
Misra, Gaurav, Migliavacca, Matteo and Otero, Fernando E.B. (2021) Behavioural
User Identification from Clickstream Data for Business Improvement. In:
Artificial Intelligence XXXVIII (SGAI-AI 2021). Lecture Notes in Computer
Science . pp. 341-354. Springer ISBN 978-3-030-91099-0. E-ISBN 978-3-030-91100-3.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/91697/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-030-91100-3_27

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/91697/
https://doi.org/10.1007/978-3-030-91100-3_27
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Behavioural User Identification from
Clickstream Data for Business Improvement

Gaurav Misra, Matteo Migliavacca, and Fernando E. B. Otero

School of Computing, University of Kent, Canterbury, UK
{G.Misra, M.Migliavacca, F.E.B.Otero}@kent.ac.uk

Abstract. One of the key elements for businesses to succeed is to get
to know their customers. Traditionally this task has been performed
through user studies, however, over the last few years clickstream anal-
ysis has been proposed as a potential way of conducting automated be-
havioural studies at scale. In this paper, we explore the use of a recently-
proposed unsupervised data-mining technique to identify common be-
havioural patterns from a clickstream and use them to automatically
group users into clusters. In particular, our goal is to validate the poten-
tial of behavioural user identification with respect to a key business-level
objective. We consider to which extent it is possible to link overall user in-
application behaviour to the completion of a particular business-relevant
action. Identifying behavior patterns resulting in such business-relevant
actions can enable businesses to make changes to their interface, target
relevant user groups or trigger actionable insights, all with the objective
of maximizing the likelihood of preferable user actions. We analyzed a
realworld dataset from a mobile application deployed on both the iOS
and Android platforms for this experiment.

1 Introduction

The growing amount of data collected by online services, in particular mobile
apps, presents a unique opportunity to understand how users interact with ser-
vices. The analysis of these data could potentially help to identify frequent, un-
expected and desired (or undesired) user behaviours, which in turn can be used
to increase user experience and engagement. This insight may also be leveraged
by businesses to personalize their product for certain behavior profiles, with the
objective of steering users towards monetizable actions. Traditionally, user stud-
ies have been employed to understand how users interact with services. However,
one significant drawback of employing user studies to analyse online services is
the need to establish the questions in advance, potentially limiting the ability to
characterise unexpected and undesired behaviour. Such studies also suffer from
several biases (e.g., sampling, self-selection bias), which ends up leading to a sit-
uation where the business tends to capture data from only a subset of their users
(or behavior profiles), limiting their reach and therefore making the findings less
generalizable and actionable.

Recently, the analysis of actual user actions has emerged as an alternative
to user studies, in order to learn about user behavior. The ability to collect and

2 G. Misra et al.

analyze usage data from websites and apps has enabled researchers to create
data mining techniques which can leverage this data to identify behavior pat-
terns prevalent among users. Wang et al. [13, 12] proposed one such technique by
using clickstream information to detect and model user behaviour. A clickstream
is a sequence of timestamped actions performed by a user while interacting with
an online system. Thus, the sequence of actions defines the user behaviour on
the system, and the analysis of these sequences can lead to the identification
of common patterns of user behaviour—i.e., common sequence of actions per-
formed by users. To this end, they first create a graph to capture the similarity
between user clickstreams, and then apply clustering to group users according
to their behavioural patterns. Clustering is an unsupervised task, which con-
sists of finding a finite set of categories (clusters) to describe the data [4, 14].
Clusters are created based on the similarity of features’ values—in this case, the
frequency of users’ action patterns—and, as a result, similar users are grouped
together. A clustering algorithm aims at grouping the users into clusters so that
the similarity of users in a cluster is maximised and the similarity of users from
different clusters is minimised.

The analysis of users’ clickstreams addresses the limitation of user studies—in
relation to both the design of questions and scale of users—since user behaviour
is automatically detected based on how users interact with the system. Authors
in [13, 12] employed a clickstream user behavioural model to detect malicious
users. The rationale is to cluster users based on their clickstream to differenti-
ate the behaviour of normal and malicious users. They further extended their
technique to model user behaviours as hierarchical clickstream clusters, using an
iterative feature pruning clustering (IFPC) algorithm. User behaviour is repre-
sented as a tree of clusters, where high-level clusters are formed based on the
most important features and sub-clusters at lower levels of the hierarchy are
formed based on less important features. The feature set that characterises each
cluster can then be used to understand the behaviour of users of the cluster. They
presented three case studies showing advantages of the iterative feature pruning
algorithm in identifying inactive, hostile and malicious user behaviours in two
real-world online social networks. Other researchers have successfully used click-
stream data to detect malicious social bots [10, 6], model user engagement [5]
and identify e-commerce item access patterns [15].

In this paper, we apply the IFPC algorithm to analyse clickstream data from
a real-world mobile application available for both iOS and Android platforms.
We use this technique as it provides a view of the most dominant behavior
patterns within clusters, which in our case, is demonstrated by the sequence
of events that are invoked by user actions. Another advantage of using IFPC
is that it has been proven to be able to analyze previously unknown behavior
patterns, due to its non-reliance on prior knowledge of labels [13]. Our aim is
to evaluate its performance in identifying patterns in the user behaviour that
are linked to a particular action on the system. Understanding such behavior
is key for the business to gain a better understanding of their users, and what
makes them perform actions of interest for the business. This action could be

Behavioural User Identification from Clickstream Data 3

one which leads to direct monetary benefit for the business (e.g., user making
an in-app purchase) or fulfills other key business outcomes (e.g., engagement
with a newly released feature). Such insight about favourable user behavior can
then be used to improve user experience by optimising the application interface,
or create additional triggers, to ultimately identify and encourage similar user
behavior in order to improve engagement/completion of this desired action.

The rest of the paper is organised as follows. Section 2 presents the details of
the iterative feature pruning clustering algorithm. Section 3 provides details of
the case study presented in this paper. The results and discussion are presented
in Section 4, while conclusions and future research directions are presented in
Section 5.

2 Method

Overview. We now describe the IFPC technique proposed in [13] in more de-
tail, and in particular its open-source implementation1, which we adopted to
perform our experiments. At a high level, the technique obtains clusters by par-
titioning a similarity graph where nodes are users and weighted edges represent
the similarity in activity between users. The partitioning is recursive: after the
graph is partitioned into clusters, a new similarity graph is constructed for each
cluster, and partitioned again until the quality of the resulting clusters drops
below a minimum threshold. At each step, features that lead to the creation of
a cluster are removed when creating the new similarity graph for users in that
cluster, allowing the clustering to highlight finer differences in behaviour. Next,
we explain how the user activity is captured by a set of features, which are used
to compute the similarity graph, and how this is partitioned to obtain clusters.

Clickstream model. The starting point is the clickstream of each user, com-
posed by all click events ei from that user, ordered by timestamp ti. For each
event, the model captures both the event type Ti ∈ T and a time gap until the
next event Gi = b(ti+1 − ti) ∈ G = {1, 2, . . . , 5}; b is a bucketing function used
to make gaps discrete using less than 1s, 1s - 1min, 1min - 1hour, 1hour - 1day
and more than 1day as thresholds for the five buckets. The user clickstream is
then converted into a sequence S = (s1, s2, . . . , s2n−1) where s alternates event
types T and time gaps G. A simplified model where S is only composed of event
types is also considered in our study, as proposed in [12].

Features. Sequences are turned into features by counting the frequency of
each sub-sequence of length k ≤ kmax (k-grams). The value for feature f =
(sj , sj+1, . . . , sj+k−1) is then cf , the count of occurrences of f in S. Conceptu-
ally a sequence, and thus a user’s activity, is characterised by a feature vector
c counting occurrences of each possible k-gram in

⋃kmax

k=1 (T ∪ G)k, however in
practice the feature vectors are sparse enough that is convenient to store fea-
tures as a map between occurring k-grams and their count. We fixed kmax at

1 https://github.com/xychang/RecursiveHierarchicalClustering

4 G. Misra et al.

5 as in [13], with longer sub-sequences becoming unlikely to be repeated across
users and thus not contributing substantially to the clustering quality.

Similarity Graph. The similarity between two clickstreams is then computed
as the normalised polar distance between their feature vectors:

d(Si, Sj) =
2

π
arccos

ci · cj
‖ci‖‖cj‖

.

The distance d is small when the two clickstreams are similar (e.g. Si is a rep-
etition of Sj) and maximum d = 1 in the extreme case of all k-grams of Si and
Sj being disjoint.

Iterative clustering with feature pruning. After a similarity graph is con-
structed, divisive hierarchical clustering is used to partition the similarity graph
into a set of clusters C = {C1, . . . , Cn0

}. The number of clusters obtained is
controlled by the modularity metric which compares the density of intra-cluster
edges with the density of cross-cluster edges: clustering stops when the modu-
larity reach the maximum.

As the top-level set of clusters C is obtained, the most relevant features that
led to the formation of each Ci are determined by using a simple elbow method
based on the χ2 score to compare users in Ci with users outside it. These features
explain the salient characteristics of Ci in C, and thus can be used to interpret
each cluster. These feature are then removed from the set of feature for Ci and
a new similarity graph is computed from the remaining features. The process is
then repeated, performing divisive clustering again on the new similarity graph
for Ci resulting in a new cluster set Ci = {Ci1, Ci2, . . . , Cini

}. The process stops
when every cluster can not be split further by the divisive clustering procedure.

3 Case Study

The IFPC technique has been previously applied to event streams generated by
users of social media to identify malicious, unexpected or low engagement [13,
12]. In this paper, we wanted to analyze whether this technique is useful in
analyzing and interpreting user behaviour with respect to a specific business key
performance indicator (KPI). With this objective in mind, we obtained a labeled
dataset of user generated events from Company X2 which provides a financial
management mobile app to its users on both iOS and Android platforms. The
company appropriately anonymized the dataset, in accordance with their terms
of use and privacy policies, before providing access to the researchers for the
purpose of this experiment.

The main objective of this research was to explore how the IFPC technique
applied to user clickstreams [13] may benefit the company in understanding how
users interact with their mobile application, and identifying certain behaviour
patterns which lead to specific actions of interest.

2 Name withheld due to confidentiality

Behavioural User Identification from Clickstream Data 5

3.1 Data

For this research, we obtained a dataset of event streams generated by 1000 users
who interacted with the mobile application during the period of 15th January
2020 to 28th July 2020. After pre-processing, where we removed any users who
had just logged-in and logged-out of the application and had not performed
any other tasks, we were left with a dataset composed by 956 unique users. In
addition to providing the data, the company also helped us in categorizing the
various event types into the following categories:

– Signup - This category represents all the events triggered when a user cre-
ates an account on their first use of the application.

– Profile - Events that are triggered when users go into the profile section
of the application to edit information they provided during the signing up
process.

– Connect Bank - The users can connect their bank accounts through the
application. This enables them to benefit from the company’s transaction
categorization and get better insight into their spending patterns.

– View Transactions - Events in this category are triggered when users view
their bank transactions, visible after connecting a bank account via the ap-
plication.

– Categorize Transactions - Users may also choose to manually categorize
a particular transaction into a certain category, if it wasn’t automatically
categorized by the application, or if the user wants to modify the category
a transaction belongs to.

– Insights - The application provides timely and topical insights about users’
financial behaviour.

– Notifications - These are generated as a “call-to-action” for the users. An
example scenario is when a user needs to re-authenticate with the applica-
tion if an access token has expired.

– Financial Actions - This category consists of events which are generated
when the user takes a particular action in the application (e.g. saving money
by selecting personalized product offerings).

The dataset provided to us by the company also contained labels assigned to
all the users. Any user who performed a “Financial Action” at least once during
the period for which the data was collected, was labeled as class ‘1’ (considered
as converted user) and others were labeled as class ‘0’. Out of the 956 total
users in our dataset, 345 (36.1%) of the users were converted users.

6 G. Misra et al.

Table 1. Breakdown of events by category.

Event Category No. of Events

Sign Up (SU) 3005

Profile (P) 1845

Connect Bank (CB) 6317

View Transactions (VT) 7928

Categorize Transactions (CT) 258

Insights (I) 1979

Notifications (N) 796

Total Events 22128

Table 1 shows the distribution of events for each category in the dataset used
for the experiment. It is important to note here that when preparing the data,
we truncated the clickstreams of the users who performed a financial action (and
hence were assigned class label of ‘1’) up to the point they performed the action
for the first time. As a result, we excluded a large number of events triggered
by them in their subsequent interactions with the application. This was done
deliberately as we wanted to cluster based on user actions in other areas of the
application and see whether it is a good predictor of a financial action.

3.2 Feature Extraction

Once we had the event streams for the users, the next step was to extract the
features to be used for clustering as explained earlier in Section 2. Similar to [13],
we created k-grams up to kmax = 5 and computed their occurrence count for each
stream. We tried two variations of modeling the event data into k-grams, namely:

– Excluding time gaps: We created k-grams from the sequence of events,
ignoring the time intervals between them. As an example the stream ABAC is
encoded by the following features: {A → 2, B → 1, C → 1, AB → 1, BA →
1, AC → 1, ABA→ 1, BAC → 1, ABAC → 1}

– Including time gaps: In this variation, we considered time gaps between
consecutive events, following the same discretisation of the intervals as [13],
i.e., less than 1s, 1s–1min, 1min–1hour, 1hour–1day and more than 1day.

3.3 Evaluation Metrics

We explained earlier in Section 2 that the clustering algorithm optimizes for
modularity when finding the optimum clustering configuration [1]. Each of the

Behavioural User Identification from Clickstream Data 7

clusters produced by the algorithm is associated with a certain behavioural pat-
tern that characterise users in their interaction with the application. Our aim is
to identify to which extent the identified patterns are related to certain business
outcomes (e.g. user conversion) which are represented by class labels. Therefore,
we used the following well established external criteria to evaluate the cluster-
ing [9],

Purity
Purity is a simple and transparent external criterion to measure cluster quality
when the clustered data is labeled [11]. In our case, the two classes—i.e., whether
a user performed a financial action (converted) or not—are the ground truth
labels. Given a set of clusters where each data point (user) is labeled, purity
is computed by labelling each cluster with the class (i.e., ‘0’ or ‘1’) which is
the most frequent in that cluster, and then the accuracy of this assignment is
measured by counting the number of correctly assigned points and dividing by
the total number of points [7]. More generally, purity (p) is calculated as:

p =
1

N

∑
k

max
j
|ck ∩ yj | (1)

where,
C = {c1, c2, ..., ck} is the set of clusters,
Y = {y1, y2, ..., yj} is the set of class labels, and
N = the total number of points.

To interpret equation 1, consider ck as the set of users in cluster k and yj
as the set of users belonging to class j. Therefore, for any given values of k and
j, |ck ∩ yj | represents those users in cluster k who belong to class j. The value
of purity lies between 0 and 1, where a value of 0 indicates bad clustering and
a value of 1 indicates perfectly pure clusters. It is important to note that high
purity, as well as the other metrics, is easier to achieve with a large number of
clusters. For example, in the most trivial case, if each point is assigned to its own
cluster, so we have N clusters, the purity score will be 1. As mentioned earlier
the number of clusters is determined according to an internal quality metric
(modularity).

