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Abstract. The advent of cloud computing radically changed the way
organisations operate their applications and allows them to achieve high
availability of services at affordable cost. Most cloud-computing plat-
forms fostered Kubernetes for their container orchestration and service
management. The scheduler is a key component of Kubernetes, as it is
responsible for finding the placement of new service containers when they
are deployed. The default scheduler is very fast, although often subopti-
mal. This can lead to inefficient placement of services, or more severely,
inability to deploy.
We present a custom Kubernetes scheduler, dubbed Boreas, which is de-
signed to evaluate bursts of deployment requests concurrently. Boreas
finds the optimal placements for service containers with their deploy-
ment constraints by utilising a configuration optimiser. Results show that
Boreas is able to find placements where the default Kubernetes sched-
uler fails, wasting less computing resources, or proving that no feasible
deployment solution is possible.

Keywords: Services on the Cloud · Cloud service management · Ku-
bernetes · Scheduling.

1 Introduction

Kubernetes [5] has become the new standard for container orchestration and ser-
vice management. Originally proposed by Google, Kubernetes is an open source
project that provides a layer between the cluster operator and the applications
running on the cluster. Its applications are implemented as collections of services,
each developed, deployed and scaled individually.

The main components of a Kubernetes systems are the Pods, every one of
them representing an instance of a scalable (micro)service. A pod generally hosts
one or few containers which are the minimal units containing the service source
code to execute with all the code dependencies. This division proved to be ex-
tremely useful to avoid software dependencies because when two services have
conflicting modules they can be arranged in different containers within the same
pod. On the other hand, this flexibility is limited by the pod’s need of being
small so it can be quickly scaled to meet possibly increasing service demand.
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Another central component in Kubernetes is the scheduler [14], i.e., the com-
ponent responsible for finding the placement of new service pods when they
need to be deployed. Kubernetes comes with a default scheduler that is very
fast, scales to hundreds of nodes, but it is heuristic based. This means that
dependency constraints (e.g., pod affinities) are not necessarily optimal, thus
leading to possible waste of resources, and more severely, the scheduler may be
incomplete, i.e., unable to deploy pods even when a possible schedule is available.

In general, the problem of finding the optimal pod deployment in Kubernetes
is an extension of the bin-packing problem and therefore a NP-complete prob-
lem [17]. Kubernetes developers prioritized speed over scheduler completeness
and optimality in the design of the default scheduler to allow Kubernetes to
scale up to thousands of pods and nodes. However, Kubernetes is also used for
systems that are not very dynamic and with a limited size. In such deployment
scenarios, when speed is not the main priority, one would prefer a scheduler that
can lead to more accurate and less resource consuming deployments.

In this paper, we introduce a custom Kubernetes scheduler, dubbed Boreas,
that ensures optimal pod placements with deployment constraints. Boreas re-
duces the overall computing resource usage and increases the utilization of cloud
computing infrastructure managed by Kubernetes at the cost of slower pod de-
ployment. The core of Boreas is the optimization configuration tool Zephyrus2 [1]
that relies on the Aeolus formal model [9] for provably optimal service de-
ployment [6]. Boreas integrates Zephyrus with the architecture of Kubernetes
through a proper adapter. When new pod deployment requests arrive, Boreas
parses the deployment constraints of the new requests and, based on the available
computational resources left, encodes the deployment problem for Zephyrus that
is invoked to retrieve the optimal pods deployment solution, if any. In this pa-
per, we describe the design principles and the architecture of Boreas. Moreover,
we show empirically that in the presence of standard Kubernetes deployment
constraints, Boreas is able to find a placement for the pods in cases where the
default scheduler fails, demonstrating that Boreas can be a better alternative
than the default scheduler for medium size cost-aware applications.

The rest of the paper is organized as follows. In Section 2 we give an intro-
duction of Kubernetes, the pod deployment strategy and the optimization tool
Zephyrus2. In Section 3 we introduce Boreas, its architecture, how it handles de-
ployment constraints and its batch scheduling. In Section 4 we test Boreas and
compare it with the default scheduler on some medium size deployment jobs.
Section 5 gives related work and we conclude the paper in Section 6.

