⊆ Correct : t+1 ≤ |s| ∧ ∀k ∈ s : w ∈ estk[k].

We prove the argument by contradiction; we begin by assuming the argument is false and
show that this leads to a contradiction, which implies that the argument holds. Specifically,
suppose that ∃i ∈ Correct : w ∈ binValues i(ri, 2t+1) holds in every system state in R and
yet ∀s ⊆ Correct : t+1 ≤ |s|, it is true that ∃k ∈ s : w /∈ estk[k].

By lines 76 and 81, the only way in which w ∈ binValues i(ri, 2t+1) hold in every system
state c′ ∈ R, is if there is a system state c that appears in R before c′, such that ∃s ⊆
Correct : t+1 ≤ |s| : ∀k ∈ s : w ∈ estk[k]. Thus, a contradiction is reached (with respect to
the assumption made at the start of this argument’s proof), which implies that the argument
is true.
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Argument 3: Eventually the system reaches a state c′ ∈ R in which ∃s ⊆ Correct : t+1 ≤
|s| ∧ ∀pk ∈ s : w ∈ estk[k] =⇒ ∀i ∈ Correct : w ∈ binValues i(ri, 2t+1).

By line 76 and the argument’s assumption, there are at least (t+1) correct nodes that
send EST(•, rnd = r, est = {w, •}, •) messages to all (correct) nodes. Since every correct
node receives w from at least (t+1) nodes (line 81), every correct node eventually reply w
via the message EST(•, rnd = r, est = {w, •}, •) at lines 76 and 82 due to the fact that
w ∈ binValues i(r, t+1). Since n−t ≥ 2t+1 holds, we know that (∃w ∈ binValues(r, 2t+1))
holds and the argument is true.
Argument 4: Suppose that the condition cond(i) := infoResulti() 6= ∅ : i ∈ Correct does not
hold in R’s starting system state. Eventually, the system reaches a state c′′ ∈ R, in which
cond(i) : i ∈ Correct holds.

We prove the argument by contradiction; we begin by assuming the argument is false and
show that this leads to a contradiction, which implies that the argument holds. Specifically,
suppose that cond(i) never holds, i.e., c′′ ∈ R does not exist. We note that cond(i) must hold
if binValues i(ri, 2t+1) = {0, 1}. The same can be said for the case of binValues i(ri, 2t+1) =
{v} ∧ ∃s ⊆ P : n−t ≤ |s| ∧ (∪pk∈s{aux i[r][k]}) = {w} ∧ w = v. Therefore, we assume that,
for any system state, it holds that binValues i(ri, 2t+1) = {v}({0, 1} and ∀s ⊆ P : n−t ≤
|s| =⇒ w ∈ (∪pk∈s{aux i[r][k]}) : w 6= v. We demonstrate a contradiction by showing that
eventually w ∈ binValues i(ri, 2t+1).

By lines 76 and 81, the only way in which w ∈ (∪pk∈s{aux i[r][k]}) holds in every system
state c′ ∈ R, is if there is a system state c that appears in R before c′, such that ∃pk ∈
P : aux k[r][k] = w. Note that c′ and c can be selected such that the following sequence
of statements are true. By Argument 1, auxk[r][k] ∈ binValuesk(r, 2t+1). By Argument 2,
w ∈ binValuesk(ri, 2t+1) =⇒ ∃s ⊆ Correct : t+1 ≤ |s| ∧ ∀pk ∈ s : w ∈ estk[k] in c. By
Argument 3, ∃s ⊆ Correct : t+1 ≤ |s| ∧ ∀k ∈ s : w ∈ estk[k] =⇒ ∀i ∈ Correct : w ∈
binValues i(ri, 2t+1) in c. Thus, a contradiction is reached (with respect to the assumption
made at the start of this argument’s proof), which implies that the argument is true.
Argument 5: The lemma is true. Argument 4 implies that a contradiction (with respect
to the assumption made in the start of this lemma’s proof) was reached since the exist
condition in line 77 eventually holds. 2Lemma 4.3

Lemma 4.4 Invariant (ii) holds.

Proof of Lemma 4.4 Lemma 4.2 shows that R’s system states are resolved. Lemma 4.3
says that the repeat-until loop in lines 74 to 77 does not block. By line 69 and the def-
inition of an asynchronous (communication) round (Section 2.4), every iteration of the
do-forever loop (lines 68 to 78) can be associated with at most one asynchronous (com-
munication) round. Thus, line 50 and Argument (4) of the proof of Lemma 4.3 imply that
(ri ≥ M ∧ infoResulti() 6= ∅) holds within O(M) asynchronous (communication) rounds.
Therefore, resulti() returns a non-⊥ value within O(M) asynchronous (communication)
rounds. 2Lemma 4.4 2Theorem 4.1
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4.3.2 Satisfying the task specifications

We say that the system state c is well-initialized if ∀i ∈ Correct : (ri, esti, auxi) := initState
holds and no communication channel between two correct nodes includes EST() messages.
Note that a well-initialized system state is also a resolved one (Section 4.3.1). Theorem 4.6
shows that Algorithm 3 satisfies the requirements of Definition 1.1 during legal executions
that start from a well-initialized system state and have a complete invocation of binary
consensus. The proof of Theorem 4.6 uses Theorem 4.5, which demonstrates that Algorithm 3
satisfies the requirements of Definition 4.1, which adds more details to the one given in
Section 3.1.1. Recall that the operation bvBroadcast(v) of Algorithm 1 is embedded in the
code of Algorithm 3.

Definition 4.1 (BV-broadcast) Let pi ∈ P, r ∈ {1, . . . ,M}, and v ∈ {0, 1}. Suppose
that ri = r ∧ esti[r−1][i] = {v} holds immediately before pi executes line 76. In this case,
we say that pi BV-broadcast v during round r in line 76. Let c ∈ R and suppose that
w ∈ binValues i(r, t+1) holds in c (for the first time). In this case, we say that pi BV-delivers
w during round r.

• BV-validity. Suppose that pi is correct and v ∈ binValues i(r, t+1) holds in system
state c ∈ R. Then, before c there is a step in R in which a correct node BV-broadcast
v.

• BV-uniformity. Suppose that pi is correct and v ∈ binValues i(r, t+1) holds in system
state c ∈ R. Then, eventually, the system reaches a state in which ∀j ∈ Correct : v ∈
binValuesj(r, t+1) holds.

