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Abstract

We consider n robots with limited visibility : each robot can observe other robots only up to
a constant distance denoted as the viewing range. The robots operate in discrete rounds that
are either fully synchronous (Fsync) or semi-synchronized (Ssync). Most previously studied
formation problems in this setting seek to bring the robots closer together (e.g., Gathering or
Chain-Formation). In this work, we introduce the Max-Line-Formation problem, which
has a contrary goal: to arrange the robots on a straight line of maximal length.

First, we prove that the problem is impossible to solve by robots with a constant sized circular
viewing range. The impossibility holds under comparably strong assumptions: robots that agree
on both axes of their local coordinate systems in Fsync. On the positive side, we show that
the problem is solvable by robots with a constant square viewing range, i.e., the robots can
observe other robots that lie within a constant-sized square centered at their position. In this
case, the robots need to agree on only one axis of their local coordinate systems. We derive
two algorithms: the first algorithm considers oblivious robots (OBLOT ) and converges to the
optimal configuration in time O(n2 · log(n/ε)) under the Ssync scheduler (ε is a convergence
parameter). The other algorithm makes use of locally visible lights (LUMI). It is designed for
the Fsync scheduler and can solve the problem exactly in optimal time Θ(n). We also argue
how a combination of the two algorithms can solve the Max-Line-Formation exactly in time
O(n2) under the Ssync scheduler with the help of the LUMI model.

Afterward, we show that both the algorithmic and the analysis techniques can also be applied
to the Gathering and Chain-Formation problem: we introduce an algorithm with a reduced
viewing range for Gathering and give new and improved runtime bounds for the Chain-For-
mation problem.

1 Introduction

Robot formation tasks aim to arrange n mobile robots in a specific formation. The robots are
modeled as points in the Euclidean plane, and usually, the robot capabilities are very restricted.
Robots are assumed to be externally identical (all robots have the same appearance), anonymous
(no identifiers), autonomous (no central control) and homogeneous (all robots execute the same
algorithm). Furthermore, the robots operate in discrete rounds denoted as LCM cycles. Each LCM

cycle consists of three operations: Look, Compute and Move. During the Look operation, each
robot takes a snapshot of its surroundings. Afterward, the robot computes a target point during
Compute and finally moves there in the Move operation. With the additional assumptions that
robots are silent (no communication) and oblivious (no memory of previous LCM cycles), this is
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known as the OBLOT model [15]. The LUMI model [10], on the contrary, does not demand the
robots to be silent and oblivious. Instead, robots are equipped with a light that nearby robots
(as well as the robot itself) can perceive. The light can have different colors, and thus, the robots
obtain a constant-sized memory and can communicate state information to their neighbors. In
addition to these core features, both models have a variety of freedom in some other assumptions;
for instance, the LCM cycles might be fully synchronous (Fsync), semi-synchronous (Ssync) or
completely asynchronous (Async). All schedulers are assumed to be fair such that each robot can
execute its LCM cycle infinitely often. Time is measured in epochs, i.e., the smallest number of rounds
such that each robot has executed its LCM cycle at least once. In Fsync an epoch is equal to one
round.

Our focus lies on robots with limited visibility, i.e., each robot cannot perceive the entire swarm
but only nearby robots. The terms connectivity range and viewing range are distinguished (see e.g.,
[5, 20]). Robots are connected to all robots up to a distance equal to their connectivity range and
can see all robots within their viewing range (the viewing range is at least as large as the connectivity
range). Initial configurations are connected w.r.t. the connectivity range and algorithms typically
maintain this connectivity. The larger viewing range enhances the local information of the robots.
Additionally, viewing and connectivity range can be circular or square. More precisely, a circular
connectivity range of c means that a robot is connected to all robots in the distance at most c (all
neighbors lie within the circle of radius c around the robot). In contrast, the square connectivity
range of sc connects a robot r to all other robots located within an axis aligned 2sc×2sc-sized square
centered at r. Similarly, circular and square viewing ranges are defined. In many applications, the
connectivity and the viewing range are identical. The literature especially focusing on the runtime
of formation algorithms often benefits from a viewing range that is larger than the connectivity
range, see e.g., [1, 3, 4, 20].

Typical well-studied benchmark problems for robots with limited visibility are the Gathering
and the Chain-Formation problem. Gathering demands the robots to gather at a single, not
predefined, position. Chain-Formation considers a chain of robots between two stationary outer
robots: each inner robot has two identifiable neighbors (the neighborhoods are predefined and
fixed). The goal is to arrange the robots on the line segment connecting the outer robots. Both
Gathering and Chain-Formation can be characterized as contracting : the robots move closer
together. Much less is known about formation tasks for robots with limited visibility that aim to
achieve a contrary goal: to expand the robots’ positions. One example is the Uniform-Circle-
Formation problem in which n robots are to move such that their positions form a regular polygon
[11, 18]. Another, very recent example and the main inspiration for this work is the Max-Chain-
Formation problem [5]. The Max-Chain-Formation problem is a variant of the Chain-For-
mation problem. The difference is that Max-Chain-Formation gives the outer robots the ability
to move. The new goal is to transform the chain of robots with connectivity and viewing range c
into a straight line of length (n− 1) · c.

In this work, we introduce the Max-Line-Formation problem. The goal is similar to the
Max-Chain-Formation problem: to move the robots with connectivity range c such that their
positions form a straight line of length (n − 1) · c. The difference is that Max-Line-Formation
does not consider predefined chain neighborhoods. Instead, robots can observe the positions of all
robots within their viewing range and do not have any fixed neighbors. We analyze under which
robot capabilities the problem is solvable, derive algorithms, and analyze their runtime.

Related Work Due to space constraints, we focus on robots that operate in the LCM model and
results about Gathering, Chain-Formation and Max-Chain-Formation with a particular
focus on research that considers a runtime analysis of the proposed algorithms. For a very recent
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and comprehensive overview of different robot formation algorithms, we refer the reader to [14].
Oblivious and disoriented robots (OBLOT ), can solve Gathering in O(n2) rounds (Fsync) with
the GTC algorithm. GTC moves robots in each round towards the center of the smallest enclosing
circle of their neighborhood [2, 9]. GTC achieves the currently best-known runtime for disoriented
and oblivious robots in the Euclidean plane. Faster algorithms for disoriented robots could so far
only be designed under the LUMI model. There are two algorithms for robots located on a two-
dimensional grid [1, 7]. Another algorithm for robots in the Euclidean plane that are connected in
a closed chain topology [4] exists. When assuming the OBLOT model and one axis agreement, an
asymptotically optimal algorithm with runtime O(∆) has been introduced in [20]. The algorithm
assumes a square connectivity range of 1 and a circular viewing range of

√
10. Notably, the algorithm

even works with the same runtime guarantees under the Async scheduler.
Chain-Formation has been initially introduced in [12]. The authors introduce the GTM

algorithm that moves each robot to the midpoint between its neighbors. For the Fsync scheduler,
a runtime of O(n2 · log(n/ε)) rounds has been proven. Later on, an almost matching lower bound
(for the algorithm) of Ω(n2 · log(1/ε)) has been derived [16]. Algorithms with stronger assumptions,
e.g., the LUMI model, are able to achieve better runtimes [13, 17].

Very recently, the Max-Chain-Formation problem has been introduced [5]. Started in one-
dimensional configurations, the Max-GTM algorithm has a runtime of O(n2 · log(n/ε)) and Ω(n2 ·
log(1/ε)) rounds under the Fsync scheduler. However, a specific class of input configurations does
not converge to the optimal configuration. For two-dimensional configurations, only a convergence
result is known. Additionally, for Gathering, Chain-Formation and Max-Chain-Formation,
it is known that the problems can be solved optimally in a continuous time model [5, 8].

Our Contribution We introduce the Max-Line-Formation problem. The goal is to arrange
n robots with connectivity range c on a straight line of length (n − 1) · c. We start with an
impossibility result and prove that there are initial configurations for which the problem cannot be
solved deterministically by robots with constant sized circular viewing and connectivity ranges. In
addition, also no algorithm that converges to the optimal solution can exist for these configurations.
The impossibility result even holds under strong assumptions: fully synchronized robots (Fsync)
that agree on both axes of their local coordinate systems. On the positive side, we show that
the problem becomes solvable for robots with identical square connectivity and viewing ranges.
While square connectivity and viewing ranges already have been proven to be useful to derive an
efficient Gathering algorithm [20], the Max-Line-Formation is the first known problem that
can be solved under square viewing ranges but not under circular viewing ranges. Our algorithms
require the robots to agree on only one axis of their local coordinate systems. We introduce two
algorithms: The first algorithm considers the OBLOT model and converges to the optimal solution
in O(n2 · log(n/ε)) epochs under the Ssync scheduler. The analysis idea is based on the sample
variance of time inhomogeneous Markov chains (a concept similar to the mixing time of the time
homogeneous case) inspired by [19]. Afterward, we show that enhancing the robots with the LUMI
model allows us to derive an improved algorithm, i.e., the algorithm solves the problem exactly while
simultaneously improving the runtime. The algorithm considers the Fsync scheduler and solves the
problem in Θ(n) epochs. The runtime is asymptotically optimal. Additionally, we argue that, with
some additional synchronization, a combination of the two algorithms can solve the problem exactly
with the help of lights in O(n2) epochs under the Ssync scheduler. Due to space constraints, only
the high-level idea of the Ssync algorithm is contained in this version of the paper.