2 Preliminaries

In this section we briefly introduce the two main tools used in our approach:
Kubernetes and Zephyrus.

Kubernetes Kubernetes [5] is the most widely used container orchestration
engine for the deployment and maintenance of container based applications.
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Containers encapsulate the execution environments of a program, abstracting
from the details of physical and virtual machines, and the deployment infras-
tructure. Compared to virtual machines, they provide the same advantages of
virtualization but are more lightweight, offering a better scalability and main-
tainability. Containers are also portable across clouds [10], they require much
less storage, and have faster booting time than virtual machines. For all these
reasons, containers have recently been widely adopted giving rise to the need
of platforms such as Kubernetes to orchestrate them. In the following, we re-
strict our attention to the main components of Kubernetes related to resource
management, with a special focus on the scheduler.

Pods are the basic scheduling unit in Kubernetes. They are high-level ab-
stractions for groups of containerized components which are usually run using a
Docker engine [26]. A pod consists of one or more containers that are guaranteed
to be co-located on the host machine and can share resources. A pod is deployed
according to its resource requirements and has its own specified resource limits.
For two or more pods to be deployed in the same node, the sum of the minimum
amounts of resources required for the pods needs to be available in the node.

Services represent components that act as basic internal load balancers and
ambassadors for pods. A service can be thought as a collection of pods that per-
form the same function and are viewed as a single entity. Kubernetes can deploy
a service, keep track of pods of the service and route all needed communica-
tions to them. Services and pods in a Kubernetes cluster are organized within
namespaces, allowing multiple applications to share the cluster resources.

Nodes are computing resource on which Kubernetes runs. One node functions
as the master node,3 and acts as a gateway and controller for the cluster by
exposing an API for developers and external traffic. The master node carries out
the scheduling and orchestrates the communication between other components.
The other nodes, called workers, host pods. The worker nodes have explicit
resource capabilities given as a set of labels that can specify its version, status,
and particular features (e.g., presence of a GPU).

Autoscalers are responsible for ensuring that the number of pods deployed
in the cluster matches the number of pods in its configuration. There is one
autoscaler for each service, managing a group of identical, replicated pods which
are created from pod templates and can be horizontally scaled by deploying or
removing pods.

Scheduler is in charge of assigning pods to specific nodes in the cluster. The
scheduler matches the operating requirements of a pod’s workload to the re-
sources that are available in the current infrastructure environment, and places
pods on appropriate nodes. The scheduler is responsible for monitoring the avail-
able capacity on each node to make sure that workloads are not scheduled in
excess of the available resources. The scheduler needs to know the total capacity
of each node and the resources already allocated to the nodes.

3 There can be more master nodes, but one will always be the main master node
hosting the cloud controller.
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Fig. 1. Pod scheduling orchestration in Kubernetes.
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While deploying a pod, it is possible to set deployment constraints that con-
dition how it should be placed in the cluster. For example, it is possible to define
pod affinity to place the affine pods on the same nodes. Similarly, by defining
a pod anti-affinity it is possible to avoid deploying the pods on the same node.
If the pods have an anti-affinity for themselves, every pod of a service will be
deployed on a different node. Pods can also have affinities towards node types.

When a pod deployment is created, a chain of events is generated as illus-
trated in Figure 1. When the deployment request is sent to the Kubernetes API
server 1 , the API server creates and exposes a scheduling event 2 . Schedulers
listen for such events and when an event targets them they process the request.
The scheduler first identifies a node that is suitable for deploying the pod of
the scheduling event and then sends a suggestion back to the API server in the
form of a namespace binding between the pod and node 3 . The API server, at
this point, adds the binding to its own distributed storage (i.e., an Etcd server),
allowing the local Kubernetes agent running on the selected node to instructs
its container runtime to fetch and run the pod’s container(s).