• BV-completion. Eventually, the system reaches a state in which ∀i ∈ Correct :
binValues i(r, t+1) 6= ∅ holds.

Theorem 4.5 (BV-broadcast) Let R be an execution of Algorithm 3 that starts from a
well-initialized system state and includes a complete invocation of binary consensus. Lines 74
to 77 and lines 80 to 82 of Algorithm 3 implement the BV-broadcast task (Definition 4.1).

Proof of Theorem 4.5 We prove that the requirements of Definition 4.1 hold.
BV-validity. Suppose that, during round r, merely faulty nodes BV-broadcast v. We
show that @c ∈ R, such that (∃v ∈ binValues i(r, 2t+1)) holds in c. Since only faulty nodes
BV-broadcast v, then no correct node receives EST(-, rnd = r, est = {v, •}, •) messages
from more than t different senders. Consequently, v /∈ binValues i(r, t+1) in line 76 at
any correct node pi ∈ P . Similarly, no correct node pi ∈ P can satisfy the predicate
(∃w ∈ binValues(r, 2t+1)) at line 77 (via line 56). Thus, the requirement holds.
BV-uniformity. Suppose that w ∈ binValues i(r, 2t+1) holds in c. By lines 55 and 74
we know that pi stores v in at least (2t+1) entries of EST [r][]. Since R starts in a well-
initialized system state, this can only happen if pi received EST(•, rnd = r, est = {v, •}, •)
messages from at least (2t+1) different nodes (line 80). This means that pi received this
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message from at least (t+1) different correct nodes. Since each of these correct nodes sent
the message EST(•, rnd = r, est = {v, •}, •) to any node in P , we know that ∀j ∈ Correct :
binValuesj(r, t+1) 6= ∅ (line 76) holds eventually. Therefore, every correct node pj sends
EST(•, rnd = r, est = {v, •}, •) : v ∈ binValues i(r, t+1) to all. Since n−t ≥ 2t+1, we know
that (∃w ∈ binValuesk(r, 2t+1)) holds eventually at each correct node, pk ∈ P .
BV-completion. This requirement is implied by Lemma 4.3. 2Theorem 4.5

Theorem 4.6 (Closure) Let R be an execution of Algorithm 3 that starts from a well-
initialized system state and includes a complete invocation of binary consensus. Within
O(r) : r ≤ M asynchronous (communication) rounds, with probability Pr(r) = 1 − (1/2)r,
and for each correct node pi ∈ P, the operation resulti() returns v ∈ {0, 1}.

Proof of Theorem 4.6 Lemmas 4.7 to 4.11 show the proof. Lemma 4.7 shows that
once all correct nodes estimate the same value in a round r, they hold on this estimate
in all subsequent rounds. Lemma 4.8 shows that correct nodes that pass a singleton to
tryToDecide(), pass the same set. Lemma 4.9 shows that correct nodes can only decide a
value that has been previously proposed by a correct node. Lemma 4.11 shows that correct
nodes have v ∈ {0, 1} as a return value from result(). This occurs by round r ≤M with the
probability of 1− (1/2)r. Putting these together, we obtain the proof of Theorem 4.6.

Lemma 4.7 Suppose that every correct node, pi ∈ P, estimates value v upon entering round
r, i.e., esti[r−1][i] = {v}∧ri = r−1 immediately before executing line 68. Then, pi estimates
the value v in any round later than r, i.e., r′ ∈ {r, . . . ,M} : esti[r

′][i] = {v}.

Proof of Lemma 4.7 There are n− t > t+ 1 correct nodes. By the lemma statement, all
of them broadcast EST(•, rnd = r, est = {v}, •) (line 76). Thus, binV aluesi(r, 2t+1) = {v}
(BV-completion and BV-validity, Theorem 4.5) and valuesri = {v} (lines 65), where valuesri
is the parameter that pi passes to tryToDecide() (line 64) during round r, cf. valuesri =
∪j∈s{aux [r][j]} (line 78 via line 56).

Therefore, esti[r][i] = {v} holds due to the assignment in the start of line 66. Since there
are most t Byzantine nodes, and for an estimate to be forwarded (and hence accepted) it
needs a “support” of t + 1 nodes (line 76), it follows that the correct nodes cannot change
their estimate in any round r′ ≥ r. 2Lemma 4.7

Lemma 4.8 Suppose that there is a system state c ∈ R, such that (valuesri = {v}) ∧
(valuesrj = {w}), where pi, pj ∈ P are two correct nodes and valuesri is the parameter that
pi passes to tryToDecide() (line 64) during round r. It holds that v = w in c.

Proof of Lemma 4.8 Due to the exit condition of the repeat-until loop in lines 74 to 77,
pi had to receive before c identical EST(•, rnd = r, •, aux = v, •) messages from at least
(n−t) different nodes. Since at most t nodes are faulty, (n−t) = (n−2t), which means that
pi received EST(•, rnd = r, •, aux = v, •) messages before c from at least (t+1) different
correct nodes, as n−2t ≥ t+1. Using the symmetrical arguments, we know that pj had
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to receive before c identical EST(•, rnd = r, •, aux = w, •) messages from at least (n−t)
different nodes.

Since (n−t)+(t+1) > n, the pigeonhole principle implies the existence for at least one
correct node, px ∈ P , from which from pi and pj have received the messages EST(•, rnd =
r, •, aux = v, •) and EST(•, rnd = r, •, aux = w, •), respectively. The fact that px is correct
implies that it has sent the same EST(•, rnd = r, •) message to all the nodes in line 76.
Thus v = w. 2Lemma 4.8

Lemma 4.9 Suppose that there is a system state c ∈ R, such that resulti() = v ∈ {0, 1} in
c, where pi ∈ P is a correct node. There is a correct node pj ∈ P and a step aj ∈ R (between
R’s starting system state and c) in which pj invokes proposej(v).

Proof of Lemma 4.9 Suppose that ri = 1. Recall (a) the BV-validity property (The-
orem 4.5 and line 76), observe (b) the if-statement condition in line 74, which selects
the value wi ∈ binValues(1, 2t+1) (line 75) as well as the exit condition in line 77 of
the repeat-until loop in lines 74 to 77 in which (c) correct nodes, pj ∈ P , broadcast
EST(•, rnd = 1, •, aux = wj, •) : wj ∈ binValues(1, t+1) messages. Thus, the set values1i
includes only values arriving from correct nodes, where valuesri is the parameter that pi
passes to tryToDecide() (line 64) during round r.

Node pi can decide v (line 66) when values1i = {v}∧v = randomBiti(ri) holds. Regardless
of the decision, pi updates its new estimate (line 66). Processor pi updates its estimate
esti[ri][i] with the value, randomBit(r)), obtained by the RCC (line 65) whenever values1i =
{0, 1}. This means, that pi updates the estimated value with a value that a correct node
has proposed. Note that the values1i = {0, 1} case occurs when both 0 and 1 were proposed
by correct nodes. The same arguments hold also for round numbers r > 1, and therefore, a
decided value must be a value proposed earlier by a correct node pj, where i = j can possibly
hold. 2Lemma 4.9

Lemma 4.10 Suppose that there is system state c ∈ R, such that resulti() and resultj()
are not members of {⊥,Ψ} holds in c, where pi, pj ∈ P are correct nodes. It holds that
resulti() = resultj().

Proof of Lemma 4.10 Suppose, without the loss of generality, that node pi is the first
correct node that decides during R and it does so during round r. Suppose that there is
another node, pj, that decides also at round r. We know that both pi and pj decide the same
value due to the vi = randomBiti(r) condition of the if-statement in line 66 and the properties
of the RCC. We also know that pi and pj update their estimates in estx[r][x] : x ∈ {i, j} to
randomBitx(r).

Recall that valuesri denotes the parameter that pi passes to tryToDecide() (line 65) during
round r. Lemma 4.8 says that (valuesri = {v})∧ (valuesrj = {w}) means that v 6= w cannot
hold. Moreover, if pi decides during round r and pj is not ready to decide, it must be the case
that valuesrj = {v, w} = {0, 1}, see lines 65 to 66 and the proof of Lemma 4.8. Therefore,
pj assigns randomBit(r) to estj[rj][j] (line 65). This means that every correct node starts
round (r + 1) with estj[rj][j] = randomBit(r) and randomBit(r) = v. Lemma 4.7 says that
this estimate never change, and thus, only v can be decided. 2Lemma 4.10

36



Lemma 4.11 By the end of round r ≤ M , for each correct node pi ∈ P, the operation
resulti() returns v ∈ {0, 1} with probability Pr(r) = 1− (1/2)r.

Proof of Lemma 4.11 The proof uses Claim 4.12.

Claim 4.12 Let cr ∈ R be the state that the system reaches at the end of round r ≤ M .
With probability Pr(r) = 1− (1/2)r, ∃v ∈ {0, 1} : ∀i ∈ Correct : esti[r][i] = {v} holds in cr.

Proof of Claim 4.12 Let valuesri be the parameter that pi passes to tryToDecide() (line 64)
on round r.

• Case 1: Suppose that the if-statement condition valuesri = {vk(r)} (line 65) holds for
all correct nodes pk ∈ P . Similarly to the proof of Lemma 4.10, any correct node pk
assigns to estk[r][k] the same value, vk(r) (line 29).

• Case 2: Suppose that the if-statement condition valuesri = {vk(r)} (line 65) does not
hold for all correct nodes pk ∈ P . By similar arguments as in the previous case, any
correct pk assigns to estk[r][k] the same value, {randomBitk(r)} (line 28).

• Case 3: Some correct nodes assign {vk(r)} to estk[r][k] (line 66), whereas others assign
{randomBitk(r)} (line 65).

The rest of the proof focuses on Case 3. Recall the assumption that the Byzantine nodes
have no control over the network or its scheduler. Thus, the values randomBitk(r) and
randomBitk(r

′) are independent (due to the RCC properties, see Section 1.7.2), where r 6=
r′. Therefore, there is probability of 1

2
that the assignments of the values {vk(r)} and

{randomBitk(r)} are equal. Let Pr(r) be the probability that [∃r′ ≤ r : randomBit(r) =
v(r)]. Then, Pr(r) = 1

2
+ (1− 1

2
)1
2

+ · · ·+ (1− 1
2
)r−1 1

2
= 1− (1

2
)r. 2Claim 4.12

Recall that Lemma 4.3 says that the repeat-until loop in lines 74 to 77 cannot block
forever. It follows from Lemma 4.7 and Claim 4.12 that all the correct nodes pi keep their
estimated value esti = v and consequently the predicate (valuesr

′
i = {v}) at line 65 holds

for round r′, where valuesr
′
i = ∪j∈s{aux i[r][j]}. With probability Pr(r) = 1 − (1/2)r, by

round r, it holds that randomBit(r) = v due to the RCC properties. Then, the if-statement
condition of line 65 does not hold and the one in line 66 does hold. Thus, all the correct
nodes decide v. 2Lemma 4.11 2Theorem 4.6

We conclude the proof by showing that Algorithm 3 is an eventually loosely-self-
stabilizing solution for binary consensus.

Theorem 4.13 Let R be an execution of Algorithm 3 that starts in a well-initialized system
state and during which every correct node pi ∈ P invokes proposei() exactly once. Execution
R implements a loosely-self-stabilizing and randomized solution for binary consensus that
can tolerate up to t Byzantine nodes, where n ≥ 3t+ 1. Moreover, within four asynchronous
(communication) rounds, all correct nodes are expected to decide.
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Proof of Theorem 4.13 We divide the proof into four arguments.
Argument 1: BC-completion is always guaranteed. Lemma 4.3 and 4.11 demonstrate
BC-completion when starting from an arbitrary, and resp., a well-initialized system state.
Argument 2: Suppose that, for every correct node pi ∈ P, operation resulti() returns
v ∈ {0, 1}. A complete and well-initialized invocation of binary consensus satisfies the safety
requirements of Definition 1.1. Lemmas 4.9, 4.10, and 4.11 imply BC-validity and BC-
agreement as long as ∀i ∈ Correct : resulti() returns v ∈ {0, 1}.
Argument 3: Algorithm 3 satisfies the design criteria of Definition 2.2. By Theorem 4.1,
we know that any complete invocation of binary consensus terminates within a finite number
of steps. Once that happens, the next well-initialized invocation of propose() can succeed
independently of previous invocations. Argument 1 and Lemma 4.11 imply that with prob-
ability Pr(M) = 1− (1/2)M , a complete and well-initialized invocation of binary consensus
satisfies the requirements of Definition 1.1.
Argument 4: All correct nodes are expected to decide within four iterations of Algo-
rithm 3. The proof of Claim 4.12 considers two stages when demonstrating BC-completion
(after starting from a well-initialized system state). That is, all correct nodes need to
first use the same value, v, as their estimated one, see the assignment to esti[r][i] in
lines 66 to 65. Then, each correct node waits until the next round in which the condi-
tion, vi = randomBiti(ri), of the if-statesmen in line 66 holds, where randomBit() is the
interface to the RCC. The rest of the proof is implied via the linearity of expectation and
the following arguments regarding the expectation of each stage.