Our results compare to the Max-GTM algorithm for Max-Chain-Formation (which has the
same goal but considers predefined and fixed chain neighborhoods) problem as follows: our runtime
of the OBLOT algorithm holds under the Ssync scheduler. For Max-GTM, only runtimes in
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Fsync are known [5]. Additionally, our results about Max-Line-Formation hold for every input
configuration in which robots have distinct initial positions. For Max-GTM, only a convergence
result for a large class of configurations is known. Additionally, certain classes of configurations do
not converge to the optimal configuration [5].

Moreover, we identify an interesting relation to Gathering and Chain-Formation. We first
show that we can apply the main algorithmic idea of the Θ(n) algorithm to the Gathering problem.
More precisely, we derive an algorithm for the OBLOT model that solves Gathering of n robots
that agree on one axis of their local coordinate systems in Θ(∆) epochs under the Fsync scheduler,
where ∆ denotes the maximum distance of two robots in the initial configuration. 1 The algorithm
uses a square viewing and connectivity range of 1. Up to now, the best-known algorithm achieving
the same runtime uses a square connectivity range of 1 and a circular viewing range of

√
10 [20].

Thus, our algorithm closes the gap between viewing and connectivity range. Furthermore, we show
how the analysis technique of the first algorithm (based on time inhomogeneous Markov chains)
can also be applied for the Chain-Formation problem. In this context, disoriented robots (no
agreement on the local coordinate systems) that are connected in a chain topology are assumed as
well as a circular connectivity range and viewing range of 1. We prove that the GTM algorithm
[6, 13], in which each robot moves to the midpoint between its two direct neighbors in every round,
converges to the optimal configuration in O(n2 ·log(n/ε)) epochs assuming the Ssync scheduler. For
one-dimensional configurations (all robots are initially collinear) this is a significant improvement
over the so far best known runtime bound of O(n5 · log(n/ε)) epochs for this algorithm [6]. For
two-dimensional configurations, our result is the first runtime bound for the Chain-Formation
problem derived for the Ssync scheduler.

2 Model & Notation

Time Model Robots operate in discrete LCM (Look, Compute, Move) cycles, denoted as rounds.
Each robot takes a snapshot of its neighborhood during Look, computes a target point in Compute,
and moves to this point in Move. We assume a rigid movement, robots always reach their target
points during Move. The timing of the executions of the LCM cycles is either fully synchronous
(Fsync) or semi-synchronous (Ssync), i.e., the cycles are synchronous, but only a subset of all
robots participates. The executions are always fair: All robots execute their cycles infinitely often.
Time is measured in epochs, i.e., the smallest number of rounds until each robot processes one
complete LCM cycle. We assume that the execution starts in round t0 and denote the first round of
the k-th epoch by tek . Thus, te1 = t0.

Robot Model We consider n robots r1, . . . , rn positioned in R2. Initially, the robots are
located at pairwise distinct locations 2. We assume a square connectivity and viewing range of 1,
i.e., two robots ri and rj are neighbors if rj is located inside of the 2 × 2-sized square centered at
ri and vice versa. Note that 1 is only chosen for simplicity; it can be replaced by any constant
c. The neighborhood of a robot ri (the set of all visible robots) in round t is denoted by Ni(t).
The square connectivity graph in which two robots share an edge if they are neighbors is initially
connected. Robots are assumed to be transparent and thus do not block the views between other
robots. Moreover, the robots agree on one axis of their local coordinate systems. W.l.o.g. we
assume that the robots agree on the x-axis. Thus, the robots have a common understanding of left
and right, while up and down can be inverted. However, the robots agree on unit distance and can

1Ω(∆) is a trivial lower bound since at least one of the robots forming the diameter ∆ must cover a distance of at
least ∆

2
to obtain Gathering. Since the robots have limited visibility, this requires Ω(∆) rounds.

2Otherwise, the problem is deterministically unsolvable since multiplicities cannot be resolved if the robots are
activated simultaneously.
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measure distances precisely. When considering the OBLOT model, the robots are also silent and
oblivious.

For one algorithm, we consider the LUMI model. Each robot is equipped with a constant
number of lights `1, . . . , `k with color sets C1, . . . , Ck and at every point in time, each light can have
a single color out of its color set. 3 Robots can perceive the lights of their neighbors during Look

and can manipulate their light during Compute. Hence, if a robot ri decides to change its light color
in round t, its neighbors can see this earliest in round t+ 1.

Notation The position of a robot rj in round t is denoted by pj(t) = (xj(t), yj(t)) in a global
coordinate system and by pij(t) = (xij(t), y

i
j(t)) in the local coordinate system of ri. Each robot lies

in the center of its local coordinate system and thus pii(t) = (0, 0). For a robot ri, r
i
`(t) denotes

the leftmost robot of its neighborhood in round t. The position of ri`(t) in the local coordinate
system of ri in round t is denoted by pi`(t) = (xi`(t), y

i
`(t)). In case there are multiple such robots,

ri`(t) represents an arbitrary robot of all leftmost robots. Similarly, rir(t) and pir(t) are defined for
the rightmost neighbor. Additionally, define ri+(t) and pi+(t) to be the closest neighbor above of
ri and its position. Analogously, ri−(t) and pi−(t) is defined as the closest neighbor below and its
position. In case no such robot exists, ri+(t) = ri and ri−(t) = ri. For a vector v, we denote by v̂
the normalized vector 1

‖v‖v.
Problem Statement Max-Line-Formation demands to move n robots with connectivity

range c such that their positions form a straight line of length (n− 1) · c. We say that an (1− ε)-
approximation of the optimal configuration is reached if the positions form a straight line of length
at least (1− ε) · (n− 1) · c. During the entire execution of an algorithm, the connectivity graph has
to remain connected.

3 Impossibility Result & Intuition about Square Ranges

This section proves that Max-Line-Formation is unsolvable with constant-sized circular viewing
and connectivity ranges. Afterward, we give an intuition on how square ranges circumvent the
impossibility.

3.1 Impossibility with Circular Ranges

Theorem 1. In the OBLOT model, for every constant sized circular connectivity and viewing
range, there exists an initial configuration with robots located at distinct positions such that the
Max-Line-Formation problem is unsolvable. Furthermore, no convergence algorithm can exist
for these configurations. This holds for robots that agree on both axes of their local coordinate
systems and the Fsync scheduler.

Proof. Initially, we assume identical viewing and connectivity ranges. The arguments for viewing
ranges that are larger than the connectivity range are analogous and can be found in Appendix A.
Thus, we assume a circular viewing and connectivity range of c. We prove the claim by contradiction.
We assume that there is an algorithmM that is able to solve the Max-Line-Formation problem.
Next, we derive a combination of 2 initial configurations C1 and C2 and prove that if M is able to
solve the problem starting in C1, it cannot solve it starting in C2. The configuration C1 consists of
three robots r1, r2 and r3 at arbitrary (connected) positions. SinceM is able to solve the problem,

3In the classical LUMI model [10] each robot is equipped with a single light and color set. Our assumption of
multiple lights and color sets can be transferred to the classical setting by choosing a single light with a color set of

size at most 2
∑k

i=1 |Ci| .
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M

Figure 1: The config. C1 transformed by M.

r4

r5

r6

r8

r9

r10

r7

Figure 2: The configuration C2.

there is a time step tf such that the Max-Line-Formation problem is solved. W.l.o.g. we assume
that r1 and r3 are located at the end of the line and p1(tf ), p2(tf ) and p3(tf ) form a line parallel
to the y-axis (otherwise we could rename the robots and rotate the following configuration C2

accordingly). More precisely, p1(tf )− p2(tf ) = p2(tf )− p3(tf ) = (0, c). See Figure 1 for a depiction
of the effects of M started in C1.

The configuration C2 consists of 7 robots, r4, . . . , r10 located at the following positions in a
global coordinate system (not known to the robots): p4(t) = (−c, c), p5(t) = (−c, 0), p6(t) =
(−c,−c), p7(t) = (0, 0), p8(t) = (c, c), p9(t) = (c, 0), and p10(t) = (c,−c). See Figure 2 for a vi-
sualization of the configuration. In C2, r4 can only see r5 and is located in distance c of r5.
Moreover, it holds p4(t)− p5(t) = p1(tf )− p2(tf ) and ‖p4(t)− p5(t)‖ = c. Thus, M is not allowed
to move r4 since M cannot distinguish r1 in configuration C1 after time tf and r4 in configuration
C2. By similar arguments,M is also not allowed to move r6, r8 and r10. Hence, the only remaining
robots that could be moved by M are r5, r7 and r9. However, also these robots are not allowed to
move. Consider the robot r5 which is located in maximum distance to r4, r6 and r7. No matter
where r5 moves, it loses the connectivity to either r4 or r6 as these robots remain at their position.
The same arguments hold for r7 and r9. It follows that M cannot solve the problem C2, which
contradicts the assumption.