A pivotal point in this event chain is when scheduling events are processed
by schedulers. The default Kubernetes scheduler iterates unassigned pods one
at a time when assigning them to a node. It does so at an incredible speed
(i.e., scheduling throughput of more than 50 pods/sec), but its implementation
is heuristic-based, and it does not guarantee that pods are placed where they fit
best if looking at all deployments as a whole.

The default scheduler identifies the most suitable node in the cluster in two
steps [19]:

1. Filter: remove any node that lack any resources required by the pod, doesn’t
match explicit label or node name requirements, or that report memory or
disk pressure.
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2. Rank: the remaining nodes are then ranked using a set of priority func-
tions. The ranking is calculated by weighting properties such as highest
fraction of free resources (least requested), resource balance, service spread,
pre-installed service requirements and affinity requirements.

One consequence of the default weighting of these priority functions is that
the ranking will lean towards spread pods as much as possible.

Zephyrus2 Zephyrus2 [1] is a configuration optimizer originally designed to find
the optimal placement of applications on virtual machines. Zephyrus2 requires a
declarative description as input to specify the software components, the available
virtual machines, and the deployment constraints.

The software components are specified in Aeolus [9], i.e., a component model
for the definition and reasoning of cloud deployment plans. In Aeolus, software
components are modeled as black-boxes that expose require- and provide-ports to
capture required and provided functionalities respectively. Every software com-
ponent consumes a given amount of resources. The virtual machines are modeled
instead as locations. Each location has a name, a list of resources that it can
provide, and an associated cost. The user can specify (deployment) constraints
in an ad-hoc declarative language to define the desired final configuration. The
constraints are powerful enough to express, e.g., the presence of a given number
of components, their co-installation requirements, and their conflicts.

By exploiting modern SMT and CP technologies, Zephyrus2 finds a configu-
ration distributing components on a set of locations such that: (i) the constraints
reflecting the user requirements are satisfied, (ii) every functionality required by a
deployed component is provided, (iii) in each location, the available resources are
sufficient to cover the resource needs of all components deployed on it, and (iv)
the values of some user-defined objective functions are minimized. The default
objective-function is to obtain the final configuration with lower cost, choosing
the one with the minimal amount of components in case of ties.

Zephyrus2 can be deployed as a Docker container, and it can be invoked by
HTTP requests.

3 Boreas - An Optimal Kubernetes Scheduler

In this section we present the salient features of Boreas, how it can be deployed
and how the deployment optimization problems are encoded and solved.

Boreas is a custom scheduler for Kubernetes that can replace the default
scheduler or run alongside it. The modular system architecture of Kubernetes
makes this framework highly configurable and extensible allowing to modify,
extend or replace the default scheduler [20].

A graphical representation of the deployment of the Boreas scheduler in a Ku-
bernetes master node is shown in Figure 2. The Boreas scheduler and Zephyrus2
run in separate Docker containers and are arranged together in a service pod.
They run on the master node alongside other Kubernetes system services. The
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Fig. 2. Boreas from the master node perspective

Boreas scheduler communicates with the API server using the Kubernetes client
API, and to Zephyrus2 using regular HTTP requests.

Boreas’ workflow starts with collecting the pod deployment requests in batches.
The batch size is limited to a maximum amount of events (99 by default). When
this limit is reached or if a configurable number of seconds passes (e.g., 30 sec-
onds by default), the accumulated requests are processed. The Boreas scheduler
encodes the deployment of all the pod requests into an optimization problem for
Zephyrus2 taking into account the request, the deployment constraints, and the
current configuration of the cluster. Zephyrus2 is then invoked, and after pro-
cessing the problem, it returns the optimal placement for each pod, if any. The
Boreas scheduler parses the response and applies it by sending pod deployment
instructions to the API server, like the default scheduler.