Stage I. The proof of Claim 4.12 reveals the case in which not all correct nodes use the
same value (Case 3). This is when the condition, values = {v}, of the if-statement in line 66
is true but not for any correct node pi ∈ P . We show how to bound by two the number
of asynchronous rounds in which this situation can happen. Suppose that valuesri 6= {v}.
Note that, with probability 1/2, the assignment in line 65 sets the value {v} to esti[r][i].
Once that happens, Stage I is finished and Stage II begins. If this does not happen, with
probability 1/2, Stage I needs to be repeated and so does the above arguments. Thus, within
two rounds, Stage I is expected to end.

Stage II. By the RCC properties (Section 1.7.2), we know that Pr(vi =
randomBiti(ri)) = 1/2 and E(Pr(vi = randomBiti(ri))) = 2. 2Theorem 4.13

5 SSBFT Recycling Mechanism for

BSMPn,t[κ−SGC, t < n/3,RCCs]

We present a SSBFT recycling mechanism that uses a bounded array of recyclable objects.
These objects, for example, can be instances of recyclable objects based on Algorithm 3
(with the boxed code lines), which implements the operations propose() and result() as well
as wasDelivered() and recycle().

The mechanism aims at making sure that, at any time, there is at most a constant
number, logSize, of active objects, i.e., objects that have not completed their tasks. Once
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an object completes its task, the recycling mechanism can allocate a new object by moving
to the next array entry as long as some constraints are satisfied. Specifically, the proposed
solution is based on a synchrony assumption that guarantees that every correct node retrieves
at least once the result of a completed object, x, within logSize synchronous rounds since
the first time in which at least t + 1 correct nodes have retrieved the result of x, and thus,
x can be recycled.

In this section, we refine BAMPn,t[−FC, t < n/3] model into the model of
BSMPn,t[κ−SGC, t < n/3,RCCs] (Section 5.1), which is a synchronous model enriched with
a random RCC and κ-state clock. We then present the synchrony assumptions (Assump-
tion 5.1) that we mentioned above and bring an overview of the proposed solution (Sec-
tion 5.2) before providing the details and correctness proofs (sections 5.4 and 5.5).

5.1 System Settings for BSMPn,t[t < n/3,RCCs]

We denote the BSMPn,t[t < n/3, κ−SGC] model, which stands for Byzantine syn-
chronous message-passing with at most t (out of n) faulty nodes, and t <
n/3. The BSMPn,t[κ−SGC, t < n/3,RCCs] model is defined by enriching the model of
BAMPn,t[−FC, t < n/3] with a κ-state global clock (Section 5.1.1), reliable communications
(Section 5.1.2), and RCCs (Section 1.7.2).

5.1.1 A κ-state global clock

We assume that the algorithm takes steps according to a common global pulse (beat) that
triggers a simultaneous step of every node in the system. Specifically, we denote synchronous
executions by R = c[0], c[1], . . ., where c[x] is the system state that immediately precedes
the x-th global pulse. Also, ai[x] is the step that node pi takes between c[x] and c[x + 1]
simultaneously with all other nodes. We also assume that each node has access to a κ-state
global clock via the local function clock(κ), which returns an integer between 0 and κ − 1.
Algorithm 3 of BDH [10] offers an SSBFT κ-state global clock.

5.1.2 Reliable communications

We assume the availability of reliable communications. We assume that any correct node
pi ∈ P starts any step ai[x] with receiving all pending messages from all nodes. Also, pi sends
any message during ai[x], it does so only at the end of ai[x]. We require (i) any message
that a correct node pi sends during step ai[x] to another correct node pj is received at pj at
the start of step aj[x + 1], and (ii) any message that pj received during step aj[x + 1], was
sent before the end of ai[x].

5.2 Solution overview

The SSBFT recycling solution is a composition of several algorithms, see Figure 2. Our
recycling mechanism is presented in Algorithm 5. It allows every correct node to retrieve
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upon MSG() arrival from pj
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interface

send MSG() to pj

SIG-index
(synchronous)
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consensus
(synchronous)

resulti()

wasDeliveredi() / input() 

recyclei()
recyclable 

object
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Figure 2: The proposed solution using a recyclable object (Algorithm 3), the recycling mechanism
(Algorithm 5), a consensus protocol (Algorithm 6), and SIG-index (Algorithm 7).

Algorithm 5: SSBFT object recycling with a predefined log size; code for pi

119 constants: indexNum number of indices of recyclable objects;
120 logSize ∈ {0, . . . , indexNum− 2} user-defined bound on the object log size;

121 variables:
122 ssbftIndex : an SSBFT index that marks the current object in use (Algorithm 7);

123 obj[indexNum] : array of recyclable objects, e.g., Algorithm 3. Note that during
legal execution only at most (logSize+ 1) objects are stores at any given point of
time;

124 upon pulse /* signal from global pulse system */ begin
125 foreach x /∈ {y mod indexNum : y ∈ {z − logSize, . . . , z}} where

z = indexNum+ ssbftIndex .getIndex() do
126 obj[x].recycle()

at least once the result of any object that is stored in a bounded array and yet over time
that array can store an unbounded number of object instances. Algorithm 5 guarantees that
for every instance of the recyclable object, every correct node calls result() (line 85) at least
once before every correct node simultaneously invokes recycle() (line 86).

We consider the case in which the entity that retrieves the result of object obj might
be external (and perhaps, asynchronous) to the proposed solution. The proposed solu-
tion does not decide to recycle obj before there is sufficient evidence that, within logSize
synchronous cycles, the system is going to reach a state in which obj can be legitimately
recycled. Specifically, Assumption 5.1 considers an event that can be locally learned about
when wasDelivered() returns ’1’ (line 85).