3.2 Intuition about Square Ranges

Next, we argue why the proof of Theorem 1 does not hold when considering square viewing and
connectivity ranges. Assume that the algorithmM transforms the configuration C1 into a line that
is parallel to the y-axis. Then, also the configuration C2 is aligned with the y-axis. Still, the robots
r4, r6, r8 and r10 are not allowed to move. The robots r5 and r9, however, gain the possibility to move
horizontally. More precisely, r5 is allowed to move to the right (a distance of at most 1) without
losing the connectivity to r4 and r6 since the complete line segment connecting r5 and r7 is contained
in the square viewing range of both r4 and r6. Similarly, r9 can move to the left. See Figure 3 for a
depiction of C2 with square ranges instead of circular ones. Consequently, an algorithm solving the
Max-Line-Formation with the help of square ranges should arrange the robots on a line parallel
to the y-axis. The square ranges are only beneficial in case the local coordinate systems have the
same orientation. In case the robots are disoriented, the same impossibility result of Section 3.1
also holds with square ranges.
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r4

r5

r6

r8

r9

r10

r7
Figure 3: The configuration
C2 with square ranges instead
of circular ones.

4 OBLOT Algorithm

Based on the results of Section 3, Max-Line-Formation is unsolvable with circular viewing and
connectivity ranges. In this section, we show that equipping the robots with square connectivity
and viewing ranges allows us to design an algorithm that converges to the optimal solution. More
precisely, we give an algorithm that converges to the optimal configuration assuming the OBLOT
model and a square viewing and connectivity range of 1.

4.1 Intuition

The algorithm works in two phases. In the first phase, the positions of all robots are arranged on a
straight line parallel to the y-axis. Afterward, the line is stretched in the second phase. Since the
robots are oblivious and have limited visibility, robots cannot distinguish the phases and act upon
their local view. Nevertheless, we will show that there is a time t′ such that all robots have joined
the second phase and will remain there for the rest of the execution.

Phase 1: A robot ri whose neighborhood has not yet formed a line parallel to the y-axis moves
only if its position is rightmost in its neighborhood. Then, ri moves horizontally to the x-coordinate
of its leftmost neighbor. If another robot already occupies this position, ri executes a slight vertical
movement into the positive (from its local view) y-direction to avoid a collision. Collisions have
to be avoided as they cannot be resolved deterministically. More precisely, if the robot is located
topmost in its neighborhood, it moves a constant distance upwards. If the robot is not topmost, it
determines the value yimin, the y-coordinate of its closest neighbor to the top. Afterwards, it moves
1
3y

i
min upwards. The factor of 1

3 is essential since the robot with y-coordinate yimin might do the
same movement while having a different understanding of up and down. Hence, a collision of the
two robots is avoided.

Phase 2: In the second phase, all robots are located on the same line parallel to the y-axis, which
can be seen as a particular case of the Max-Chain-Formation problem. Thus, the robots execute
the Max-GTM algorithm designed for Max-Chain-Formation [5]: each inner robot (robots that
have neighbors in each direction) move to the midpoint between their closest northern and their
closest southern neighbor. Outer robots (at the end of the line) have to stretch the line and move
as far as possible away from their closest neighbor without losing connectivity. Concretely, outer
robots move as follows. Let r1 be an outer robot and r2 its closest neighbor and v(t) = p1(t)−p2(t).
Then, r1 imagines a virtual robot rv at the position pv(t) = p1(t)+ v̂(t) and moves to 1

2pv(t)+ 1
2p2(t).

4.2 Algorithm

We define the following set of possibly colliding robots. For a robot ri, define Ci(t) = {rj ∈
Ni(t)|xij(t) = 0 or xij(t) = xi`(t)}. Now, rimin ∈ Ci(t) is the robot with minimal yimin(t) among all
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robots with yimin(t) > 0. Thus, rimin represents the robot lying above of ri (from ri’s view) that
has the smallest y-coordinate among all robots in Ci(t). If no such robot exists, define yimin = 1

10 .
Algorithm 1 describes the movement of a robot ri.

Algorithm 1 OBLOT Max-Line-Formation

1: if xir(t) = 0 and xi`(t) < 0 then . Check if ri is rightmost but not leftmost
2: if no robot is located on (xi`(t), 0) then
3: pi(t+ 1)← (xi`(t), 0) . ri can move safely to the left
4: else
5: pi(t+ 1)← (xi`(t),

1
3 · y

i
min) . ri avoids a collision with a vertical movement

6: else
7: if xir(t) = 0 and xi`(t) = 0 then . Check if neighbors are collinear
8: if yi+(t) = 0 and yi−(t) < 0 then . Check if ri is top most
9: v−(t)← pi−(t)− pi(t); pv(t)← pi(t)− v̂−(t) . Position of virtual robot

10: pi(t+ 1)← 1
2p−(t) + 1

2pv(t)
11: else if yi+(t) > 0 and yi−(t) = 0 then . Check if ri is bottom most
12: v+(t)← pi+(t)− pi(t); pv(t)← pi(t)− v̂+(t) . Position of virtual robot
13: pi(t+ 1)← 1

2p+(t) + 1
2pv(t)

14: else
15: pi(t+ 1)← 1

2p−(t) + 1
2p+(t)

16: ri moves to pi(t+ 1)

4.3 Analysis

Next, we introduce the analysis idea to prove the main theorem (Theorem 2) about the OBLOT
algorithm. Due to space constraints, all proofs are deferred to Appendix B.

Theorem 2. For every 0 < ε < 1, after O(n2 · log (n/ε)) epochs, the robots have formed a line of
length at least (1− ε) · (n− 1).

First, we argue that the first phase of the algorithm ends after O(n2) rounds.

Lemma 3. After O(n2) epochs, all robots are located on distinct positions on the same vertical line
parallel to the y-axis. Moreover, the configuration is connected.

Now, we can assume that the first phase is completed, and thus all robots are located on the same
vertical line. W.l.o.g., we rename the robots such that y1(t) ≤ y2(t) ≤ ... ≤ yn(t). Moreover, define
w1(t) = 1 and wi(t) = yi(t)− yi−1(t) for 2 ≤ i ≤ n. In addition, define zi(t) = (wi(t)−w1(t)). The
algorithm is designed such that limt→∞wi(t) = 1 for all i. To analyze this behavior, we consider the
following function: Φ(t) =

∑n
i=2 zi(t)

2. The function Φ(t) is also known as the sample variance [19].
The name comes from a relation to time inhomogeneous Markov chains. Although the algorithm is
deterministic, the behavior of the vectors wi(t) can be interpreted as a time inhomogeneous Markov
Chain. The main course of our analysis is based on [19], where the authors analyzed a similar
behavior in the context of the distributed averaging consensus problem. In this problem, there are
n agents, each having a numerical opinion. Every round, an agent gets to know some other opinions
and updates its opinion to the average. Our application has one important difference: the values
wi(t) do not average but converge to the fixed value w1(t). Hence, many parts of the proof in [19]
have to be reworked and adapted to our application. First, we derive a bound on the change of Φ(t)
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between two epochs. Define wπ1(tek), wπ2(tek), . . . , wπn(tek) to be the values wi(tek) sorted from
largest to smallest with ties broken arbitrarily.

Lemma 4. For any epoch k, Φ(tek)− Φ(tek+1
) ≥ 1

4

∑n−1
i=1

(
wπi(tek)− wπi+1(tek)

)2
.

Based on Lemma 4, a lower bound on the relative change is derived.

Lemma 5. Suppose that Φ(tek) > 0. Then,
Φ(tek )−Φ(tek+1

)

Φ(tek ) ≥ 1
8n2 .

A combination of Lemmas 4 and 5 yields the statement of Theorem 2.

5 LUMI Algorithms

In this section, we derive an algorithm that solves Max-Line-Formation exactly with the help of
the LUMI model under the Fsync scheduler (Section 5.1). The algorithm achieves an asymptoti-
cally optimal runtime of Θ(n) rounds. Additionally, in Section 5.2, we give an intuition about how a
synchronization technique in combination with the OBLOT (Section 4) and the Fsync algorithm
(Section 5.1) is able to solve Max-Line-Formation exactly under the Ssync scheduler in O(n2)
epochs.

5.1 Fast Algorithm for the Fsync scheduler

The algorithm(Algorithm 2) also works in two phases: In the first phase, all robots are arranged on a
straight line parallel to the y-axis, and in the second phase, the line is stretched until it has maximal
length. Compared to the OBLOT algorithm (Section 4), the algorithm uses different core ideas in
both phases. In the first phase, all robots (instead of only the rightmost ones of their neighborhood)
move to the left without losing connectivity – this is necessary to achieve a linear speedup of the
first phase. The second phase makes use of lights to implement a sequential movement denoted as
a run inspired by [1, 4, 7, 17]. For the sake of clarity and due to space constraints, we present a
variant of the algorithm in which the robots still move to the left during the second phase. More
precisely, after a linear number of rounds, the first phase ends, and the robots form a line parallel
to the y-axis that continuously moves a distance of 1 to the left. Simultaneously, the robots stretch
the line until it has maximal length. However, the line structure is always maintained such that
Max-Line-Formation is solved finally and remains solved (although the line keeps moving to the
left). Moving continuously to the left can be removed from the algorithm with some additional
effort; an intuition is given in Appendix C.