While Kubernetes is implemented in the Go programming language, any
custom component can be implemented in another programming language due
to its modular system architecture. Since we were interested in a proof-of-concept
implementation, Boreas is implemented in Python. This choice does not call for
efficiency, but since the heaviest task is the optimization of the configuration
performed by Zephyrus2, the performance of the wrapping layer does not affect
the overall scheduling performance. Boreas is constituted by about 400 lines of
code and is freely available from the project’s Github repository [3].

3.1 Deploying Boreas in Kubernetes

Boreas is deployed as a Kubernetes pod on the master node. The source code
includes a deployment script that provides the configurations and privilege re-
quired to function as a custom scheduler. The script can be run by using kubectl,
i.e., the command-line tool to control Kubernetes. Running the deployment
script will download the containers and deploy the Boreas pod to the master
node, as shown below.

$ kubectl create -f deployments/scheduler.yaml

serviceaccount/boreas -scheduler created

clusterrolebinding.rbac.authorization.k8s.io/boreas -scheduler

↪→ -as -kube -scheduler created
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deployment.apps/boreas -scheduler created

The Boreas pod will then be listed alongside the default services in the
kube-system namespace, i.e., the default namespace used to run the pods im-
plementing the core functionalities of Kubernetes.

$ kubectl get pods --namespace=kube -system

NAME READY STATUS RESTARTS AGE

boreas -scheduler -<hash > 2/2 Running 0 60s

kube -scheduler -master 1/1 Running 0 1d12h

...

3.2 Integration with Zephyrus2

Since the Zephyrus2 container is running in the same pod as the Boreas sched-
uler, their containers can communicate using HTTP. The Boreas scheduler can
therefore retrieve deployment configurations from Zephyrus2 simply by sending
an HTTP post request to its container.

The Zephyrus2 tool was originally designed to minimize the cost of applica-
tion deployment to virtual machines (VMs) [1]. While conceptually there is not a
big difference between that problem and the placement of service pods on nodes
in a Kubernetes cluster, in practice, extensive adjustments and conversions of
the data and constraints had to be made before Zephyrus2 was able to process
the placement of Kubernetes pods.

As a first operation, Boreas retrieves the status of every node in the cluster
and encodes them into a location, as defined in the Aeolus model [9]. A node
with its resources is simply seen as a location in which software components
can be deployed. The CPU and the memory available on the node are seen as
resources provided by the location. Since Zephyrus2 does not support fractional
CPU specification while Kubernetes also allows millicores for pod consumption
specification4, the CPU values had to be rescaled of a factor of 1000. As an
example, Listing 1.1 shows the JSON representation gathered for Zephyrus2 of
a computation node. Lines 3-6 specifies that there is currently a node ("num": 1)
that has a spare capacity of 3972 MB of RAM and 900 millicores.

Listing 1.1. Snippet of node encoding for Zephyrus2.

1 "locations ": {

2 "k8s_worker_1 ": {

3 "num": 1,

4 "resources ": {

5 "RAM": 3972,

4 E.g. One CPU equals 1000m where m stands for millicore and a Pod generally occupies
few hundreds millicores.
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6 "cpu": 900 }}}

In a Kubernetes cluster, services can be horizontally scaled by defining a
number of running copies of pods within the so-called replica set. The API server
creates individual scheduling events for each pod, including all the pods in a
replica set. Passing every single request to Zephyrus2 as a separate request would
greatly reduce its performance due to the increased number of components and
constraints that would need to be considered. For this reason, Boreas compresses
all requests for pods of a replica set into an equivalent unique request while
processing events from the API server. The pod requests are then encoded in
Zephyrus2 with the notion of a software component and a deployment constraint.

A pod is seen as a black box that requires a given amount of resources. As
an example, Listing 1.2 shows the JSON representation of a frontend pod that
requires 67 MB of RAM and 100 millicores.

Listing 1.2. Snippet of pod encoding for Zephyrus2.

12 "components ": {

13 "frontend ": {

14 "resources ": {

15 "RAM": 67,

16 "cpu": 100 }}}

The deployment constraint is instead a conjunction of inequality that re-
quires the installation of certain components in a given amount of resources and
the metric to minimize. For example the deployment constraints requiring the
installation of two frontend pods as encoded in Listing 1.2 is the following.

"specification": "frontend > 1; cost; (sum ?y in components: ?y)"

Here the first constraint frontend > 1 imposes Zephyrus2 to search for con-
figurations in which there are at least 2 frontend components. What follows after
the semicolon is the definitions of the minimization metric used by Zephyrus2. In
this case, Zephyrus2 proceeds to minimize the cost of the new deployment. Since
no nodes have been defined by specifying a cost, by default, the nodes’ costs are
treated equally, and therefore this metric simply requires Zephyrus2 to minimize
the number of nodes used for the deployment. The last part of the specification
string (sum ?y in components: ?y) requires Zephyrus2 to break the possible ties
between configurations using the same amount of nodes by further minimizing
the total number of new pods deployed. In this specific case, since there are no
pod dependencies and the frontend was required in an amount strictly greater
than 1, Zephyrus will produce a configuration using the least amount of nodes
and deploying only two frontends.

The last ingredients taken into consideration by Boreas are affinities and
anti-affinities constraints that allow to deploy pods on the same node or only in
separate nodes. These constraints were a recent addition to the 1.6 version of
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Listing 1.3. Example of affinity and anti-affinity relationships in Kubernetes.

1 affinity:

2 podAffinity:

3 requiredDuringSchedulingIgnoredDuringExecution:

4 - labelSelector:

5 matchExpressions:

6 - key: app

7 operator: In

8 values:

9 - frontend

10 topologyKey: "kubernetes.io/hostname"

11 podAntiAffinity:

12 requiredDuringSchedulingIgnoredDuringExecution:

13 - labelSelector:

14 matchExpressions:

15 - key: app

16 operator: In

17 values:

18 - backend

19 topologyKey: "kubernetes.io/hostname"

Kubernetes [24], but are vital to guarantee the efficiency and reliability of the
deployed application and thus frequently used in modern complex applications.

Kubernetes allows to define two types of intra pod affinities, a “hard” one
that specifies rules that must be met for a pod to be scheduled and “soft” that
specifies preferences that the scheduler will try to enforce but will not guarantee.
Boreas, for the time being, considers the “hard” request since these are those
that can not be violated and restrict the possible admissible configurations.

In Kubernetes, intra pod affinities and anti-affinities are expressed implicitly
using labels assigned to pods, e.g., a pod can be affine to pods having a certain
label. Labels allow a certain degree of flexibility but since they are not considered
by the Aeolus formal model, Boreas has to compile all the affinity and anti-
affinity relationships between pod labels into affinity and anti-affinity between
pods. For this reason, Boreas gathers all the labels of batched pods, deployed,
pods, and worker nodes and used them to create a reverse look-up function to
represent a biunivocal relation between labels and components and nodes names,
thus allowing to convert the constraints from labels to components and nodes.
The affinity and anti-affinity constraints can thus be precisely defined in the
declarative language supported by Zephyrus2.

As an example, Listing 1.3 presents a snippet for the definition of one affinity
and one anti-affinity constraint for a backend pod deployable in Kubernetes. This
snippet assumes that the backend has associated a label app with value backend

while the frontend pod has associated the label app with value frontend. The



10 Torgeir Lebesbye1, Jacopo Mauro2, Gianluca Turin1, and Ingrid Chieh Yu1

requiredDuringSchedulingIgnoredDuringExecution in Lines 3 and 12 specify to
Kubernetes that the two constraints are “hard” and must be satisfied during
the scheduling. The pod affinity in Lines 4-9 states that the backend pod can
be scheduled onto a node only if that node has at least one running pod with
a label with the key app and value frontend. Similarly, the pod anti-affinity in
Lines 13-18 state that a backend pod can not be installed on a node having a pod
with a label with key app and value backend.5 Finally, the topologyKey is used
to define the domain of the application of the policy to a topology domain like
node, rack, cloud provider zone, or cloud provider region. In this context we can
abstract from these details, assuming that the policies apply to all the nodes.

As specified with constraint in Listing 1.3, Boreas detects that there is an
affinity between the backend and the frontend, and an anti-affinity between two
backend pods. The affinity is encoded as (forall ?x in locations: (?x.backend

↪→ > 0 impl ?x.frontend > 0)) that will require Zephyrus2 to consider con-
figuration in which for all the possible locations x (i.e., for all the Kubernetes
nodes), if the number of backend pods deployed on x (represented in Zephyrus2
as ?x.backend) is greater than 0, then also on the same node the number of
frontend must be greater than 0. This universal quantification of an implication
thus excludes the possibility to have a node in which a backend is installed but no
frontend is available. Similarly, Boreas will encode the self anti-affinity constraint
as (forall ?x in locations: (?x.backend <= 1)). These constraints are added
to the specification in conjunction with the constraints specifying the minimal
amount of pods required (e.g., in conjunction with the constraint frontend > 1).

4 Evaluation

In this section we describe the experiments performed to compare Boreas w.r.t.
the default scheduler proving that Boreas can deploy applications that the de-
fault scheduler can not.

Due to the lack of established benchmarks for deployment tasks, we set up
two kinds of synthetic tests: i) a minimal test to prove that the heuristics of the
default scheduler can prevent the full deployment of a simple application, and
ii) a more elaborate affinity test using affinity and anti-affinity constraints in
which the default scheduler behaves in a nondeterministic way, often preventing
the deployment of the application.

The scheduling tests are regular Kubernetes deployment scripts, and were ini-
tiated with a single Kubernetes command line instruction (i.e., kubectl create).
A test run is considered successful if the scheduler is able to find placements on
worker nodes for all pods requests. Note that the schedulers may fail quite differ-
ently. The default scheduler processes as many service pods as possible, leaving
some of them in a “Pending” state, meaning that it did not find space to deploy

5 The Boreas scheduler supports hard pod affinities specified with the In operator.
The full support of the other operators, e.g., NotIn, Exists and DoesNotExist) is
trivial due to the fact that labels are finite at a given point in time and left as a
future work.
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them. Boreas’s holistic approach leads instead to the deployment of all the pods
or, if all the requests can not be satisfied, leave all pods in a pending state.

Due to the nondeterministic nature of the Kubernetes default scheduler, the
evaluation tests were repeated 100 times and run on a small cluster of twelve
Ubuntu 20.04 LTS servers running upstream Kubernetes 1.19. Each worker node
contributed with 1 CPU and 4 GB of computing resources to the cluster and
was built automatically using the open-source infrastructure as code software
tool Terraform [31]. The Kubernetes software and its dependencies were installed
and configured automatically using Ansible playbooks [2]. For solving the op-
timization problem, Zephyrus2 was configured to rely to OR-Tools [28], i.e., a
state-of-the-art constraint solver. To reproduce the deployment, the scripts are
available in the project’s Github repository [3].

Minimal test. To verify the difference between Boreas and the default sched-
uler, the two schedulers were tasked with the deployment of a new system re-
quiring the deployment of two backend pods and three frontend pods on two
empty nodes, as visually depicted in Figure 3. This deployment was set up to
require all available CPU resources on two worker nodes.

Kubernetes nodes

900 mcores

worker x2

Deployment request

450 mcores

proxy x2

300 mcores

backend x3

Boreas configuration

Fig. 3. Minimal test requirements and Boreas configuration

In the Boreas case, the scheduling requests are batched and, as expected, the
optimal allocation was always found. On the other hand, the default scheduler
had a hard time finding a placement for all five service pods. Its one-at-a-time
approach forces it to select a placement for the first service pods without being
able to plan for the resources needed for the other service pods. The default
scheduler’s algorithm for ranking available worker nodes makes it prone to place
the first service pods where they will block later service pods in a resource-scarce
scenario. Among all the 100 repetitions, none of the deployments were successful
when using the default scheduler.