Assumption 5.1 (Result retrial within a bounded time) Let us consider the system
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Algorithm 6: SSBFT multivalued consensus in BSMPn,t[t < n/3, (t + 1)−SGC];
code for node pi

127 variables: currentResult stores the most recent result of co;
128 co a (non-self-stabilizing) BFT (multivalued) consensus object;

129 interface required:
130 input() : defines the input value to be provided to the given consensus protocol;

131 interface provided:
132 result() do return(currentResult) // the decided value of the most recent co’s

invocation;

133 message structure: 〈appMsg〉, where appMsg is the application message, i.e., a
message sent by the given consensus protocol;

134 upon pulse /* signal from global pulse system */ begin
135 let M be message that holds at M [j] the arriving 〈appMsgj〉 messages from pj

for the current synchronous round and M ′ = [⊥, . . . ,⊥];
136 if clock(κ) = 0 then
137 currentResult← co.result();
138 co.restart();
139 M ′ ← co.propuse(input())/* for recycling input() is wasDelivered() */

140 else if clock(cycleSize) ∈ {1, . . . , t} then M ′ ← co.process(M);
141 foreach pj ∈ P do send 〈M ′[j]〉 to pj;

state, c[r], in which the result of object obj was retrieved by at least t + 1 correct nodes.
We assume that, within logSize synchronous cycles from c[r], the system reaches a state,
c[r + logSize], in which all n− t correct nodes have retrieved the result of obj at least once.

Algorithm 5’s recycling guarantees are facilitated by Algorithm 6, which agrees on a
single evidence from all collected ones, and Algorithm 7, which uses the agreed evidence for
updating the value of the index that points to the current entry in the array. Algorithm 5’s
detailed presentation and correctness proof appear in Section 5.3.

5.2.1 Evidence collection using an SSBFT (multivalued) consensus (Algo-
rithm 6)

Algorithm 6 offers an SSBFT multivalued consensus protocol that returns within t + 1
synchronous rounds an agreed non-⊥ value as long as at least t+1 nodes proposed that value,
i.e., at least one correct node proposed that value. As mentioned, we use wasDelivered()
(line 85) for providing input to Algorithm 6. Thus, whenever ’1’ is decided, at least one
correct node got an indication from at least n− t nodes that they have retrieved the results
of the current object. This implies that by at least t + 1 correct nodes have retrieved the
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Algorithm 7: SSBFT SIG-index in BSMPn,t[t < n/3, 4−SGC]; code for node pi

142 constants: I : bound on the number of states an index may have;

143 variables: index ∈ {0, . . . , I − 1} : a local copy of the global logical object index;

144 ssbftCO : an SSBFT consensus object (Algorithm 6) that is used for agreeing on the
garbage collector state, i.e., 1 when there is a need to recycle (otherwise 0);

145 interfaces provided: getIndex() do return index;

146 message structure: 〈index〉: the logical object index;

147 upon pulse /* signal from global pulse system */ begin
148 let M be the arriving 〈indexj〉 messages from pj;
149 switch clock(κ) /* consider clock() at the beginning of the pulse */

do
150 case κ− 4 do broadcast 〈index = getIndex()〉;
151 case κ− 3 do
152 let propose := ⊥;
153 if ∃v 6= ⊥ : |{〈v〉 ∈M}| ≥ n− f then propose← v;
154 broadcast 〈propose〉;
155 case κ− 2 do
156 let bit := 0; save← ⊥;
157 if ∃s 6= ⊥ : |{〈s〉 ∈M}| > n/2 then save← s;
158 if |{〈save 6= ⊥〉 ∈M}| ≥ n− f then bit← 1;
159 if save = ⊥ then save← 0;
160 broadcast 〈bit〉;
161 case κ− 1 do
162 let inc := 0;
163 if ssbftCO .result() then inc ← 1;
164 if |{〈1〉 ∈M}| ≥ n− f then index ← (save+ inc) mod I;
165 else if |{〈0〉 ∈M}| ≥ n− f then index ← 0;
166 else index ← rand(save+ inc) mod I;

results and, by Assumption 5.1, all n− t correct nodes will retrieve the object result within
a known number of synchronous rounds. Then, the object could be recycled. Algorithm 6’s
detailed presentation and correctness proof appear in Section 5.4.

5.2.2 SSBFT simultaneous increment-or-get index (Algorithm 7)

Algorithm 7 allows the proposed solution to keep track of the current object index that
is currently used as well as facilitate synchronous increments to the index value. We call
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Algorithm 4 is active 
between round 0 and t

Algorithm 5 is active 
between round κ-4 and κ-1

Figure 3: The schedule for algorithms 6 to 7 uses a cycle of κ = max{t+ 1, logSize} synchronous
rounds.

this task simultaneous increment-or-get index (SIG-index). During legal executions of Algo-
rithm 7, the correct nodes assert their agreement on the index value and update the index
according to the result of Algorithm 6, which is an agreement on the value of wasDelivered().
Algorithm 7’s detailed presentation and correctness proof appear in Section 5.5.

5.2.3 Scheduling strategy for algorithms 6 to 7

As mentioned, Algorithm 6 requires t+1 synchronous rounds to complete and provide input
to Algorithm 7 and κ− (t+ 1) synchronous rounds after that, any correct node can recycle
the current object (according to Algorithm 6’s result), where κ = max{t+1, logSize}. Thus,
Algorithm 7 has to defer its index updates until that time. Figure 3 presents this scheduling
strategy, which considers the schedule cycle s of κ. That is, algorithms 6 and 7 starting
points are 0 and κ−4, respectively. Note that Algorithm 5 does not require scheduling since
it accesses the index only via Algorithm 7’s interface of SIG-index, see Figure 2.

5.2.4 Communication piggybacking and multiplexing

We use a piggybacking technique in order to facilitate the spread of the result (decision) val-
ues of the recyclable objects. As Figure 2 illustrates, all communications are piggybacked.
Specifically, we consider a meta-message MSG() that has a field for each message sent by
algorithms 3, 6, and 7. That is, when any of the algorithms 6 and 7 are active, its respective
field in MSG() includes a non-⊥ value. With respect to Algorithm 3’s field, MSG() includes
the most recent message that Algorithm 3 has sent (or currently wishes to send). We note
that this piggybacking technique allows the multiplexing of timed and reliable communica-
tions (assumed for BSMPn,t[κ−SGC, t < n/3,RCCs]) and fair communication (assumed for
BAMPn,t[−FC, t < n/3]).