Homogeneity
A clustering is defined as being perfectly homogeneous (denoted by homogene-
ity value equal to ‘1’) if all its clusters contain only data points belonging to a
single class [8]. In other words, the class distribution within each cluster should
be skewed to a single class (zero entropy). The homogeneity score of a particular
clustering can be calculated based on the conditional entropy of the class dis-
tribution given the proposed clustering [8]. In the perfectly homogeneous case,
this value, H(Y |C) is 0, where Y is the set of classes and C is the set of clusters
(refer to equation 1). In the degenerate case, when we have a single class across

8 G. Misra et al.

all points in the dataset, i.e. H(Y) = 0, we have perfect homogeneity. For other
cases, where there are more than one class, homogeneity (h) can be calculated
as follows:

h = 1− H(Y |C)

H(Y)
(2)

where, C and Y represent the set of clusters and class labels respectively (see
equation 1). Conditional entropy H(Y |C) is calculated as follows:

H(Y |C) = −
K∑

k=1

J∑
j=1

nkj
N

log2

nkj∑J
j=1 nkj

(3)

where, nkj is the number of points in cluster ck which belong to class yj .

Classification Metrics
The two metrics discussed so far in this section do not discriminate between
the cluster labels, and treat any “misclassification”, i.e., assigning a point to
a cluster where it is in the minority, equally. However, for our use cases, it is
important to understand those incorrect classifications in terms of their types:
“false positive” (a class ‘0’ point is assigned to a majority class ‘1’ cluster) or
“false negative” (a class ‘1’ point is assigned to a majority class ‘0’ cluster). To
achieve this, each cluster is assigned the class label to which the majority (more
than 50%) of its points (users) belong. For clusters which have equal number
of users belonging to each class, we assign it the positive class label (class ‘1’).
It is worth noting that fully homogeneous clusters will not have any incorrect
classifications. We define the following scenarios, in order to use classification
metrics to evaluate our clustering:

– True Positive (TP): user labeled as class ‘1’ is assigned to a majority class
‘1’ cluster.

– True Negative (TN): user labeled as class ‘0’ is assigned to a majority
class ‘0’ cluster.

– False Positive (FP): user labeled as class ‘0’ is assigned to a majority class
‘1’ cluster.

– False Negative (FN): user labeled as class ‘1’ is assigned to a majority
class ‘0’ cluster.

From these values, we can calculate the Precision (TP
TP+FP), Recall (TP

TP+FN)

and F1 score (2× Precision×Recall
Precision+Recall).

4 Results

In this section, we evaluate the clusters produced by the IFPC technique (§2)
using the external evaluation metrics (§3.3) that represents whether IFPC is ef-
fective in identifying user behaviour which leads to performing a financial action
through the app.

Behavioural User Identification from Clickstream Data 9

Table 2. Events per user.

Class Users Events Events per user

0 611 14478 23.7

1 345 7650 22.2

Total 956 22128 23.1

Our dataset for this experiment consisted of 956 users with a combined total
of 22128 events (Table 2). As we can see from Table 2, we had 611 users who
did not perform a financial action using the app whereas there were 345 users
who did so. Interestingly, the average number of events triggered by both these
sets of users is very similar. Therefore, it seems that users interact with the app
to a similar extent before deciding whether they want to perform a financial
actions (class ‘1’) or not (class ‘0’). This indicates that the length or scale of
user engagement rarely determines whether they will perform this action, and
therefore the actual behaviour is important.

4.1 Purity

Table 3 shows the purity scores for the clustering for this experiment. We see
that both clustering configurations produce reasonably high values of overall
purity. In both cases, the purity value is well above 0.5, which means that most
users were placed in clusters where the majority of users had the same class.
We see that including time gaps produces a lower number of clusters (50) as
compared to when excluding time gaps (63), and the overall purity score for this
configuration (0.687) is also slightly lower (0.700 when excluding time gaps).

In addition to calculating the purity of clusters, we were interested in ana-
lyzing the nature of clusters with a higher purity score. Figure 1 shows a plot of
cluster purity (in %) vs the size of the clusters (number of users present in the
cluster). Ideally, clusters in the top right corner of the plots—i.e., large clusters
having very high purity—are beneficial, as that would enable us to definitively
identify behaviour patterns which can be attributed most accurately to each
class. We can see from the figure that most such clusters are majority class ‘0’
clusters. For both configurations, the few clusters which are majority ‘1’ class
and also have a reasonably high purity score, are very small in size (below 20
users). On the other hand, there are one or two very large clusters which are al-
most entirely made up of class ‘0’ users (i.e., purity score close to 100%). While
such clusters do not contribute in identifying which user profiles are likely to
perform a financial action through the app, they nevertheless inform the com-
pany as to what action patterns associated with these clusters are very unlikely
to result in a financial action in the future.

10 G. Misra et al.

Table 3. Purity and Homogeneity of clustering.

Clusters Purity Homogeneity

No gaps 63 0.700 0.188

With gaps 50 0.687 0.150

(a) No gaps (63 clusters) (b) With gaps (50 clusters)

Fig. 1. Comparison between purity and cluster size

4.2 Homogeneity

Table 3 shows that the homogeneity scores for both configurations is quite low.
This is expected by looking at purity values as well as Figure 1, which show that
there are many clusters which contain a mix of both classes, and therefore are
not homogeneous. Clustering user event streams excluding time gaps produces
slightly higher values of homogeneity (0.183) when compared to including time
gaps (0.142).

4.3 Classification

Table 4 shows the results of assigning the majority class label to each cluster. We
can see that in both configurations, a higher number of clusters were assigned
‘0’ as the majority class label, i.e., more than 50% of users in these clusters had
never performed a financial action.

As explained in section 3.3, we use the classification metrics by the majority
class label to each cluster generated by the algorithm. Then, we consider how
many correct classifications would be made, if the majority label was assigned
to each user in each cluster.

To better contextualize the results in this section, we also utilized two well-
known classification algorithms, namely Decision Tree (DT) [2] and Random
Forests (RF) [3] with the data—these were used with their default parameters.
The feature vectors used by these algorithms are the same k-grams constructed
as described in §2, however IFPC is not used to cluster the users according to the
similarity graph, and the algorithms operate directly on the (labelled) k-gram
frequency vectors. The comparison with baseline classification algorithms helps
us better understand the performance of the IFPC clustering.

Behavioural User Identification from Clickstream Data 11

Table 4. Label assignments for clusters.

No. of Clusters
(majority class)

0 1 Total

No gaps 40 23 63

With gaps 33 17 50

Table 5. Results for classification metrics.

Metrics

TP FP TN FN Accuracy F1 Precision Recall

No gaps
IFPC 140 82 529 205 70.0% 49.4% 63.1% 40.6%

DT 112 113 498 233 63.8% 39.3% 49.8% 32.5%

RF 151 122 489 194 66.9% 48.9% 55.3% 43.8%

With gaps
IFPC 112 66 545 233 68.7% 42.8% 62.9% 32.5%

DT 176 185 426 169 63.0% 49.9% 48.8% 51.0%

RF 156 125 486 189 67.2% 49.8% 55.5% 45.2%

Table 5 summarises the classification performance for both configurations.
The results show that IFPC produces higher accuracy than Decision Tree and
Random Forests in both configurations. Comparing the two configurations, it
seems that IFPC performs better without including time gaps in the click-
streams while both the other classification algorithms (in particular Random
Forests) seem to perform slightly better when time gaps are included. It is also
evident from looking at the results that IFPC has better precision than the other
algorithms. This is due to the significantly lower number of false positives (FP)
seen for IFPC in comparison to the other algorithms. On the other hand, Ran-
dom Forests has a better recall than IFPC when excluding time gaps and both
Decision Tree and Random Forests outperform IFPC in terms of recall when
considering time gaps. Overall, looking at the results for IFPC, it indicates that
using clickstream data without time gaps produces better performance, which is
in line with results seen for purity and homogeneity as well (Table 3).

For the business, the implication of the performance of IFPC seems to be that
it is better than other classifiers at not making false positive errors, therefore, us-
ing this technique, the business is less likely to mistakenly identify unfavourable
behavior as favourable (low false positives), with the risk of missing out on some
favourable user behavior (higher false negatives).

4.4 Action Patterns

The IFPC technique produces action patterns (sequence of k-grams) for each
identified cluster. These are the most relevant features that contributed to the

12 G. Misra et al.

formation of a cluster at a specific iteration (see section 2 for details). Such action
patterns are interesting for the business to understand and link to particular
actions—i.e., for this experiment, a user performing a financial action through
the app. To briefly illustrate this, we selected one majority ‘0’ class and one
majority ‘1’ class cluster from each configuration.

Looking at Table 6, we see that cluster number 24, when clustering with time
gaps, has 79 total users and has only 5.1% of its users labeled as class ‘1’. The
characteristic action pattern shown in the last column illustrates that the users
in this cluster did not go beyond the signup flow (SU) of the app. for cluster
46, which is majority class ‘1’ cluster (56.1% users were labeled as class ‘1’), we
find that the users were more engaged with the “view transaction” functionality
(VT) of the app. As this is one of the core functionalities of the app, it can be
concluded that these users spent more time exploring the app when compared
to those in cluster 24.

Considering the clustering without time gaps, we present results from clus-
ter 14 and cluster 49 in Table 6. We can see that cluster 14 is characterized by
multiple action patterns and include engagement with “Insights” (I) and “Notifi-
cations” (N). However, considering that this is a majority ‘0’ cluster, it indicates
that these features of the app did not direct all users towards taking a financial
action. Such information can be a useful method of evaluating the effectiveness
of certain features (such as notifications and insights) if they are released with
clear objectives. This depth of analysis is impossible by just looking at front-end
analytics of event streams which generally analyze sequence of events but fail to
capture behavior patterns such as these.

4.5 Discussion

The results presented show that iterative feature pruning clustering does a good
job in identifying user behaviours which lead to a financial action in our experi-
ment. We already observed that the difference in levels of engagement, measured
as average events per user, between the two classes (i.e., users who converted
vs those who didn’t) was minimal (Table 2) and therefore being able to identify
different behaviour patterns using the clustering technique can be beneficial. We
find that precision, in particular, is better than recall when using classification
metrics, which enables the company to be selective in nudging users who have
favorable behaviour profiles with targeted insights and notifications which may
lead to user conversion. When comparing the results against classification al-
gorithms, we observed that both precision and accuracy are higher when using
IFPC. On the other hand it would be possible to increase the recall performance
at the expense of precision and accuracy, by lowering the labelling threshold for
class ‘1’ clusters (below the 50% threshold used in our experiment). This would
result in identifying more users belonging to the positive class (who can poten-
tially perform an important action), while still maintaining some “targeting”
power. While this technique does indeed provide the company with a deeper un-
derstanding of user activity in the app, the overall results, including purity and

Behavioural User Identification from Clickstream Data 13

Table 6. Action patterns associated with clusters

Configuration Cluster ID Size
Majority Class ‘1’ Action

Class User Percentage Patterns

With Gaps

24 79 0 5.1%
SU 1H

SU 1H SU

SU 1M SU 1H

46 41 1 56.1%
VT 1H VT 1M

VT 1H

VT 1H VT

No Gaps

14 35 0 37.1%
I

N

I I VT VT VT

I VT

49 38 1 55.3%
VT

CB VT

Symbols for time gaps:
– 1S : Gap < 1s
– 1M : Gap ∈ [1s, 1min)
– 1H : Gap ∈ [1min, 1hour)

Symbols for events:
– SU −→ Signup
– VT −→ View Transactions
– I −→ Insights
– N −→ Notifications
– CB −→ Connect Bank

homogeneity of the clusters, indicate that using iterative feature pruning clus-
tering will still leave margins for improvement for predicting user activity on its
own, and should rather be used to augment other intelligent systems which rely
on other sources of user data (such as information exchanged by users through
the platform).