Affinity test. In the second and more elaborate test we tested the deployment
of an application constituted by a reverse proxy server such as Nginx [27] for in-
coming HTTP requests, frontend and backend components of a web application,
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and a message broker such as Redis [29] to queue long-running tasks from the
backend to separate threads. The application is an instance of the typical web
frontend with backend services and cache and is derived from the production
ready Online Boutique6 which can scale up to handle millions of users given the
proper amount of resources.

With our deployment constraints, an optimal deployment for this system re-
quires four worker nodes and, differently from the previous test, only 83% of the
total amount of the CPU resources are needed. As illustrated in Figure 4, for
redundancy and load balancing purposes 3 backends, 3 frontends, and 3 message
brokers are required. Moreover, the system also requires 2 proxy services for com-
munication with the outside world. The backend and frontend have anti-affinity
to themselves, thus requiring at most one copy of each in a node. Moreover, the
frontend has an affinity to the backend requiring for performance reasons to be
deployed in the same node.

x3

Kubernetes nodes

900 mcores

worker x4

Deployment request

300 mcores

proxy x2

300 mcores

backend x3

300 mcores

frontend x3

200 mcores

broker x3

Boreas configuration

Fig. 4. Affinity test requirements and Boreas configuration

By repeating 100 times the deployment of this system starting from 4 empty
nodes, we have noticed that the default scheduler has a success rate of 34%. As
with the basic test, its failures result from the earlier placements of service pods
blocking the placement of the ones that are scheduled later.7 When the default
scheduler fails, it will not be able to deploy one or two of the pods in the test,
usually either a proxy or backend pod, due to the lack of a suitable node. Boreas,
on the other hand, succeeded each test run, giving rise to the configuration de-
picted in Figure 4.8 The evaluation shows that there are resource-scarce scenarios
or complex deployment constraints scenarios where the Boreas scheduler finds
placement for services that the default scheduler is unable to find.

6 https://github.com/GoogleCloudPlatform/microservices-demo
7 Please note that even though the request are given at once with the command
kubectl create, the default scheduler sequentializes the requests.

8 Note that Boreas can compute configurations that are not robust like the one pre-
sented in Figure4 that has two proxies deployed on the same node. It is the user
responsibility to define all the constraints to make the final configuration robust
stating, e.g., all the anti-affinity constraints.
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In the first set of minimal test, Boreas takes an average of 1.82 seconds
to compute the deployment and 2.15 in the affinity test. Moreover, when the
number of replicas in the affinity example is scaled to require a cluster of 8 or
12 nodes, (thus optimizing the placement of a total 22 or 33 pods respectively),
Boreas takes 2.92 and 4.22 seconds in average to compute the optimal placement.
For this reason, we conjecture that the majority of the time taken by Boreas for
these simple optimization problems is spent on the exchange of messages and in
the initialization of Zephyrus2. Trying to reduce the running time by integrating
more tightly Zephyrus or an ad-hoc reasoner directly in the Boreas scheduler is
beyond the scope of this work and left as future work.

We would like to note that the deployment optimization in Boreas, being an
NP-hard problem, does not provide any time guarantee for the returning of the
result. The resource consumption of the Boreas scheduler requires less than 50
MB and 400 millicores for scheduling up to 50 pods in 10 nodes. This amount
of resources is negligible considering that the current recommended settings for
a master node of Kubernetes with 11-100 nodes are 4 vCPUs and 15 GB of
memory and slightly above the footprint of the default scheduler that consumes
27 MB and 5 millicore for handling a queue of 50 scheduling events. While the
Boreas Scheduler has a low resource consumption, the NP-hardness of the opti-
mization problem solved by Zephyrus2 can also have an impact on the footprint
of the Zephyrus2 optimizer container that can vary depending on the nature
of the optimization problem and the backend solver used to solve it. Based on
Zephyrus2’s benchmarks [1] we conjecture that Boreas can be used to deploy up
to hundreds of pods in clusters with up to a dozen nodes in less than a minute.9

5 Related work

Kubernetes is a complex ecosystem that rely of a set of plugins and extensions
that improve and extend its functionalities. Aside for the scheduler, there are
plenty of other approaches that substitute and complement the default imple-
mentation. For example, plugins like Istio [18] and Linkerd [22] complement the
native handling service-to-service communication with a service mesh.