5.3 SSBFT recycling in BSMPn,t[t < n/3, (t + 1)−SGC] (Algorithm 5)

As mentioned, Algorithm 5 considers an array, obj[] (line 123), of indexNum recyclable
objects (line 119). We require the array size to be larger than logSize (line 120 and As-
sumption 5.1). In addition to the array obj[], Algorithm 5’s variable set includes ssbftIndex ,
which is an integer that holds the entry number of the latest object in use. Algorithm 5
accesses the agreed current index by calling ssbftIndex .getIndex(). This lets the algorithm’s
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code to nullify any entry in obj[] that is not ssbftIndex .getIndex() or at most logSize older
than ssbftIndex .getIndex(). Corollary 5.2 is directly implied by Assumption 5.1 and the
properties of algorithms 6 to 7, which we show in sections 5.4.3 and 5.5.2, respectively.

Corollary 5.2 Algorithm 5 is an SSBFT recycling mechanism that stabilizes within expected
O(κ) synchronous rounds.

5.4 SSBFT multivalued consensus in BSMPn,t[t < n/3, (t + 1)−SGC]

Algorithm 6 assumes access to a deterministic (non-self-stabilizing) BFT (multivalued) con-
sensus object, co, such as the ones proposed by Kowalski and Mostéfaoui [71] or Abraham
and Dolev [1], for which completion is guaranteed to occur within t+ 1 synchronous rounds.
We list our assumptions regarding the interface to the consensus object in Section 5.4.1.

5.4.1 Required interface to the consensus object

The proposed SSBFT solution uses the technique of recomputation of co’s floating output [42,
Chapter 2.8]. In order to provide this, we assume that co has the following interface:

• restart() sets co to its initial state.

• propuse(v) proposes the value v when invoking (or re-invoking) co. This operation is
effective only after restart() was invoked. The returned value is a message vector, M [],
that includes all the messages, M [j], that co wishes to send to node pj for the current
synchrony round.

• process(M) runs a single step of co. The input vector M includes the arriving messages
for the current synchronous round, where M [j] is pj’s message. The returned value
is a message vector that includes all the messages that co wishes to send for the
current synchrony round. This operation is guaranteed to work correctly only after all
correct nodes have simultaneously taken a consecutive sequence of steps that include
invocations of either (i) process(), or (ii) restart() immediately before proposing a
non-⊥ value via the invocation of propuse().

• result() returns a non-⊥ results after the completion of co. The returned value is re-
quired to satisfy the consensus specifications only if all correct nodes have simultaneity
taken a sequence of correct process() invocations.

5.4.2 Detailed description

Algorithm 6’s set of variables includes co itself (line 128) and the current version of the result,
i.e., currentResult (line 127). This way, the SSBFT version of co’s result can be retrieved
via a call to result() (line 132). Algorithm 6 proceeds in periodic rounds. At the start of any
round, node pi stores all the arriving messages at the message vector M (line 135).
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When the clock value is zero (line 136), it is time to start the re-computation of co’s result.
Thus, Algorithm 6 first stores the current value of co’s result at currentResulti (line 137).
Then, it restarts co’s local state and proposes a new value to co (lines 138 and 139). For the
recycling solution presented in this paper, the proposed value is retrieved from wasDelivered()
(line 85). For the case in which the clock value is not zero (line 140), Algorithm 6 simply
lets co to process the arriving messages of the current round. Both for the case in which
the clock value is zero and the case it is not, Algorithm 6 broadcasts co’s messages for the
current round (line 141).

5.4.3 Correctness proof

Theorem 5.3 shows that Algorithm 6 stabilizes within 2(t+ 1) synchronous rounds.

Theorem 5.3 Algorithm 6 is an SSBFT deterministic (multivalued) consensus solution for
BSMPn,t[t < n/3, (t + 1)−SGC] that recovers after the occurrence of the last transient-faults
within max{κ, 2(t+ 1)} synchronous rounds.

Proof of Theorem 5.3 Let R be an execution of Algorithm 6. Within κ synchronous
rounds, the system reaches a state c ∈ R in which clock(κ) = 0 holds. Immediately after c,
every correct node, pi, simultaneously restarts coi and proposes the input (lines 138 and 139)
before sending the needed messages (line 141). Then, for the t synchronous rounds that
follows, all correct nodes simultaneously process the arriving messages and send their replies
(line 140 and 141). Thus, after max{κ, 2(t + 1)} synchronous rounds from c, the system
reaches a state c′ ∈ R in which clock(κ) = 0 holds. Also, in the following synchronous
round, all correct nodes store co’s results. That results in guaranteed to be correct due to
Section 5.4.1’s assumptions. 2Theorem 5.3

5.5 SSBFT simultaneous increment-or-get index

The task of simultaneous increment-or-get index (SGI-index) requires all correct nodes to
maintain identical index values that all nodes can independently retrieve via getIndex().
We use the BSMPn,t[t < n/3,RCC, 4−SGC] model. The task assumes that all increments
are performed according to the result of a consensus object, ssbftCO , such as Algorithm 6.
Algorithm 7 presents an SGI-index solution that recovers from disagreement on the index
value using an RCC. That is, whenever a correct node receives n − f reports from other
nodes that they have each observed n− f identical index values, an agreement on the index
value is assumed and the index is incremented according to the most recent result of ssbftCO .
Otherwise, a randomized strategy is taken for guaranteeing recovery from a disagreement
on the index value. Our strategy is inspired by BDH [10]’s SSBFT clock synchronization
algorithm, which is in turn derived from non-self-stabilizing BFT solutions by Rabin [95] as
well as Turpin and Coan [107].
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5.5.1 Detailed description

Algorithm 7 is active during four clock phases of a common pulse, i.e., κ−4, κ−3, κ−2, and
κ− 1. Each phase starts with storing all arriving messages (from the previous synchronous
round) in the array, M (line 148). The first phase broadcasts the local index value (line 150).
The second phase lets each node vote on the majority arriving index value, or ⊥ in case such
value was not received (lines 152 to 154). The third phase resolves the case in which there is
an arriving non-⊥ value, save, that received sufficient support when voting during phase two
(lines 156 to 159). Specifically, if save 6= ⊥ exists, then 〈bit = 1〉 is broadcast. Otherwise,
〈bit = 0〉 is broadcast. On the fourth phase (line 162 to 166), the (possibly new) index is
set either to be the majority-supported index value of phase two plus inc (line 162 to 164),
where inc is the output of ssbftCO , or (if there was insufficient support) to a randomly
chosen output of the RCC (lines 165 and 166).

