Skip to main content

\(\textsf {DEVA}\): Decentralized, Verifiable Secure Aggregation for Privacy-Preserving Learning

  • Conference paper
  • First Online:
Book cover Information Security (ISC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13118))

Included in the following conference series:

Abstract

Aggregating data from multiple sources is often required in multiple applications. In this paper, we introduce \(\textsf {DEVA}\), a protocol that allows a distributed set of servers to perform secure and verifiable aggregation of multiple users’ secret data, while no communication between the users occurs. \(\textsf {DEVA}\) computes the sum of the users’ input and provides public verifiability, i.e., anyone can be convinced about the correctness of the aggregated sum computed from a threshold amount of servers. A direct application of the \(\textsf {DEVA}\) protocol is its employment in the machine learning setting, where the aggregation of multiple users’ parameters (used in the learning model), can be orchestrated by multiple servers, contrary to centralized solutions that rely on a single server. We prove the security and verifiability of the proposed protocol and evaluate its performance for the execution time and bandwidth, the verification execution, the communication cost, and the total bandwidth usage of the protocol. We compare our findings to the prior work, concluding that \(\textsf {DEVA}\) requires less communication cost for a big amount of users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If \(m\not \mid n\), then \(\mid \varGamma _j \mid =\lceil \frac{n}{m}\rceil \) for \(j\in [1,m-1]\) and \(\mid \varGamma _m \mid =n-(m-1)\lceil \frac{n}{m}\rceil \).

  2. 2.

    \(\mathcal {A}\) must know the secret key by either breaking the key agreement security or by maliciously corrupting the user, e.g., by personally creating it.

  3. 3.

    All code will be released publicly after publication, but is already available to reviewers upon request through the program committee.

References

  1. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_19

    Chapter  Google Scholar 

  2. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7

    Chapter  Google Scholar 

  3. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  4. Emura, K.: Privacy-preserving aggregation of time-series data with public verifiability from simple assumptions. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 193–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3_11

    Chapter  MATH  Google Scholar 

  5. Ghodsi, Z., Gu, T., Garg, S.: SafetyNets: verifiable execution of deep neural networks on an untrusted cloud. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems, pp. 4672–4681 (2017)

    Google Scholar 

  6. Hitaj, B., Ateniese, G., Pérez-Cruz, F.: Deep models under the GAN: information leakage from collaborative deep learning. In: Proceedings of CCS, pp. 603–618 (2017)

    Google Scholar 

  7. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., et al.: Advances and open problems in federated learning. CoRR, abs/1912.04977 (2019)

    Google Scholar 

  8. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    Article  MathSciNet  Google Scholar 

  9. Krohn, M., Freedman, M., Mazieres, D.: On-the-fly verification of rateless erasure codes for efficient content distribution. In: IEEE Symposium on Security and Privacy. Proceedings, Berkeley, CA, USA, pp. 226–240 (2004)

    Google Scholar 

  10. Leontiadis, I., Elkhiyaoui, K., Önen, M., Molva, R.: PUDA – privacy and unforgeability for data aggregation. In: Reiter, M., Naccache, D. (eds.) CANS 2015. LNCS, vol. 9476, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26823-1_1

    Chapter  Google Scholar 

  11. Liu, Y., et al.: Trojaning attack on neural networks. In: 25th Annual Network and Distributed System Security Symposium, NDSS. The Internet Society (2018)

    Google Scholar 

  12. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2018)

    Article  Google Scholar 

  13. Segal, A., et al.: Practical secure aggregation for privacy-preserving machine learning. In: CCS (2017)

    Google Scholar 

  14. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  15. Shi, E., Chan, T.-H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data, vol. 2, January 2011

    Google Scholar 

  16. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)

    Google Scholar 

  17. Tramèr, F., Boneh, D.: Slalom: fast, verifiable and private execution of neural networks in trusted hardware. In: Proceedings of ICLR (2019)

    Google Scholar 

  18. Tsaloli, G., Banegas, G., Mitrokotsa, A.: Practical and provably secure distributed aggregation: verifiable additive homomorphic secret sharing. Cryptography 4(3), 25 (2020)

    Article  Google Scholar 

  19. Tsaloli, G., Liang, B., Mitrokotsa, A.: Verifiable homomorphic secret sharing. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 40–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9_3

    Chapter  Google Scholar 

  20. Tsaloli, G., Mitrokotsa, A.: Sum it up: verifiable additive homomorphic secret sharing. In: Seo, J.H. (ed.) ICISC 2019. LNCS, vol. 11975, pp. 115–132. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40921-0_7

    Chapter  Google Scholar 

  21. Xu, G., Li, H., Liu, S., Yang, K., Lin, X.: VerifyNet: secure and verifiable federated learning. IEEE Trans. Inf. Forensics Secur. 15, 911–926 (2020)

    Article  Google Scholar 

  22. Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in deep neural networks. In: 25th Annual Network and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA. The Internet Society (2018)

    Google Scholar 

  23. Yao, H., Wang, C., Hai, B., Zhu, S.: Homomorphic hash and blockchain based authentication key exchange protocol for strangers. In: International Conference on Advanced Cloud and Big Data (CBD), Lanzhou, pp. 243–248 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Tsaloli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsaloli, G., Liang, B., Brunetta, C., Banegas, G., Mitrokotsa, A. (2021). \(\textsf {DEVA}\): Decentralized, Verifiable Secure Aggregation for Privacy-Preserving Learning. In: Liu, J.K., Katsikas, S., Meng, W., Susilo, W., Intan, R. (eds) Information Security. ISC 2021. Lecture Notes in Computer Science(), vol 13118. Springer, Cham. https://doi.org/10.1007/978-3-030-91356-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91356-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91355-7

  • Online ISBN: 978-3-030-91356-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics