Skip to main content

AI for the Detection of the Diabetic Retinopathy

  • Chapter
  • First Online:
Integrating Artificial Intelligence and IoT for Advanced Health Informatics

Part of the book series: Internet of Things ((ITTCC))

Abstract

Diabetes has become one of the major causes of deaths in the world, and diabetic eye complications causing blindness and low vision have greatly increased. The International Diabetes Federation (IDF) (International Diabetes Federation, https://www.diabetesatlas.org/en/sections/worldwide-toll-of-diabetes.html) reports that about 1 in 11 adults (463 million people) worldwide has diabetes, and 1.6 million deaths are directly attributed to diabetes each year. It also estimates that, by 2035, there will be 600 million people with diabetes, and by 2045 the number will be 700 million.

Diabetic retinopathy (DR) is a complication of diabetes that affects eyes: it originates from the damage of the blood vessels of the light-sensitive tissue of the retina and is among the primary cause of blindness.

Considering the number of patients affected by diabetes worldwide, it is straightforward that an affective screening of potential number of patients affected by DR is of paramount importance. While the primary method for evaluating diabetic retinopathy involves direct and indirect ophthalmoscopy, artificial intelligence (AI) has been on the rise in the eye care sector. AI uses sophisticated algorithms to analyze a vast amount of clinical data in order to provide effective diagnostic insights with the final aim of accomplishing tasks with minimal involvement of human beings. AI is undoubtedly a major frontier in the general healthcare domain. AI tools provide low-cost and effective solutions in supporting early and accurate diagnosis, facilitating the work of specialists, allowing the release of low-cost solutions for effective (self)-diagnosis, and allowing to select specific treatments. Diabetic retinopathy can be revealed by analyzing fundus photograph datasets of patients and therefore is a disease to which AI tools can provide effective support. This chapter describes the state of the art of AI-based DR screening technologies, some of which are already commercially available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vocaturo, E., Veltri, P.: On the use of networks in biomedicine. In: FNC/MobiSPC (2017), pp. 498–503

    Google Scholar 

  2. Caroprese, L., Cascini, P.L., Cinaglia, P., Dattola, F., Franco, P., Iaquinta, P., Iusi, M., Tradigo, G., Veltri, P., Zumpano, E.: Software tools for medical imaging. In: ADBIS (Short Papers and Workshops), pp. 297–304 (2018)

    Google Scholar 

  3. Gullo, F., Ponti, G., Tagarelli, A., Tradigo, G., Veltri, P.: A time series approach for clustering mass spectrometry data. J. Comput. Sci. 3(5), 344–355 (2012)

    Article  Google Scholar 

  4. Gardner, D., Akil, H., Ascoli, G.A., Bowden, D.M., Bug, W., Donohue, D.E., Goldberg, D.H., Grafstein, B., Grethe, J.S., Gupta, A., Halavi, M., Kennedy, D.N., Marenco, L., Martone, M.E., Miller, P.L., Muller, H.M., Robert, A., Shepherd, G.M., Sternberg, P.W., Van Essen, D.C.: The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics 6, 149–160 (2008)

    Article  Google Scholar 

  5. Muller, P., Schurmann, M., Guck, J.: ODTbrain: a Python library for full-view, dense diffraction tomography. BMC Bioinform. 16, 1–9 (2015)

    Article  Google Scholar 

  6. Uhlmann, V., Singh, S., Carpenter, A.E.: CP-CHARM: segmentation-free image classification made accessible. BMC Bioinform. 17, 1–2 (2016)

    Article  Google Scholar 

  7. Vocaturo, E., Zumpano, E., Veltri, P.: Features for melanoma lesions characterization in computer vision systems. In: 9th International Conference on Information, Intelligence, Systems and Applications (IISA) (2018), pp. 1–8. https://doi.org/10.1109/IISA.2018.8633651

  8. Zumpano, E., Iaquinta, P., Caroprese, L., Dattola, F., Tradigo, G., Veltri, P., Vocaturo, E.: SIMPATICO 3D mobile for diagnostic procedures. In: IIWAS 2019, pp. 468–472. https://doi.org/10.1145/3366030.3366087

  9. Zumpano, E., Iaquinta, P., Caroprese, L., Cascini, G.L., Dattola, F., Franco, P., Iusi, M., Veltri, P., Vocaturo, E.: SIMPATICO 3D: A medical information system for diagnostic procedures. In: BIBM 2018, pp. 2125–2128. https://doi.org/10.1109/BIBM.2018.8621090

  10. Iaquinta, P., Iusi, M., Caroprese, L., Turano, S., Palazzo, S., Dattola, F., Pellegrino, I., Tradigo, G., Cascini, G., Veltri, P., Zumpano, E.: eIMES 3D mobile: A mobile application for diagnostic procedures. In: BIBM, pp 1634–1641 (2018). https://doi.org/10.1109/BIBM.2017.8217904

  11. Iaquinta, P., Iusi, M., Caroprese, L., Turano, S., Palazzo, S., Dattola, F., Pellegrino, I., Veltri, P., Zumpano, E.: eIMES 3D: An innovative medical images analysis tool to support diagnostic and surgical intervention. In: FNC/MobiSPC 2017, pp. 459–464. https://doi.org/10.1016/j.procs.2017.06.122

  12. Vocaturo, E., Zumpano, E., Veltri, P.: Image pre-processing in computer vision systems for melanoma detection. In: BIBM, p. 2117–2124 (2018). https://doi.org/10.1109/BIBM.2018.8621507

  13. Vocaturo, E., Perna, D., Zumpano, E.: Machine learning techniques for automated melanoma detection. In: IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019, pp. 2310–2317. https://doi.org/10.1109/BIBM47256.2019.8983165

  14. Fuduli, A., Veltri, P., Vocaturo, E., Zumpano, E.: Melanoma detection using color and texture features in computer vision systems. Adv. Sci. Technol. Eng. Syst. J. 4(5), 16–22 (2019). https://doi.org/10.25046/aj040502

    Article  Google Scholar 

  15. Vocaturo, E., Zumpano, E., Veltri, P.: On the usefulness of pre-processing step in melanoma detection using multiple instance learning. In: FQAS. Springer, pp. 374–382 (2019). https://doi.org/10.1007/978-3-030-27629-4-34

  16. Vocaturo, E., Zumpano, E.: Dangerousness of dysplastic nevi: a multiple instance learning solution for early diagnosis. In: BIBM, pp. 2318–2323 (2019). https://doi.org/10.1109/BIBM47256.2019.8983056

  17. International Diabetes Federation. https://www.diabetesatlas.org/en/sections/worldwide-toll-of-diabetes.html

  18. Li, Z., Keel, S., Liu, C., He, Y., Meng, W., Scheetz, J., Lee, P.Y., Shaw, J., Ting, D., Wong, T.Y., Taylor, H., Chang, R., He, M.: An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diabetes Care 41(12), 2509–2516 (2018)

    Article  Google Scholar 

  19. Early Treatment Diabetic Retinopathy Study Research Group, Grading diabetic retinopathy from stereoscopic color fundus photographs An extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology 98, 786–806 (1991)

    Google Scholar 

  20. Abrmoff, M.D., Folk, J.C., Han, D.P., Walker, J.D., Williams, D.F., Russell, S.R., Massin, P., Cochener, B., Gain, P., Tang, L., Lamard, M.: Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 131(3), 351–357 (2013)

    Article  Google Scholar 

  21. Abrmoff, M.D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J.C., Niemeijer, M.: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest. Ophthalmol. Vis. Sci. 57(13), 5200–5206 (2016)

    Article  Google Scholar 

  22. Abrmoff, M.D., Lavin, P.T., Birch, M., et al.: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Med. 1, 39 (2018). https://doi.org/10.1038/s41746-018-0040-6

    Article  Google Scholar 

  23. Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P.C., Mega, J.L., Webster, D.R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016). https://doi.org/10.1001/jama.2016.17216

    Article  Google Scholar 

  24. Tufail A, Kapetanakis VV, Salas-Vega S, Egan C, Rudisill C, Owen CG, et al. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Health Technol. Assess. (Rockv) 20, 172 (2016). xxviii

    Google Scholar 

  25. Solanki, K., Ramachandra, C., Bhat, S., Bhaskaranand, M., Nittala, M.G., Sadda, S.R.: Automated, high-throughput, image analysis for diabetic retinopathy screening. Invest. Ophthalmol. Vis. Sci. 56, 1429 (2015)