5.5.2 Correctness proof

Theorem 5.4 shows that Algorithm 7 stabilizes within expected O(κ) synchronous rounds.

Theorem 5.4 Let R be an execution of algorithms 6 and 7 that is legal w.r.t. Algorithm 6
(Theorem 5.3). Algorithm 7 is an SSBFT SGI-index implementation that stabilizes within
expected O(κ) synchronous rounds.

Proof of Theorem 5.4 Corollaries 5.5 and 5.6 are needed for the proof of lemmas 5.7
and 5.12. The pigeonhole principle implies Corollary 5.5 and Corollary 5.6 is implied by
Corollary 5.5.

Corollary 5.5 Let Vx : x ∈ {a, b} be two n-length vectors that differ in at most f < n/3
entries. For any x ∈ {a, b}, suppose Vx contains n− f copies of vx. Then va = vb.

Corollary 5.6 is implied by Corollary 5.5.

Corollary 5.6 Let c[r] ∈ R be a system state in which clock(κ) = κ− 3 and X = {xi : i ∈
Correct} be the set of values encoded in the messages 〈xi〉 that any correct node, pi ∈ P,
broadcasts in line 154 at the end of ai[r]. The set X includes at most one non-⊥ value.

Lemma 5.7 implies that, within O(κ) of expected rounds, all correct nodes have the
identical index values. Recall that c[r] ∈ R is (progress) enabling if ∃x ∈ {0, 1} : ∀i ∈
Correct : randi = x holds at c[r] (Section 1.7.2).

Lemma 5.7 (Convergence) Let r > κ. Suppose c[r] ∈ R is (progress) enabling system
state (Section 1.7.2) for which clock(κ) = κ− 1 holds. With probability at least min{p0, p1},
all correct nodes have the same index at c[r + 1].

Proof of Lemma 5.7 The proof is implied by claims 5.8 to 5.11.
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Claim 5.8 Suppose (i) there is no value x ∈ {0, 1} and (ii) there is no correct node pi ∈ P
that receives at the start of step ai[r] the message 〈x〉 from at least n − f different nodes.
For any correct node, pj ∈ P, it holds that step aj[r] assigns 0 to indexj with probability p0.

Proof of Claim 5.8 The proof is implied directly from lines 163 to 166. 2Claim 5.8

Claim 5.9 Suppose there is a correct node pi ∈ P that receives at the start of step ai[r] the
message 〈0〉 from at least n − f different nodes. Also, suppose there is x ∈ {0, 1} and a
correct node pj ∈ P that receive at the start of step aj[r] the message 〈x〉 from at least n− f
different nodes, where i = j may or may not hold. The step aj[r] assigns 0 to indexj.

Proof of Claim 5.9 Line 165 implies the proof since x = 0 (Corollary 5.5). 2Claim 5.9

Claim 5.10 Suppose there is a correct node pi ∈ P that receives at the start of step ai[r]
the message 〈1〉 from at least n − f different nodes. Let pj ∈ P be a correct node. At c[r],
ssbftCO i.result() = ssbftCO j.result() and savei = savej hold.

Proof of Claim 5.10 At c[r], ssbftCO i.result() = ssbftCO j.result() holds (Algorithm 6’s
agreement property). The rest of the proof shows that savei = savej holds at c[r].

Since pi has received 〈1〉 from at least n− f different nodes at the start of ai[r], we know
that there is a correct node, pk ∈ P , that has sent 〈1〉 at the end of a[r − 1]. By lines 156
to 158, node pj receives at the start of aj[r − 1] the message 〈x〉 from at least n− f nodes,
where x = savej 6= ⊥. By Corollary 5.6, any correct node broadcasts (line 154) either ⊥
or x at the end of step a[r − 2]. This means that at the start of a[r − 1], correct nodes
receive at most f < n− 2f messages with values that are neither ⊥ nor x 6= ⊥. Therefore,
savei = savej since, at the start of ai[r] and aj[r] both pi, and resp., pj receive from at
least n− f different nodes the messages 〈xi〉, and resp., 〈xj〉, where neither xi not xj are ⊥.
2Claim 5.10

Claim 5.11 Suppose there is a correct node pi ∈ P that receives at the start of step ai[r] the
message 〈1〉 from at least n − f different nodes. Suppose there is x ∈ {0, 1} and a correct
node pj ∈ P that receives at the start of step aj[r] the message 〈x〉 from at least n − f
different nodes, where i = j may or may not hold. With a probability of at least min{p0, p1},
the steps ai[r] and aj[r] assign the same value to indexj, and resp., indexj.

Proof of Claim 5.9 By Corollary 5.5, we know that x = 1. Note that x’s value is
determined during step a[r − 1] and rand is chosen at the start of step a[r]. Due to rand’s
unpredictability (Section 1.7.2), rand and x are two independent values. Thus, with a
probability of at least min{p0, p1}, all correct nodes update index in the same manner,
i.e., to either 0 or save + inc (Claim 5.10), where save and inc are values determined by
lines 162, 163 and 156, and resp., lines 157 and 159. 2Claim 5.9 2Lemma 5.7

Lemma 5.12 shows that all correct nodes forever agree on their index values and si-
multaneously increment the index by one (modulo I) only when clock(κ) = κ − 1 and
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ssbftCO i.result() = 1. Lemma 5.12 uses the following notation. Let R = c[0], c[1], . . . , c[r], . . .
an unbounded synchronous execution of Algorithm 7, where c[r] is the system state that
immediately precedes the arrival of the r-th common pulse. Denote by indicesstartr and
indicesendr the sets of all indexi : i ∈ Correct values of correct nodes at c[r], and resp., c[r+1],
i.e., the beginning, and resp., the end of step a[r]. Note that, for all r and x ∈ {start, end},
we have indicesxr ⊆ {0, 1, . . . , I − 1}.

Lemma 5.12 (Closure) Let c[r] ∈ R, such that clock(κ) = κ − 1 at c[r]. Suppose
indicesendr = {v 6= ⊥}. For every c[r′] ∈ R : r′ ∈ {r + 1, r + κ} it holds that
indicesstartr′ = {v + x mod I} where x is 1 when r′ = r + κ and ssbftCO .result() = 1 and 0
when r′ ∈ {r + 1, r + κ− 1} or ssbftCO .result() 6= 1.

Proof of Lemma 5.12 For r′ = r+1 the lemma holds since, by definition, ∀r′′ : indicesendr′′ =
indicesstartr′′+1. Also, for any system state between c[r′] : r′ ∈ {r + 1, r + κ − 1}, no correct
node, pi ∈ P , updates indexi during the step, ai[r

′], since clock(κ) 6= κ − 1 at c[r′] : r′ ∈
{r + 1, r + κ− 1} and thus lines 164 to 166 are not executed, which are the only lines that
update indexi.

It remains to show that all correct nodes, pi ∈ P , update indexi in the same way during
the steps ai[r

′] : r′ = r + κ that immediately follow c[r′]. This is due to the agreement
property of Algorithm 6, the arguments above about c[r′] : r′ ∈ {r + 1, r + κ− 1} as well as
Claim 5.13.

Claim 5.13 indicesstartr+κ = {v} : v 6= ⊥.

Proof of Claim 5.13 By the schedule (Figure 3) and the length of the scheduling cycle,
κ, we know that Algorithm 7 is not active between c[r + 1] and c[r + κ− 3], but it is active
during steps a[r+κ−3], a[r+κ−2], a[r+κ−1], and a[r+κ]. During the steps a[r+κ−3],
all correct nodes broadcast 〈v〉 (line 150). Thus, at the start of steps a[r+ κ− 3], all correct
nodes receive 〈v〉 at least n − f times. Thus, during a[r + κ − 2], all correct nodes assign
v to their propose variables (line 153) and broadcast 〈v〉 (line 154). By similar arguments,
during a[r + κ − 1], all correct nodes assign v and 1 to their save, and resp., bit variables
(lines 157 to 158) and broadcast 〈1〉 (line 160). Therefore, all correct nodes receive 〈1〉 at
least n − f times. This implies that during a[r + κ], the if-statement condition in line 164
holds and thus indicesstartr+κ = {v 6= ⊥} holds. 2Claim 5.13 2Lemma 5.12 2Theorem 5.4

6 Discussion

We have presented a new loosely-self-stabilizing variation of the MMR algorithm [87] for
solving binary consensus for the BAMPn,t[−FC, t < n/3,RCCs] model. The proposed solution
preserves the following properties of the studied algorithm: it does not require signatures,
it offers optimal fault-tolerance, and the expected time until completion is the same as the
studied algorithm. The proposed solution is able to achieve this using a new application
of the design criteria of loosely-self-stabilizing systems, which requires the satisfaction of

48



Notation Meaning

MMR Mostéfaoui, Moumen, and Raynal [87]
BDH Ben-Or, Dolev, and Hoch [10]
BFT non-self-stabilizing Byzantine fault-tolerant solutions
SSBFT self-stabilizing Byzantine fault-tolerant
BAMPn,t Byzantine Asynchronous Message-Passing model
BSMPn,t Byzantine synchronous message-passing model
RCCs random common coins
FC fair communication assumption
κ−SGC κ-state global clock

Table 1: Glossary

safety properties with a probability in O(1 − 2−M). For any practical purposes and in
the absence of transient-faults, one can select M to be sufficiently large so that the risk
of violating safety is negligible. An SSBFT solution for recycling distributed objects and
BSMPn,t[κ−SGC, t < n/3,RCCs] is proposed in order to support an unbounded number of
instances of our SSBFT MMR solution. We believe that this work is preparing the ground-
work needed to construct self-stabilizing (BFT) algorithms for distributed systems, such as
Blockchains, that need to run in hostile environments.
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and Secure Distributed Programming (2. ed.). Springer, 2011.

[24] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and effi-
cient asynchronous broadcast protocols. IACR Cryptol. ePrint Arch., 2001:6, 2001.

[25] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantino-
ple: Practical asynchronous Byzantine agreement using cryptography. J. Cryptol.,
18(3):219–246, 2005.

[26] Christian Cachin and Marko Vukolic. Blockchain consensus protocols in the wild
(keynote talk). In 31st International Symposium on Distributed Computing, DISC,
volume 91 of LIPIcs, pages 1:1–1:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2017.

51



[27] Christian Cachin and Luca Zanolini. Brief announcement: Revisiting signature-free
asynchronous byzantine consensus. In DISC, volume 209 of LIPIcs, pages 51:1–51:4.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[28] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, pages 42–51. ACM, 1993.

[29] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[30] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

[31] Miguel Correia, Nuno Ferreira Neves, and Paulo Veŕıssimo. From consensus to atomic
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[71] Dariusz R. Kowalski and Achour Mostéfaoui. Synchronous Byzantine agreement with
nearly a cubic number of communication bits: synchronous byzantine agreement with
nearly a cubic number of communication bits. In PODC, pages 84–91. ACM, 2013.

[72] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
1998.

[73] Leslie Lamport. Byzantizing paxos by refinement. In David Peleg, editor, Distributed
Computing - 25th International Symposium, DISC, volume 6950 of Lecture Notes in
Computer Science, pages 211–224. Springer, 2011.

[74] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[75] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[76] Christoph Lenzen and Joel Rybicki. Self-stabilising Byzantine clock synchronisation
is almost as easy as consensus. J. ACM, 66(5):32:1–32:56, 2019.

55



[77] Oskar Lundström, Michel Raynal, and Elad Michael Schiller. Self-stabilizing set-
constrained delivery broadcast (extended abstract). In 40th IEEE International Con-
ference on Distributed Computing Systems, ICDCS, pages 617–627, 2020.

[78] Oskar Lundström, Michel Raynal, and Elad Michael Schiller. Self-stabilizing uniform
reliable broadcast. In Networked Systems - 8th International Conference, NETYS,
pages 296–313, 2020.

[79] Oskar Lundström, Michel Raynal, and Elad Michael Schiller. Self-stabilizing indul-
gent zero-degrading binary consensus. In ICDCN ’21: International Conference on
Distributed Computing and Networking, pages 106–115, 2021.

[80] Oskar Lundström, Michel Raynal, and Elad Michael Schiller. Self-stabilizing multival-
ued consensus in asynchronous crash-prone systems. CoRR, abs/2104.03129, 2021.

[81] Mahyar R. Malekpour. A byzantine-fault tolerant self-stabilizing protocol for dis-
tributed clock synchronization systems. In SSS, volume 4280 of Lecture Notes in
Computer Science, pages 411–427. Springer, 2006.
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services for randomized intrusion tolerance. IEEE Trans. Dependable Secur. Comput.,
8(1):122–136, 2011.
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