We also observed that modeling the data with or without time gaps has
a negligible effect on the clustering. The results produced with these differing
models of clickstreams results in very similar clustering which indicates that the
algorithm is more sensitive towards the sequence of events rather than the time
gaps between them.

5 Conclusions and Future Work

In this paper, we applied the iterative feature pruning clustering (IFPC) algo-
rithm to analyze a real-world dataset of clickstreams from a mobile application.
The aim of the research was to explore whether clustering technique can enable
businesses to identify different behaviour profiles among their users or not, which
may lead to specific actions of interest for the business. Our results show that the
clustering is effective in identifying user behaviour that leads to a specific action
(e.g., financial action)—the measurements of purity, homogeneity and accuracy

14 G. Misra et al.

are better than a random assignment (50% mark). The method used for exper-
imentation in this paper is agnostic to the target action of interest and may be
used in the future to identify behavioural patterns leading to other actions by
the company. Hence, the company can potentially use this technique to identify
relevant user behaviours and encourage users to trigger any number of actions
which may be critical to business outcomes.

A limitation of this research is the amount of data that was available to us
for the experimentation. A natural next step would be to consider the impact
of larger datasets on the performance of behavioural identification in terms of
number of users, event granularity and length of the observation period.

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of statistical mechanics: theory and experiment
2008(10), P10008 (2008)

2. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression
Trees. Chapman and Hall (1984)

3. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)
4. Larose, D.T.: Discovering Knowledge in Data. John Wiley & Sons (2005)
5. Liu, Y., Shi, X., Pierce, L., Ren, X.: Characterizing and forecasting user engage-

ment with in-app action graph: A case study of snapchat. In: Proc. of ACM
SIGKDD’19. pp. 2023–2031. ACM (2019)

6. Luceri, L., Giordano, S., Ferrara, E.: Detecting troll behavior via inverse rein-
forcement learning: A case study of russian trolls in the 2016 us election. Proc. of
International AAAI Conference on Web and Social Media 14(1), 417–427 (2020)

7. Manning, C.D., Raghavan, P., Schutze, H.: Flat Clustering, chap. 16, pp. 356–359.
Cambridge University Press (2008)

8. Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external
cluster evaluation measure. In: Proc. of EMNLP-CoNLL. pp. 410–420 (2007)

9. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to information retrieval,
vol. 39. Cambridge University Press Cambridge (2008)

10. Shi, P., Zhang, Z., Choo, K.K.R.: Detecting malicious social bots based on click-
stream sequences. IEEE Access 7, 28855–28862 (2019)

11. Solomonoff, A., Mielke, A., Schmidt, M., Gish, H.: Clustering speakers by their
voices. In: Proceedings of the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181). vol. 2, pp. 757–
760. IEEE (1998)

12. Wang, G., Zhang, X., Tang, S., Wilson, C., Zheng, H., Zhao, B.Y.: Clickstream
user behavior models. ACM Transactions on the Web (TWEB) 11(4), 1–37 (2017)

13. Wang, G., Zhang, X., Tang, S., Zheng, H., Zhao, B.Y.: Unsupervised clickstream
clustering for user behavior analysis. In: Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. pp. 225–236 (2016)

14. Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, 2nd edn. (2005)

15. Xylogiannopoulos, K., Karampelas, P., Alhajj, R.: Clickstream analytics: An exper-
imental analysis of the amazon users’ simulated monthly traffic. In: IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). pp. 841–848. IEEE (2018)