    Google Scholar 

  26. Ribeiro, L., Oliveira, C.M., Neves, C., Ramos, J.D., Ferreira, H., Cunha-Vaz, J.: Screening for diabetic retinopathy in the central region of Portugal. Added value of automated disease/no disease grading. Ophthalmologica 233, 96–103 (2015)

    Google Scholar 

  27. Ribeiro, M.L., Nunes, S.G., Cunha-Vaz, J.G.: Microaneurysm turnover at the macula predicts risk of development of clinically significant macular edema in persons with mild nonproliferative diabetic retinopathy. Diabetes Care 36, 1254–1259 (2012)

    Article  Google Scholar 

  28. Bawankar, P., Shanbhag, N., Dhawan, B., Palsule, A., Kumar, D., Chandel, S., et al.: Sensitivity and specificity of automated analysis of single-field non-mydriatic fundus photographs by Bosch DR Algorithm Comparison with mydriatic fundus photography (ETDRS) for screening in undiagnosed diabetic retinopathy. PLoS One 12, e0189854 (2017)

    Article  Google Scholar 

  29. Larsen, N., Godt, J., Grunkin, M., Lund-Andersen, H., Larsen, M.: Automated detection of diabetic retinopathy in a fundus photographic screening population. Invest. Ophthalmol. Vis. Sci. 44, 767–771 (2003)

    Article  Google Scholar 

  30. Larsen, M., Godt, J., Larsen, N., Lund-Andersen, H., Sjlie, A.K., Agardh, E., et al.: Automated detection of fundus photographic red lesions in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 44, 761–766 (2003)

    Article  Google Scholar 

  31. De Fauw, J., Ledsam, J.R., Romera-Paredes, B., et al.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018). https://doi.org/10.1038/s41591-018-0107-6

    Article  Google Scholar 

  32. Gargeya, R., Leng, T.: Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7), 962–969 (2017)

    Article  Google Scholar 

  33. Carson Lam, D.Y., Guo, M., Lindsey, T.: Automated detection of diabetic retinopathy using deep learning. AMIA Summits Transl. Sci. Proc. 2018, 147 (2018)

    Google Scholar 

  34. Seth, S., Agarwal, B.: A hybrid deep learning model for detecting diabetic retinopathy. J. Stat. Manag. Syst. 21(4), 569–574 (2018)

    Google Scholar 

  35. Li, Y.-H., Yeh, N.-N., Chen, S.-J., Chung, Y.-C.: Computer-assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network. Mob. Inf. Syst. 2019, 114 (2019)

    Google Scholar 

  36. Sisodia, D.S., Nair, S., Khobragade, P.: Diabetic retinal fundus images: Preprocessing and feature extraction for early detection of diabetic retinopathy. Biomed. Pharmacol. J. 10(2), 615–626 (2017)

    Article  Google Scholar 

  37. Li, X., Pang, T., Xiong, B., Liu, W., Liang, P., Wang, T.: Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In: Proc. 10th Int. Congr. Image Signal Process., Biomed. Eng. Informat. (CISP-BMEI), October, pp. 1–11 (2017)

    Google Scholar 

  38. Zhou, L., Zhao, Y., Yang, J., Yu, Q., Xu, X.: Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Process. 12(4), pp. 563–571 (2017)

    Article  Google Scholar 

  39. Astorino, A., Fuduli, A., Gaudioso, M., Vocaturo, E.: A multiple instance learning algorithm for color images classification. In: Proceedings of the 22nd Int. Database Engineering & Applications Symposium, IDEAS, June 2018, pp. 262–266. ACM, New York (2018)

    Google Scholar 

  40. Astorino, A., Fuduli, A., Veltri, P., Vocaturo, E.: On a recent algorithm for multiple instance learning. Preliminary applications in image classification. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1615–1619 (2017)

    Google Scholar 

  41. Caroprese, L., Veltri, P., Vocaturo, E., Zumpano, E.: Deep learning techniques for electronic health record analysis. In: IISA 2018, pp. 1–4. https://doi.org/10.1109/IISA.2018.8633647

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Zumpano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vocaturo, E., Zumpano, E. (2022). AI for the Detection of the Diabetic Retinopathy. In: Comito, C., Forestiero, A., Zumpano, E. (eds) Integrating Artificial Intelligence and IoT for Advanced Health Informatics. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-91181-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91181-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91180-5

  • Online ISBN: 978-3-030-91181-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics