Skip to main content

Time in Data Models

  • Conference paper
  • First Online:
  • 966 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13076))

Abstract

Time is an essential dimension of our perception of the world and hence an important dimension for the representation of the real and social world in data models. We give an overview of the basics of representing time in data models and representing objects and processes with respect to the temporal dimension. In particular, we discuss basic concepts and novel developments in the areas of representing time, snapshot data models versus temporal versioning of data models, time-related storage of data in databases, temporal data warehouses and databases, schema evolution, and the representation and checking of temporal integrity constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  Google Scholar 

  2. Atluri, G., Karpatne, A., Kumar, V.: Spatio-temporal data mining: a survey of problems and methods. ACM Comput. Surv. (CSUR) 51(4), 1–41 (2018)

    Article  Google Scholar 

  3. Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S.: Database technology for processing temporal data. In: 25th International Symposium on Temporal Representation and Reasoning (TIME 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  4. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint programming: a comparative survey. ACM Comput. Surv. (CSUR) 38(4), 12-es (2006)

    Article  Google Scholar 

  5. Cairo, M., Rizzi, R.: Dynamic controllability made simple. In: 24th International Symposium on Temporal Representation and Reasoning (TIME 2017). LIPIcs, vol. 90, pp. 8:1–8:16 (2017)

    Google Scholar 

  6. Combi, C., Degani, S., Jensen, C.S.: Capturing temporal constraints in temporal ER models. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 397–411. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87877-3_29

    Chapter  Google Scholar 

  7. Combi, C., Galetto, F., Nakawala, H.C., Pozzi, G., Zerbato, F.: Enriching surgical process models by BPMN extensions for temporal durations. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing, pp. 586–593 (2021)

    Google Scholar 

  8. Combi, C., Montanari, A.: Data models with multiple temporal dimensions: completing the picture. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 187–202. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45341-5_13

    Chapter  Google Scholar 

  9. Combi, C., Oliboni, B., Pozzi, G.: Modeling and querying temporal semistructured data. In: Kozielski, S., Wrembel, R. (eds.) New Trends in Data Warehousing and Data Analysis. Annals of Information Systems, vol. 3, pp. 1–25. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-87431-9_14

  10. Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database schema evolution process. VLDB J. 22(1), 73–98 (2013)

    Article  Google Scholar 

  11. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1–3), 61–95 (1991)

    Article  MathSciNet  Google Scholar 

  12. Eder, J., Franceschetti, M.: Time and business process management: problems, achievements, challenges (invited talk). In: 27th International Symposium on Temporal Representation and Reasoning (TIME 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  13. Eder, J., Franceschetti, M., Lubas, J.: Time and processes: towards engineering temporal requirements. In: Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pp. 9–16 (2021)

    Google Scholar 

  14. Eder, J., Gruber, W.: A meta model for structured workflows supporting workflow transformations. In: Manolopoulos, Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 326–339. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45710-0_26

    Chapter  Google Scholar 

  15. Eder, J., Koncilia, C., Mitsche, D.: Automatic detection of structural changes in data warehouses. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 119–128. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45228-7_13

    Chapter  Google Scholar 

  16. Eder, J., Koncilia, C., Morzy, T.: The COMET metamodel for temporal data warehouses. In: Pidduck, A.B., Ozsu, M.T., Mylopoulos, J., Woo, C.C. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 83–99. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47961-9_9

    Chapter  Google Scholar 

  17. Eder, J., Liebhart, W.: Workflow transactions. In: Workflow Handbook 1997, pp. 195–202. Wiley (1997)

    Google Scholar 

  18. Eder, J., Panagos, E., Rabinovich, M.: Workflow time management revisited. In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B., Rolland, C., Sølvberg, A. (eds.) Seminal Contributions to Information Systems Engineering, pp. 207–213. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36926-1_16

    Chapter  Google Scholar 

  19. Faisal, S., Sarwar, M.: Handling slowly changing dimensions in data warehouses. J. Syst. Softw. 94, 151–160 (2014)

    Article  Google Scholar 

  20. Golfarelli, M., Rizzi, S.: A survey on temporal data warehousing. Int. J. Data Warehous. Min. (IJDWM) 5(1), 1–17 (2009)

    Article  Google Scholar 

  21. Gonçales, L.J., Farias, K., Oliveira, T.C.D., Scholl, M.: Comparison of software design models: an extended systematic mapping study. ACM Comput. Surv. (CSUR) 52(3), 1–41 (2019)

    Article  Google Scholar 

  22. Graja, I., Kallel, S., Guermouche, N., Cheikhrouhou, S., Kacem, A.H.: Modelling and verifying time-aware processes for cyber-physical environments. IET Softw. 13(1), 36–48 (2019)

    Article  Google Scholar 

  23. Grandi, F.: Temporal databases. In: Encyclopedia of Information Science and Technology, 3rd edn., pp. 1914–1922. IGI Global (2015)

    Google Scholar 

  24. Gregersen, H., Jensen, C.S.: Temporal entity-relationship models-a survey. IEEE Trans. Knowl. Data Eng. 11(3), 464–497 (1999)

    Article  Google Scholar 

  25. Härer, F., Fill, H.-G.: Past trends and future prospects in conceptual modeling - a bibliometric analysis. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 34–47. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_3

    Chapter  Google Scholar 

  26. Herrmann, K.: Multi-schema-version data management. Aalborg Universitetsforlag (2017)

    Google Scholar 

  27. Herrmann, K., Voigt, H., Pedersen, T.B., Lehner, W.: Multi-schema-version data management: data independence in the twenty-first century. VLDB J. 27(4), 547–571 (2018). https://doi.org/10.1007/s00778-018-0508-7

    Article  Google Scholar 

  28. Horner, J., Song, I.-Y.: A taxonomy of inaccurate summaries and their management in OLAP systems. In: Delcambre, L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, O. (eds.) ER 2005. LNCS, vol. 3716, pp. 433–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11568322_28

    Chapter  Google Scholar 

  29. Hunsberger, L., Posenato, R.: Simple temporal networks: a practical foundation for temporal representation and reasoning. In: Combi, C., Eder, J., Reynolds, M. (eds.) 28th International Symposium on Temporal Representation and Reasoning (TIME 2021), volume 206 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl (2021)

    Google Scholar 

  30. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-05153-5

    Book  MATH  Google Scholar 

  31. Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE Trans. Knowl. Data Eng. 11(1), 36–44 (1999)

    Article  Google Scholar 

  32. Kant, I.: Kritik der reinen Vernunft. BoD-Books on Demand (2020). http://odysseetheater.org/ftp/bibliothek/Philosophie/Kant/Kant%20Immanuel%20-%20Kritik%20der%20reinen%20Vernunft.pdf

  33. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems. Requirements Eng. 19(2), 113–141 (2012). https://doi.org/10.1007/s00766-012-0162-3

    Article  Google Scholar 

  34. Li, X., Liu, Y.: Review of spatio-temporal data modeling methods. Data Anal. Knowl. Discov. 3(3), 1–13 (2019)

    Google Scholar 

  35. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2017)

    Article  Google Scholar 

  36. Parent, C., Spaccapietra, S., Zimanyi, E.: Spatio-temporal conceptual models: data structures+ space+ time. In: Proceedings of the 7th ACM International Symposium on Advances in Geographic Information Systems, pp. 26–33 (1999)

    Google Scholar 

  37. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software Production Environment Based on Conceptual Modeling. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71868-0

    Book  Google Scholar 

  38. Rahm, E., Bernstein, P.A.: An online bibliography on schema evolution. ACM SIGMOD Rec. 35(4), 30–31 (2006)

    Article  Google Scholar 

  39. Shahnawaz, M., Ranjan, A., Danish, M.: Temporal data mining: an overview. Int. J. Eng. Adv. Technol. 1(1), 2249–8958 (2011)

    Google Scholar 

  40. Snodgrass, R., Ahn, I.: A taxonomy of time databases. ACM SIGMOD Rec. 14(4), 236–246 (1985)

    Article  Google Scholar 

  41. Snodgrass, R.T.: The TSQL2 Temporal Query Language, vol. 330. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  42. Van Der Aalst, W.: Process mining: overview and opportunities. ACM Trans. Manage. Inf. Syst. (TMIS) 3(2), 1–17 (2012)

    Article  Google Scholar 

  43. Vidal, T.: Handling contingency in temporal constraint networks: from consistency to controllabilities. J. Exp. Theor. Artif. Intell. 11(1), 23–45 (1999)

    Article  Google Scholar 

  44. Wang, S., Cao, J., Yu, P.: Deep learning for spatio-temporal data mining: a survey. IEEE Trans. Knowl. Data Eng. 1 (2020). https://doi.org/10.1109/TKDE.2020.3025580

  45. Young, H.D., Freedman, R.A., Sandin, T., Ford, A.L.: University Physics, vol. 9. Addison-Wesley, Reading (1996)

    Google Scholar 

  46. Zavatteri, M., Viganò, L.: Conditional simple temporal networks with uncertainty and decisions. Theoret. Comput. Sci. 797, 77–101 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Eder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eder, J., Franceschetti, M., Lubas, J. (2021). Time in Data Models. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. FDSE 2021. Lecture Notes in Computer Science(), vol 13076. Springer, Cham. https://doi.org/10.1007/978-3-030-91387-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91387-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91386-1

  • Online ISBN: 978-3-030-91387-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics