Abstract
The rehabilitation scheduling process consists of planning rehabilitation physiotherapy sessions for patients, by assigning proper operators to them in a certain time slot of a given day, taking into account several requirements and optimizations, e.g., patient’s preferences and operator’s work balancing. Being able to efficiently solve such problem is of upmost importance, in particular after the COVID-19 pandemic that significantly increased rehabilitation’s needs.
In this paper, we present a solution to rehabilitation scheduling based on Answer Set Programming (ASP), which proved to be an effective tool for solving practical scheduling problems. Results of experiments performed on both synthetic and real benchmarks, the latter provided by ICS Maugeri, show the effectiveness of our solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Evaluation of disjunctive programs in WASP. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) LPNMR 2019. LNCS, vol. 11481, pp. 241–255. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-20528-7_18
Alviano, M., et al.: Answer set programming in healthcare: Extended overview. In: Joint Proceedings of the 8th IPS Workshop and the 27th RCRA Workshop Co-located with AIxIA 2020. CEUR Workshop Proceedings, vol. 2745. CEUR-WS.org (2020)
Alviano, M., Dodaro, C.: Unsatisfiable core analysis and aggregates for optimum stable model search. Fund. Inform. 176(3–4), 271–297 (2020)
Alviano, M., Dodaro, C., Maratea, M.: An advanced answer set programming encoding for nurse scheduling. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F.A. (eds.) AI*IA 2017. LNCS, vol. 10640, pp. 468–482. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70169-1_35
Alviano, M., Dodaro, C., Marques-Silva, J., Ricca, F.: Optimum stable model search: algorithms and implementation. J. Log. Comput. 30(4), 863–897 (2020)
Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511543357
Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)
Calimeri, F., et al.: ASP-Core-2 input language format. Theory Pract. Logic Program. 20(2), 294–309 (2020)
Cieza, A., Causey, K., Kamenov, K., Hanson, S.W., Chatterji, S., Vos, T.: Global estimates of the need for rehabilitation based on the global burden of disease study 2019: a systematic analysis for the global burden of disease study 2019. Lancet 396(10267), 2006–2017 (2020)
Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 301–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_27
Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with clingo 5. In: Carro, M., King, A., Saeedloei, N., Vos, M.D. (eds.) Proceedings of ICLP (Technical Communications). OASICS, vol. 52, pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)
Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp Series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 368–383. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5_31
Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)
Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set programming competition. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 3–9. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_1
Gebser, M., Obermeier, P., Schaub, T., Ratsch-Heitmann, M., Runge, M.: Routing driverless transport vehicles in car assembly with answer set programming. Theory Pract. Logic Program. 18(3–4), 520–534 (2018)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New. Gener. Comput. 9(3/4), 365–386 (1991). https://doi.org/10.1007/BF03037169
Huang, Y.C., Zheng, J.N., Chien, C.F.: Decision support system for rehabilitation scheduling to enhance the service quality and the effectiveness of hospital resource management. J. Chin. Inst. Ind. Eng. 29, 348–363 (2012)
Huynh, N.T., Huang, Y.C., Chien, C.F.: A hybrid genetic algorithm with 2D encoding for the scheduling of rehabilitation patients. Comput. Ind. Eng. 125, 221–231 (2018)
Li, X., Chen, H.: Physical therapy scheduling of inpatients based on improved genetic algorithm. J. Phys.: Conf. Ser. 1848(1), 012009 (2021)
Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. AMAI 25(3–4), 241–273 (1999). https://doi.org/10.1023/A:1018930122475
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1007/BF00116251
Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro seaport. Theory Pract. Logic Program. 12(3), 361–381 (2012)
Saverino, A., Baiardi, P., Galata, G., Pedemonte, G., Vassallo, C., Pistarini, C.: The challenge of reorganizing rehabilitation services at the time of Covid-19 pandemic: a new digital and artificial intelligence platform to support team work in planning and delivering safe and high quality care. Front. Neurol. 12, 501 (2021)
Schimmelpfeng, K., Helber, S., Kasper, S.: Decision support for rehabilitation hospital scheduling. OR Spectr. 34(2), 461–489 (2012). https://doi.org/10.1007/s00291-011-0273-0
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Cardellini, M. et al. (2021). A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling. In: Moschoyiannis, S., Peñaloza, R., Vanthienen, J., Soylu, A., Roman, D. (eds) Rules and Reasoning. RuleML+RR 2021. Lecture Notes in Computer Science(), vol 12851. Springer, Cham. https://doi.org/10.1007/978-3-030-91167-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-91167-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91166-9
Online ISBN: 978-3-030-91167-6
eBook Packages: Computer ScienceComputer Science (R0)