Phase 1: All robots move as far as possible to the left : each robot ri moves to the x-coordinate
xir(t)−1. Again, collision avoidance has to be ensured. While moving to xir(t)−1, the robot ri could
collide with every robot located on its local x-axis (since these robots potentially also want to move
to the x-coordinate xir(t)−1). The robot ri executes a vertical movement to avoid a collision. Based
on the ordering of neighbors on the local x-axis, ri gets assigned a unique y-coordinate as follows:
Define Yi(t) = {rj ∈ Ni(t)| yij(t) = 0} and let xπ1(t), xπ2(t), . . . , xπ|Yi(t)|(t) be the x-coordinates
of robots in Yi(t) in increasing order. Additionally, let ki(t) ∈ {1, . . . , |Yi(t)|} denote the position
of xi(t) in the sorted sequence xπ1(t), xπ2(t), . . . , xπ|Yi(t)|(t). Furthermore, define yimin(t) to be the

minimal yij(t) of all yij(t) > 0 of robots rj ∈ Ni(t). If no such robot exists, define yimin(t) = 1
10 (any

constant of size at most 1 works). Then, ri gets assigned the y-coordinate ki(t)−1
|Yi(t)| ·

1
3y

i
min(t). The

factor ki(t)−1
|Yi(t)| is unique for every robot on the local x-axis and the factor of 1

3 is needed to prevent
a collision with other robots that execute the same collision avoidance.
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Phase 2: For the second phase, lights are used. Assume w.l.o.g. that the robots are ordered
along the y-axis, i.e., y1(t) ≥ y2(t) ≥ · · · ≥ yn(t). The core idea is a sequential movement started
at r1 and rn implemented with lights. Such a movement is called a run [1, 4, 7, 17]. Assume that
a run starts in round t. Then, only r1 and rn move. In round t+ 1, only r2 and rn−1 move and so
on. A new run is started every three rounds.

Runs are realized with lights as follows. The first required light `c with color set Cc = {0, 1, 2}
is used as a round counter. Every round, all robots increment their light `c. Whenever `c = 2 holds,
both r1 and rn activate a light `mov with Cmov = {0, 1} (the light is either active or inactive). An
active light `mov enables the corresponding robot to move. Thus, in the next round, it holds `c = 0
and both r1 and rn detect an active light `mov. Both r1 and rn now execute a movement (see below).
Additionally, they deactivate the light `mov and activate a light `prev with color set Cprev = {0, 1} to
remember the movement. Simultaneously, the robots r2 and rn−1 observe a neighbor on the y-axis
with active light `mov (r1 and rn). Additionally, neither r2 nor rn−1 has activated `prev. Hence,
the robots activate `mov to continue the run. In the next round, r1 and rn observe a neighbor with
active light `mov but do not activate their own light `mov since `prev is active. Doing so ensures that
the run keeps a fixed direction along the line.

Robots that have a run (the light `mov is active) move as follows. In case r1 has a run and not r2

(n > 2), r1 moves in distance 1 vertically away from r2. More formally, p1(t+1) = (x1
r(t)−1,− y1

2(t)

|y1
2(t)|)

(remember that in this variant the robots move also in phase 2 to the left). Similar, rn moves away
from rn−1 in distance 1. In case a robot ri has a run that came from ri−1 (ri−1 has activated
`prev and ri has activated `mov) and ri+1 does not have a run, ri moves in vertical distance 1 away

from r+1: pi(t+ 1) = (xir(t)− 1,− yii+1(t)

|yii+1(t)|). Lastly, in case two neighboring robots have a run, for

instance ri and ri+1 have activated `mov both move only a vertical distance of 1
2 away from each

other: pi(t+1) = (xir(t)−1,− yii+1(t)

2|yii+1(t)|). The handling of the lights and the corresponding movement

is depicted in Figure 4.

Algorithm 2 LUMI Algorithm Fsync executed from the local view of ri

1: if all neighbors are located on the y-axis then
2: if ri = ri+(t) or ri = ri−(t) then
3: if `mov = 1 then . `mov = 1 implies `c = 0
4: `mov ← 0; `prev ← 1
5: rc ← closest neighbor on y-axis
6: if rc has activated `mov then . Special case n = 2
7: pi(t+ 1)← (xir(t)− 1,− 1

2·|yc(t)| · yc(t)) . Move distance of 1
2

8: else
9: pi(t+ 1)← (xir(t)− 1,− 1

|yc(t)| · yc(t)) . Move distance of 1

10: else
11: if `c = 2 then
12: `mov ← 1;

13: pi(t+ 1)← (xir(t)− 1, 0))

14: else
15: if `mov = 1 then
16: `mov ← 0, `prev ← 1
17: if closest neighbor above and below have set `mov = 0 then
18: rc ← closest neighbor with `prev = 0
19: pi(t+ 1)← (xir(t)− 1,− 1

|yc(t)| · yc(t))

10



20: else
21: rc ← neighbor with `mov = 1
22: pi(t+ 1)← (xir(t)− 1,− 1

2·|yc(t)| · yc(t))

23: else
24: if closest neighbor above or below has set `mov = 1 then
25: if `prev = 0 then
26: `mov ← 1
27: else
28: `prev ← 0

29: pi(t+ 1)← (xir(t)− 1, 0))

30: else
31: {`mov, `prev} ← 0 . Deactivate lights if neighborhood is not in phase 2
32: if |Yi(t)| > 0 then

33: pi(t+ 1)← (xir(t)− 1, ki(t)−1
|Yi(t)| ·

1
3y

i
min(t))

34: else
35: pi(t+ 1)← (xir(t)− 1, 0)

36: `c ← `c + 1
37: ri moves to pi(t+ 1)

`c = 0 `c = 1`c = 2 `c = 2 `c = 0

1

1

1

1
1

1

Figure 4: A square (cross) de-
picts a robot with active light
`mov (`prev). Time proceeds
from left to right. In the first
line it holds `c = 2 for all
robots. In this round the top
most and the bottom most
robot activate `mov. In the
next round (`c = 0), these
two robots move in distance
1 of their neighbor (depicted
by an arrow) and additionally
deactivate `mov while activat-
ing `prev. Afterward (`c = 1)
the next two robots with ac-
tive light `mov move in dis-
tance 1 of their next neighbor.

Analysis: In the analysis (Appendix D), it is proven that after a linear number of rounds, the
first phase ends (and thus, the robots have formed a line parallel to the y-axis). As a part of the
proof, it is proven that no collisions occur, and the connectivity is always maintained. Moreover,
it is proven that as soon as phase 2 is reached, the robots remain in phase 2 (following from the
algorithm’s description). Afterward, the runs of the second phase are analyzed. The first run
ensures that after O(n) rounds, the robots rbn/2c and rbn/2c+1 have a vertical distance of 1. The
second run ensures the same both for rbn/2c−1 and rbn/2c as well as rbn/2c+1 and rbn/2c+2. Hence,
after O(n) runs, the line reaches maximal length. Since each 3 rounds, a new run is started, and
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each run proceeds one robot per round, the linear runtime follows.

Lemma 6. After O(n) epochs, all robots are located on distinct positions on the same vertical line
parallel to the y-axis. Moreover, the configuration is connected.

Theorem 7. After O(n) epochs, the robots have solved Max-Line-Formation.

The algorithm can be implemented in the classical LUMI model with a single light having 9
colors. Observe that no robot ever activates the lights `prev and `mov at the same time. Thus, for
each robot, it always holds: either `prev, `mov or none of both are activated. Additionally, each
robot counts rounds with the light `c requiring 3 colors. Hence, the total number of required colors
is 9: 3 colors of `c, each combined with 3 possible cases for the lights `mov and `prev.

5.2 Ssync Scheduler

The first phase of the Ssync algorithm is identical to the first phase of the OBLOT algorithm
(Section 4): Each robot that is rightmost in its neighborhood moves horizontally to the x-coordinate
of its leftmost neighbor. In case this position is already occupied, a slight vertical movement is
used to avoid collisions. The main idea of the second phase is the sequential movement (run) of
Algorithm 2. Due to the Ssync scheduler, an additional synchronization procedure needs to be
added. In Fsync, a robot with active light `mov can always be sure that the neighbors observe and
adapt the light. Since only a subset of robots is active in every round in Ssync, the light `mov might
not be seen, and thus, the run stops. To overcome this, we add a synchronization done with the
light `c. In contrast to the Fsync algorithm, the robots do not increment the light in every round
they become active. Instead, each run gets associated with a color of the light `c. More precisely,
the main idea is as follows. Assume that the robots have already formed a line parallel to the
y-axis. Moreover, we rename the robots such that y1(t) ≤ y2(t) ≤ · · · ≤ yn(t). Additionally, assume
the configuration is well-initialized, i.e. all robots have set `c = 0. We describe the procedure
from the view of r1, it works analogously for rn. We denote by `i(rj) the color of rj ’s light `i
in round t (the time parameter is omitted for readability). As soon as r1 is activated, it observes
`c(r2) = `prev(r2) = `mov(r2) = 0. Then, r1 activates `mov. As soon as r1 wakes up again, it executes
its movement (it moves in distance 1 of r2), deactivates `mov, activates `prev and increments `c such
that `c = 1. In the future, r1 will only deactivate `prev in case it detects `c(r2) = 1 (indicating that
r2 has taken over the run). Hence, as soon as r2 is activated and detects `c(r1) = `prev(r1) = 1 and
`c(r3) = `prev(r3) = `mov(r3) = 0, it will activate `mov. Upon its next activation, r2 executes its
movement, deactivates `mov. activates `prev and increments `c. As soon as two neighboring robots
have activated `mov both move in distance 1

2 away from each other and stop the run (exactly as in
Algorithm 2). This way, the runs proceed along the line. To conclude, a robot rj only takes over a
run from its neighbor rj−1 in case `c(rj−1) = `c(rj) + 1. Additionally, rj will only deactivate `prev
as soon as `c(rj−1) ≥ `(rj) and `c(rj+1) = `c(rj).

Note that it might happen due to the limited visibility that some runs already start while the
first phase is not completed. Hence, at the beginning of phase 2, not all robots might be initialized
with the same color of the light `c. In case a robot detects such a violation (e.g., the next robot
that should take over the light `mov has a larger value of `c), the usual movement is not executed.
Instead, simply the light `c is incremented. Hence, for each constant number of runs, the light of one
more robot is well-initialized, and the algorithm adjusts the colors of the lights `c in a self-stabilizing
manner. All in all, the first phase has a runtime of O(n2) epochs (Lemma 3), the second phase is
after O(n) epochs well-initialized (arguments above) and completed after additional O(n) epochs
(Theorem 7). The runtime of O(n2) epochs follows.
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6 Relation to Gathering and Chain-Formation

Finally, we show that we can also apply the main ideas of our algorithms for the Max-Line-
Formation problem in the context of Gathering and Chain-Formation.

6.1 Gathering

We consider robots in the OBLOT model that agree on one axis of their local coordinate systems
and operate under the Fsync scheduler. Define ∆ to be the maximal distance of two robots in the
initial configuration in round t0. Moreover, ∆x denotes maxi,j |xi(t0)− xj(t0)| and analogously ∆y

denotes maxi,j |yi(t0) − yj(t0)|. Observe that ∆x ∈ O(∆) and ∆y ∈ O(∆). The core idea of the
Gathering algorithm (Algorithm 3) is as follows: to use the first phase of Algorithm 2 presented
in Section 5.1 to arrange the robots on a vertical line fast. In this phase, every robot moves as
far as possible to the left. While in Section 5.1, collisions have to be avoided, this is not necessary
for Gathering since collisions are desired to gather all robots on a single point. In Section 5.1
it has been proven that this phase requires O(n) epochs. We show with a slightly more elaborate
argument that this phase requires only O(∆) epochs. The second phase squeezes the line to gather
all robots and works as follows: robots at the end of the line move half the distance towards their
farthest neighbor. All other robots move to the midpoint between their farthest neighbor above and
their farthest neighbor below. The complete algorithm is contained in Algorithm 3. The following
theorem states the O(∆) runtime, see Appendix E for a proof.

Theorem 8. Gathering of n robots agreeing on one axis of their local coordinate systems in the
OBLOT model can be solved in O(∆) epochs under the Fsync scheduler.

Algorithm 3 OBLOT Gathering Ssync (executed if Gathering not done)

1: if all neighbors are located on the y-axis then
2: ria(t)← farthest robot above (ri if no such robot exists)
3: rib(t)← farthest robot below (ri if no such robot exists)
4: pi(t+ 1)← (xir(t)− 1, 1

2y
i
a(t) + 1

2y
i
b(t))

5: else
6: pi(t+ 1)← (xir(t)− 1, 0)

7: ri moves to pi(t+ 1)

6.2 Chain-Formation

Lastly, we study the Chain-Formation problem that considers disoriented robots. Additionally,
the robots are connected in a chain topology: there are n + 2 robots r0, r1, . . . , rn+1. The robots
r0 and rn+1, denoted as outer robots, are stationary (they do not move). Every other robot ri has
exactly two chain neighbors: ri−1 and ri+1 whose positions it can always observe. The robots have
a circular connectivity and viewing range of 1. Define by wi(t) = (wxi (t), wyi (t)) = pi(t) − pi−1(t)
the vectors along the chain and L(t) =

∑n+1
i=1 ‖wi(t)‖. Additionally, D = ‖p0(t) − pn+1(t)‖. The

goal of the Chain-Formation problem is to move the robots such that L(t) = D and to distribute
the robots uniformly along the line segment between r0 and rn+1. W.l.o.g,, assume that r0 is
positioned in the origin of a global coordinate system and rn+1 on the positive x-axis in distance
D to r0. Then, in the optimal configuration it holds wi(t) = w∞ = D

n+1 for 1 ≤ i ≤ n+ 1. We say
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that an ε-approximation of the optimal configuration is reached in case ‖wi(t) − w∞‖ ≤ ε for all
1 ≤ i ≤ n+ 1.

For the problem, the GTM algorithm has been introduced [6, 13]. The algorithm moves each
robot in every round to the midpoint between its two direct neighbors. The GTM algorithm is
very similar to the second phase of the OBLOT algorithm (Algorithm 1) presented in Section 4.
Also, in Algorithm 1, robots that are not located at the end of the line move to the midpoint
of their closest neighbors. In Algorithm 1, however, the robots at the of the line are moving to
stretch the line. In contrast, the robots r0 and rn+1 of the Chain-Formation problem do not
move. Nevertheless, we can apply a very similar analysis idea to the GTM algorithm: We prove
convergence independently for wxi (t) and wyi (t). Since the arguments are identical, we concentrate
on wxi (t). Define x = 1

n+1 ·
∑n+1

i=1 w
x
i (t). Furthermore, define zi(t) = wxi (t)−x. The analysis is based

on the following function: Φ2(t) =
∑n+1

i=1 zi(t)
2 that can be analyzed in most parts analogously to

Φ(t) in Section 4. See Appendix E.1 for a proof.

Theorem 9. For every 0 < ε < 1, GTM reaches an ε-approximation of the optimal configuration
in O(n2 · log(n/ε)) epochs under the Ssync scheduler.

7 Conclusion

We have introduced the Max-Line-Formation problem and proven that the problem is impossible
to solve with circular viewing and connectivity ranges. On the positive side, we have derived
three algorithms for robots with square viewing and connectivity ranges. Several open questions
remain: is it possible to solve the Max-Line-Formation exactly when considering oblivious robots
(OBLOT )? Is the derived runtime for the OBLOT model tight or can there be a more efficient
algorithm? The same question about lower bounds is also still open for the Chain-Formation
and the Gathering problem. Can the problem be solved by disoriented robots (robots that do not
agree on any axis)? For the last question, certainly square ranges do not help to solve the problem
as the square ranges cannot be aligned according to a common axis.
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A Complete proof of Section 3

Theorem 1. In the OBLOT model, for every constant sized circular connectivity and viewing
range, there exists an initial configuration with robots located at distinct positions such that the
Max-Line-Formation problem is unsolvable. Furthermore, no convergence algorithm can exist
for these configurations. This holds for robots that agree on both axes of their local coordinate
systems and the Fsync scheduler.

Proof. Initially, we assume identical viewing and connectivity ranges. The arguments for viewing
ranges that are larger than the connectivity range are analogous and can be found in Appendix A.
Thus, we assume a circular viewing and connectivity range of c. We prove the claim by contradiction.
We assume that there is an algorithmM that is able to solve the Max-Line-Formation problem.
Next, we derive a combination of 2 initial configurations C1 and C2 and prove that if M is able to
solve the problem starting in C1, it cannot solve it starting in C2. The configuration C1 consists of
three robots r1, r2 and r3 at arbitrary (connected) positions. SinceM is able to solve the problem,
there is a time step tf such that the Max-Line-Formation problem is solved. W.l.o.g. we assume
that r1 and r3 are located at the end of the line and p1(tf ), p2(tf ) and p3(tf ) form a line parallel
to the y-axis (otherwise we could rename the robots and rotate the following configuration C2

accordingly). More precisely, p1(tf )− p2(tf ) = p2(tf )− p3(tf ) = (0, c). See Figure 1 for a depiction
of the effects of M started in C1.

The configuration C2 consists of 7 robots, r4, . . . , r10 located at the following positions in a
global coordinate system (not known to the robots): p4(t) = (−c, c), p5(t) = (−c, 0), p6(t) =
(−c,−c), p7(t) = (0, 0), p8(t) = (c, c), p9(t) = (c, 0), and p10(t) = (c,−c). See Figure 2 for a vi-
sualization of the configuration. In C2, r4 can only see r5 and is located in distance c of r5.
Moreover, it holds p4(t)− p5(t) = p1(tf )− p2(tf ) and ‖p4(t)− p5(t)‖ = c. Thus, M is not allowed
to move r4 since M cannot distinguish r1 in configuration C1 after time tf and r4 in configuration
C2. By similar arguments,M is also not allowed to move r6, r8 and r10. Hence, the only remaining
robots that could be moved by M are r5, r7 and r9. However, also these robots are not allowed to
move. Consider the robot r5 which is located in maximum distance to r4, r6 and r7. No matter
where r5 moves, it loses the connectivity to either r4 or r6 as these robots remain at their position.
The same arguments hold for r7 and r9. It follows that M cannot solve the problem C2, which
contradicts the assumption.

Next, we consider a viewing range that is larger than the connectivity range but still a constant.
W.l.o.g. we assume that there is a constant α > 1 such that the viewing range is of size α · c.
The configuration is similar to before but the robots r4, r6, r7, r8 and r10 are replaced by a line of
dαe robots in maximum distance. More precisely, r4 is replaced by dαe robots r4,1, r4,2, . . . , r4,dαe
with p4,j(t) = (−dαe · c, (dαe − j + 1) · c). Similarly, r6, r7, r8 and r10 are replaced. Hence, in
total dαe · 5 + 2 robots are needed. See Figure 5 for a visualization. The configuration is designed
such that r4,1, r6,2, r81 and r10,2 are not allowed to move since the configuration looks like the
final configuration from their point of view. All other robots are not allowed to move since their
movement would disconnect the connectivity graph.
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r4,2
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r6,1

r8,2

r9

r10,1
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Figure 5: The configuration with α = 2 is depicted. The dotted circles represent the connectivity
ranges of the robots. The solid circles depict the viewing ranges of selected robots (other viewing
ranges are left out for the sake of clarity).
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B Omitted Proofs of Section 4

Lemma 3. After O(n2) epochs, all robots are located on distinct positions on the same vertical line
parallel to the y-axis. Moreover, the configuration is connected.

Proof. Initially, at most n distinct x-coordinates that are occupied by robots exist. In every epoch,
at least one robot that occupies the rightmost x-position moves to the left as the configuration
is connected. This movement does not create any new x-position as the robot moves to the x-
coordinate of its leftmost neighbor. Additionally, no robot moves to the right. Hence, after at
most n epochs, no robot occupies the rightmost x-coordinate anymore. Thus, after O(n2) epochs,
all robots are located on the same vertical line by applying the same argument inductively. The
connectivity and non-existence of collisions follow from the algorithm’s description.

We define τi(t) = 1 if and only if ri is active in round t. First of all, we derive formulas for
the vectors wi(t + 1). For each vector, we have to consider 4 cases: τi(t) = 1 and τi−1(t) = 1,
τi(t) = 1 and τi−1(t) = 0, τi(t) = 0 and τi−1(t) = 1 and τi(t) = 0 and τi−1(t) = 0. Furthermore,
µ−i (t) = τi−1(t) · (τi−1(t)− τi(t)) and µ+

i (t) = τi(t) · (τi(t)− τi−1(t)). For the ease of notation,
define d−i (t) = µ−i (t) · (wi(t)− wi−1(t))2, di(t) = τi(t) · τi−1(t) · (wi−1(t)− wi+1(t))2 and d+

i (t) =
µ+
i (t) · (wi(t)− wi+1(t))2. Observe that d−i (t), di(t) and d+

i (t) are defined such that at most one of
the three terms can be larger than 0 (the other ones are equal to 0). Lastly, define wn+1(t) = w1(t).

Lemma 10. For any round t, it holds

Φ(t+ 1) = Φ(t)− 1

4

n∑
i=2

d−i (t) + di(t) + d+
i (t).

Proof. Consider a vector wi(t) with 2 < i < n. Next, we calculate wi(t + 1). There are 4 cases to
consider: Case 1: τi−1(t) = 1 and τi(t) = 1, Case 2 and 3: τi−1(t) = 1 and τi(t) = 0 or vice versa
and Case 4: τi−1(t) = 0 and τi(t) = 0. The following formulas can be easily verified:

1. Case 1: wi(t+ 1) = 1
2wi−1(t) + 1

2wi+1(t)

2. Case 2: wi(t+ 1) = 1
2wi−1(t) + 1

2wi(t)

3. Case 3: wi(t+ 1) = 1
2wi(t) + 1

2wi+1(t)

4. Case 4: wi(t+ 1) = wi(t)

The formulas for the boundary vectors w2(t) and wn(t) are slightly different: Case 1: τ1(t) = 1,
τ2(t) = 1, τn−1(t) = 1, τn(t) = 1, Case 2 and 3: τ1(t) = 1, τ2(t) = 0, τn−1(t) = 0 and τn(t) = 1 or
vice versa and Case 4: τ1(t) = 0, τ2(t) = 0, τn−1(t) = 0 and τn(t) = 0.

1. Case 1: w2(t+ 1) = 1
2w1(t) + 1

2w3(t); wn(t+ 1) = 1
2wn−1(t) + 1

2wn+1(t)

2. Case 2: w2(t+ 1) = 1
2w1(t) + 1

2w2(t); wn(t+ 1) = 1
2wn(t) + 1

2wn+1(t)

3. Case 3: w2(t+ 1) = 1
2w2(t) + 1

2w3(t); wn(t+ 1) = 1
2wn−1(t) + 1

2wn(t)

4. Case 4: w2(t+ 1) = w2(t); wn(t+ 1) = wn(t)

Next, we derive a formula for zi(t + 1)2 for 2 < i < n. Observe first zi(t)
2 = (wi(t) − 1)2 =

wi(t)
2 − 2 · wi(t) + 1.
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1. Case 1: zi(t + 1)2 = (1
2wi−1(t) + 1

2wi+1(t) − 1)2 = 1
4wi−1(t)2 + 1

4wi+1(t)2 + wi−1(t)·wi+1(t)
2 −

wi−1(t)− wi+1(t) + 1

2. Case 2: zi(t+ 1)2 = 1
4wi−1(t)2 + 1

4wi(t)
2 + wi−1(t)·wi(t)

2 − wi−1(t)− wi(t) + 1

3. Case 3: zi(t+ 1)2 = 1
4wi(t)

2 + 1
4wi+1(t)2 + wi(t)·wi+1(t)

2 − wi(t)− wi+1(t) + 1

4. Case 4: zi(t+ 1)2 = zi(t)
2

Similar formulas can be derived for z2(t+ 1) and zn(t+ 1). Since at most one of the three terms
d−i (t), d+

i (t) and di(t) is positive, and each wi(t) occurs exactly twice in all zi(t + 1)’s, the lemma
follows.

Lemma 4. For any epoch k, Φ(tek)− Φ(tek+1
) ≥ 1

4

∑n−1
i=1

(
wπi(tek)− wπi+1(tek)

)2
.

Proof. By Lemma 10, we obtain

Φ(tek)− Φ(tek+1
) ≥ 1

4
·
tek+1∑
t=tek

n∑
i=2

d−i (t) + di(t) + d+
i (t).

The first part of the proof deals with finding a lower bound for any d−i (t) + di(t) + d+
i (t) given

that at least one of the terms is larger than 0 (at most one of the three terms is positive). The lower
bound, however, depends on the sorted sequence wπ1(t), . . . wπn(t). Since we lose much structure
due to the sorting, some definitions are needed. Let π be the function that maps the indices
of w1(tek), . . . , wn(tek) into the sorted sequence wπ1(tek), . . . , wπn(tek) and π−1 its inverse. More
precisely, for instance π(i) = πf if and only if wi(tek) = wπf (tek). Furthermore, define σm,i,j(t) = 1
if and only if one of the following cases is fulfilled:

1. dπm(t) > 0 and π(π−1(πm)− 1) = πi and π(π−1(πm) + 1) = πj or vice versa

2. d−πm(t) > 0 and π(π−1(πm)− 1) = πi and π(π−1(πm)) = πj or vice versa

3. d+
πm(t) > 0 and π(π−1(πm)) = πi and π(π−1(πm) + 1) = πj or vice versa

Due to the sorting, we lose the nice property that only neighboring wi(t)’s are involved in dπm(t),
d−πm(t) and d+

πm(t). For instance in case dπm(t) > 0 we cannot conclude that wπm−1(t) and wπm+1(t)
ar involved. Thus, intuitively, σm,i,j(t) = 1 if and only if dπm(t), d−πm(t) or a d+

πm(t) is larger than 0
and both wπi(t) and wπj (t) are involved.

Next, define t` (1 ≤ ` ≤ n) to be the first round larger than or equal to tek such that there
exists three indices πi, πj and πm (πi 6= πj but πi = πm or πj = πm might hold) with πi ≤ π` < πj
(or vice versa) and σm,i,j(t) = 1. In other words, t` denotes the first round in which the values
wπ1(tek), . . . , wπ`(tek) and wπ`+1

(tek), . . . , wπn(tek) influence each other. By influencing each other,
we mean that wπm(t+ 1) = 1

2wπi(t) + 1
2wπj (t), since either dπm(t) > 0, d−πm(t) > 0 or d+

πm(t) > 0.4

For all t ∈ {tek , . . . , tek+1
} let L(t) = {` | t` = t}, i.e. L(t) represents all indices ` at time t such

that the two sets {wπ1(tek), . . . wπ`(tek)} and {wπ`+1
(tek), . . . , wπn(tek)} influence each other for the

first time.

4In the context of averaging consensus each index 1, . . . , n corresponds a node in the graph. Thus, the index ` can
be interpreted as a cut in the graph and the time t` as the first time with a communication across the cut represented
by `.
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Now, we define all pairs of indices πi, πj at time t such that there exists an π` with πi ≤ π` < πj
and σ`,i,j(t) = 1: C`(t) = {{πi, πj} |πi ≤ π` < πj and σ`,i,j(t) = 1}. Lastly, define for fixed i, j and
t: Fij(t) = {` ∈ L(t) | {πi, πj} ∈ C`(t)}.

Fix some πi and πj with πi < πj and a round t such that |Fij(t)| > 0. Let Fij(t) = {`1, . . . , `k}
sorted in increasing order. Since `1 ∈ L(t), it holds by definition that there exists no round
t′ ∈ [tek , . . . , t] and an index πm with πi ≤ πm < πj such σm,i,j(t

′) = 1. It follows wπi(t) ≥ wπ`1 (tek)
(since wπi(t) was so far only influenced by elements of the set wπ1(tek), . . . , wπ`(tek) which are all
larger or equal to wπ`(tek)). Similarly, one can argue wπj (t) ≤ wπ`k+1

(tek). Hence, we can conclude

wπi(t)− wπj (t) ≥ wπ`1 (tek)− wπ`k+1
(tek) ≥

∑
π`∈Fij(t)

wπ`(tek)− wπ`+1
(tek).

The last line directly leads to

(wπi(t)− wπj (t))2 ≥
∑

π`∈Fij(t)

(
wπ`(tek)− wπ`+1

(tek)
)2
.

The second part of the proof now deals with finding a lower bound for
∑n

i=2 d
−
i (t)+di(t)+d+

i (t)
in a fixed round t.

n∑
i=2

d−i (t) + di(t) + d+
i (t) =

∑
(πm,πi,πj):σm,i,j(t)=1

(
wπi(t)− wπj (t)

)2
≥

∑
(πm,πi,πj):σm,i,j(t)=1

∑
π`∈Fij(t)

(
wπ`(tek)− wπ`+1

(tek)
)2

≥
∑

π`∈L(t)

(
wπ`(tek)− wπ`+1

(tek)
)2
.

Lastly, we plug all insights together to conclude the proof.

Φ(tek)− Φ(tek+1
) ≥ 1

4
·
tek+1∑
t=tek

n∑
i=2

d−i (t) + di(t) + d+
i (t)

≥ 1

4
·
tek+1∑
t=tek

∑
π`∈L(t)

(
wπ`(tek)− wπ`+1

(tek)
)2
.

=
1

4

n−1∑
π`=1

(
wπ`(tek)− wπ`+1

(tek)
)2
.

The last line follows since each robot moves at least once per epoch.

Lemma 5. Suppose that Φ(tek) > 0. Then,
Φ(tek )−Φ(tek+1

)

Φ(tek ) ≥ 1
8n2 .

Proof. Lemma 4 leads to
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Φ(tek)− Φ(tek+1
)

Φ(tek)
≥ 1

4

∑n−1
π`=1

(
wπ`(tek)− wπ`+1

(tek)
)2∑n

π`=1 (wπ`(tek)− 1)2 .

=
1

4

∑n−1
π`=1

(
wπ`(tek)− wπ`+1

(tek)
)2∑n

π`=1 (wπ`(tek)− wπ1(tek))2 .

The second line follows since w1(t) = 1 for all t and thus wπ1(tek) = 1. Observe that the right-
hand side does not change if we multiply each wπi(tek) with the same constant. Additionally, it
also does not change if we add the same constant to each wπi(tek). Hence, we can assume w.l.o.g.∑n

π`=1wπ`(tek) = 0 and
∑n

π`=1 (wπ`(tek)− wπ1(tek))2 = 1 and obtain

Φ(tek)− Φ(tek+1
)

Φ(tek)
≥ 1

4
min

w1≥w2,...,≥wn∑
i wi=0∑

i(wi−w1)2=1

n−1∑
i=1

(wi − wi+1)2

The assumption
∑

i (wi − w1)2 = 1 implies that the average value of all (wi − w1)2 is 1
n and

hence there is at least some j with |wj − w1| ≥ 1√
n

. As a consequence, either |w1| ≥ 1
2·
√
n

or

|wj | ≥ 1
2·
√
n
. W.l.o.g. assume |w1| ≥ 1

2
√
n

and moreover assume w1 > 0. The case w1 < 0 can be

handled by multiplying each wi with −1 and sort the elements in descending order.
Now define ui = wi−wi+1 for i < n and un = 0. It holds ui ≥ 0 for all i and

∑n
i=1 ui = w1−wn.

Since at least one w1 ≥ 1
2
√
n

and the
∑

iwi = 0, we can conclude un < 0 and thus
∑

i ui ≥
1

2
√
n

.

As a final step, we obtain

Φ(tek)− Φ(tek+1
)

Φ(tek)
≥ 1

4
min

ui≥0,
∑

i ui≥1/(2
√
n)

n−1∑
i=1

u2
i .

The solution of the minimization problem is ui = 1
2·n3/2 for each i.

Hence,

Φ(tek)− Φ(tek+1
)

Φ(tek)
≥ 1

4
· 1

2 · n2
=

1

8n2
.

Lemma 11. After O
(
n2 · log (n/ε)

)
rounds, it holds

∑n
i=2wi(t) ≥ (1− ε) · (n− 1).

Proof. Fix any epoch ek. By Lemma 5, we obtain Φ(tek+1
) ≤ (1− 1

8n2 ) ·Φ(tek) and thus Φ(tek+x
) ≤(

1− 1
8n2

)x ·Φ(tek). Observe that (1− y)x ≤ e−y·x where e denotes Euler’s number. Thus, choosing
x ≥ 8n2 · ln(1

r ) yields Φ(tek+x
) ≤ r ·Φ(tek). Since Φ(tek) < n− 1, r ≤ ε

n−1 leads to Φ(tek+x
) ≤ ε and

thus
∑n

i=2wi(t) ≥ (1− ε) · (n− 1).
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C Adjusted Fsync Algorithm

The Fsync algorithm presented in Section 5.1 is – to keep the pseudocode comprehensible – designed
such that the robots still move to the left after Max-Line-Formation is already solved. In this
section, we explain how 3 additional lights help to remove this behavior to design an algorithm that
forms a stationary line.

Observe first that in Algorithm 2, two runs can only be located at two neighboring robots in case
the algorithm is already in phase 2. Otherwise, at least one robot observes that its neighborhood is
not yet aligned parallel to the y-axis, and the corresponding run is stopped (line 31 in Algorithm 2).
We use this observation as follows: As soon as two runs meet at neighboring robots, the two robots
activate a light `final to store this information. Robots with an active light `final do not move to the
left anymore. Additionally, robots that observe a robot in their neighborhood that has activated
`final, activate their own light `final. Hence, after O(n) rounds, all robots have activated `final.
While propagating `final, it might, however, happen that some robots move to the left while other
robots remain stationary (due to the limited visibility). See Figure 6 for a depiction of such a case.
To rebuild the line-shape again runs at robots with active light `final behave slightly different: the
vertical movement is identical to before. The horizontal movement changes: instead of moving to
the left, a robot moves a distance of 1 to the right if it is leftmost in its neighborhood, and there is
at least one robot in a horizontal distance of 1 to the right. Finally, the robots align again on the
initial line (before activating `final) and Max-Line-Formation gets solved after O(n) rounds.
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r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

Figure 6: To the left, the robots are arranged on a straight line parallel to the y-axis. After some
time, two runs meet in the middle at r5 and r6 that activate their light `final. In the next round,
r4 and r7 activate their light `final and so on. However, r1, r2, r3, r4, r7, r8, r9 and r10 move a
distance of 1 to the left before r4 and r7 become stationary. Similarly, r1, . . . , r3 and r8, . . . , r10

move a distance of 1 further to the left than r3 and r6 and so on. The final configuration might
look like it is depicted to the right.
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D Omitted Proofs of Section 5

Lemma 6. After O(n) epochs, all robots are located on distinct positions on the same vertical line
parallel to the y-axis. Moreover, the configuration is connected.

Proof. The connectivity and collision avoidance follow directly from the algorithm description. To
prove the linear runtime, define xmax(t) to be the maximal x-coordinate in the global coordinate
system. Furthermore, define kmax(t) to be the number of robots with xi(t) ∈ (xmax(t)−1, xmax(t)].
Observe that every robot ri with xi(t) ∈ (xmax(t)−1, xmax(t)] moves such that xi(t+1) ∈ (xmax(t)−
2, xmax(t)− 1]. Since the configuration is always connected, there must have been a robot rj with
xj(t) ∈ (xmax(t)−2, xmax(t)−1] that cannot leave the interval. It follows kmax(t+ 1) ≥ kmax(t) + 1
Thus, after O(n) rounds, all robots have x-coordinates in an interval of size at most 1. Fix one
round t and assume that all robots have x-coordinates in an interval of size at most 1. Consider the
robot rmax with globally maximal x-coordinate. None of its neighbors can see a robot that has a
larger x-coordinate, and thus, all robots of Nmax(t) are collinear in round t+ 1. Furthermore, all of
these robots still have the globally largest x-coordinate in round t+ 1. Now, consider the topmost
robot rj ∈ Nmax(t). It follows that all robots of Nj(t+ 1) have a smaller or equal x-coordinate and
cannot see any other robot with a larger x-coordinate. Thus, in round t + 2 all robots in Nmax(t)
and Nj(t + 1) are collinear. The same argument holds for the bottom-most robot. Applying the
same argument inductively yields that all robots are collinear after O(n) rounds.

Theorem 7. After O(n) epochs, the robots have solved Max-Line-Formation.

Proof. By Lemma 6 all robots are collinear on a line parallel to the y-axis after O(n) epochs. It
remains to prove the linear runtime until the optimal configuration is formed. Rename the robots
such that r1 is the topmost robot and rn is the bottom-most robot. Define ui(t) = yi(t)− yi−1(t).
Both r1 and rn activate their light `mov every 3 rounds and ensure u2(t) = un(t) = 1. In round
t + 1 it holds u3(t + 1) = un−1(t + 1) = 1 and so on. Assume n to be even (the arguments
for odd n are analogous). After n

2 − 1 rounds, the movement meets at the two robots rn/2 and
rn/2+1 and they move such that yn/2+1(t + n

2 − 1) = 1 holds. The next two movements ensure
yn/2(t+ n

2 + 2) = yn/2+2(t+ n
2 + 2) = 1 and so on. Since each 3 rounds a new movement is started,

the optimal configuration is reached in O(n) rounds.
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E Omitted Proofs of Section 6

Lemma 12. After O(∆) epochs, all robots are located on the same vertical line parallel to the
y-axis. Moreover, the configuration is connected.

Proof. Define by xmin(t) the minimal x-coordinate of all robots. Next, define intervals i1(t) =
[xmin(t) + 1], i2(t) = [xmin(t) + 1, xmin(t) + 2] and so on. Additionally, Rj(t) := {rk |xk(t) ∈ ij(t)}
and k(t) is the largest index j of an interval such that Rj(t) 6= ∅. Observe that k(t) ≤ ∆x. Fix a
round t0. By the same arguments as in the proof of Lemma 6, it holds Rk(t0)(t0 + 1) = ∅ (since all
robots leave the rightmost interval). At the same time, it can happen that some of the robots in
the leftmost interval i1(t0) create a new interval to the left such that i1(t0 + 1) 6= i1(t0). In total,
however, at most ∆y new intervals can be created since for every new interval, it must hold that the
robots cannot observe the position of any of the previous new generated intervals. Since initially at
most ∆x intervals exist, we obtain a runtime of ∆x+∆y ∈ O(∆) until all robots have an x-coordinate
in the same interval. Now, consider the robot rmax with globally maximal x-coordinate. None of
its neighbors can see a robot that has a larger x-coordinate, and thus, all robots of Nmax(t) are
collinear in round t+ 1. Furthermore, all of these robots still have the globally largest x-coordinate
in round t+1. Next, consider the topmost robot rj ∈ Nmax(t). It follows that all robots of Nj(t+1)
have a smaller or equal x-coordinate and cannot see any other robot with a larger x-coordinate.
Thus, in round t+ 2 all robots in Nmax(t) and Nj(t+ 1) are collinear. The same argument holds for
the bottom-most robot. This case can occur at most ∆y times. Afterward, all robots are collinear.
The runtime of O(∆) follows.

Theorem 8. Gathering of n robots agreeing on one axis of their local coordinate systems in the
OBLOT model can be solved in O(∆) epochs under the Fsync scheduler.

Proof. According to Lemma 12, all robots are collinear after O(∆) rounds. Rename the robots
such that r1 is the topmost robot and rn the bottom-most robot. We prove exemplary for r1 that
it moves a constant distance toward rn every two rounds. The arguments for rn are analogous.
Observe first that r1 remains topmost because r1 moves to the midpoint between its position and
its farthest neighbor rf . In case there is any robot between r1 and rf , this robot can also see both
r1 and rf and either moves to the same position as r1 or can see a robot rf ′ that lies below of rf .
Similarly, rf and robots below of rf can only compute target points below the target point of r1.
Hence, r1 remains the topmost robot. Now consider a round in which r1 moves a distance of less
than 1

10 downwards. This implies that its farthest neighbor rf is in distance at most 1
5 . Since the

configuration is connected, rf can see a robot rf ′ in distance at least 1 of r1. Hence, r1 moves a
distance of at least 1

2 downwards. Thus, the distance between r1 and rf in round t + 1 is at least
1
2 . Hence, r1 moves a constant distance (at least 1

4) in round t+ 2. Thus, every two rounds, r1 and
rn move at least a constant distance. Finally, they can see each other, and all robots gather in the
next round.

E.1 Proof of Theorem 9

Lemma 13. For any round t, it holds

Φ(t+ 1) = Φ(t)− 1

4

n∑
i=2

d−i (t) + di(t) + d+
i (t).

Proof. Analogous to the proof of Lemma 10.
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Next, define wπ1(tek), wπ2(tek), . . . , wπn(tek) to the values wx1 (t), . . . , wxn+1(t) sorted from largest
to smallest with ties broken arbitrarily.

Lemma 14. For any epoch k, it holds

Φ(tek)− Φ(tek+1
) ≥ 1

4

n−1∑
i=1

(
wπi(t)− wπi+1(t)

)2
.

Proof. Analogous to the proof of Lemma 4.

Lemma 15. Suppose that Φ(tek) > 0. Then,

Φ(tek)− Φ(tek+1
)

Φ(tek)
≥ 1

4(n+ 1)2
.

Proof. Lemma 4 leads to

Φ(tek)− Φ(tek+1
)

Φ(tek)
≥ 1

4

∑n
π`=1

(
wπ`(tek)− wπ`+1

(tek)
)2∑n+1

π`=1 (wπ`(tek)− x)2 .

Observe that the right-hand side does not change if we multiply each wπi(tek) with the same
constant. Additionally, it also does not change if we add the same constant to each wπi(tek). Hence,
we can assume w.l.o.g.

∑n+1
π`=1wπ`(tek) = 0 and

∑n+1
π`=1 (wπ`(tek))2 = 1 and obtain

Φ(tek)− Φ(tek+1
)

Φ(tek)
≥ 1

4
min

w1≥w2,...,≥wn+1∑
i wi=0∑

i(wi−w1)2=1

n∑
i=1

(wi − wi+1)2

The assumption
∑

iw
2
i = 1 implies that the average value of all w2

i is 1
n and hence there is at

least some j with |wj | ≥ 1√
n

. W.l.o.g. assume this wj is positive. The case wJ < 0 can be handled

by multiplying each wi with −1 and sorting the elements in descending order.
Now define ui = wi − wi+1 for i < n + 1 and un+1 = 0. It holds ui ≥ 0 for all i and∑n
i=1 ui = w1 − wn+1. Since wj ≥ 1√

n
and

∑
iwi = 0, we can conclude un+1 < 0 and thus∑

i ui ≥
1√
n

.

As a final step, we obtain

Φ(tek)− Φ(tek+1
)

Φ(tek)
≥ 1

4
min

ui≥0,
∑

i ui≥1/(2
√
n)

n+1∑
i=1

u2
i .

The solution of the minimization problem is ui = 1
(n+1)3/2 for each i.

Hence,

Φ(tek)− Φ(tek+1
)

Φ(tek)
≥ 1

4
· 1

(n+ 1)2
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Proof of Theorem 9. Fix any epoch ek. By Lemma 15, we obtain Φ(tek+1
) ≤ (1− 1

4n2 ) · Φ(tek) and

thus Φ(tek+x
) ≤

(
1− 1

4n2

)x ·Φ(tek). Observe that (1− y)x ≤ e−y·x where e denotes Euler’s number.
Thus, choosing x ≥ 4(n+ 1)2 · ln(1

r ) yields Φ(tek+x
) ≤ r ·Φ(tek). Since Φ(tek) < n+ 1, r ≤ ε

n+1 leads
to Φ(tek+x

) ≤ ε and the theorem follows.
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