If we restrict to consider Kubernetes schedulers, different scheduler have been
designed to exploit deployment heuristics to try to optimize some resources. As
an example, RLSK [15] is a deep Reinforcement Learning Scheduler for Kuber-
netes that uses reinforcement learning for the refinement of deployment heuristic.
To improve resource distribution, Zhang [34] proposed to combine an ant colony
and particle swarm optimization algorithms. Li et al. [25] introduced a dynamic
Input/Output sensing scheduler for Kubernetes. The scheduler considers the
disks pressure in the scheduling process and tries to balance the node disk I/O
usage across the cluster dynamically. Similarly, Gaia [30] is a scheduler specif-
ically designed to improve GPUs load distribution, treating GPU resources in

9 Additional example of bigger system requiring more computation time from
Zephyrus2 (i.e., less than a minute for clusters up to 10 nodes) can be found in
the project’s Github repository [3].
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the same way Kubernetes treats CPUs. Townend et al. [32] and Wang et al. [33]
studied schedulers to reduce energy consumption and heat waste. Poseidon-
Firmament [21] is instead a scheduler designed to be faster than the default
Kubernetes scheduler on bigger clusters. Differently than Boreas, all these ap-
proaches, are neither complete nor optimal, polynomial in the size of the cluster
and the number of pods to deploy and thus privileging speed over optimality.

Not focusing on Kubernetes, the closest works to ours is Aeolus Blender [6,7]
that combines the first version of Zephyrus[8] with the Metis planner [23] and the
Mandriva Armonic collection into a tool chain that automates ad-hoc deploy-
ment tasks. Differently that in our approach, the application domain of Aeolus
blender was narrower and they did not combine the configuration optimizer
with an established and constraint-rich orchestration tool. Similarly, the Jolie
redeployment optimiser [11] used Zephyrus with a reconfiguration coordinator
to redeploy micro-services when they are reconfigured. In this case, the ser-
vice orchestration would be handled by the Jolie redeployment optimiser itself.
SmartDepl [13] presents instead an extension to the Abstract Behavioural Speci-
fication language (ABS) [16] allowing users to specify costs and other deployment
requirements using ABS classes and outputs a deployment configuration by us-
ing Zephyrus2. The final configuration can be simulated or formally checked by
using the formal methods tools available for ABS.

Also relevant, is the work of Medea [12] that introduces a two-scheduler design
for clusters where long-running service containers are deployed together with
short-running batch containers. Medea, differently than us, was implemented as
an extension to the Apache Hadoop cluster scheduler and finds placement for
the long-running containers, leaving the short-running containers for the default
scheduler in order to keep scheduling latency low.

6 Conclusion

In this work, we presented an alternative scheduler that optimizes the resource
usage and costs of a Kubernetes cluster, i.e., the most used container orches-
trator. The new scheduler, Boreas, relies on a configuration optimizer and on a
formal model for the cloud deployment. We have shown that Boreas is able to
deploy applications that the default scheduler failed to deploy.

Boreas can be used for Kubernetes clusters having only one scheduler per
cluster or one scheduler per zone in the case the cluster is divided into zones.
Our approach assumes that the components of the application have been profiled
to establish their RAM and vCPU consumption, around 50 MB of RAM in the
Kubernetes master node, and the selection of a suitable time window for the
grouping of the deployment requests and their concurrent deployment. Solving a
NP-hard problem, Boreas can not guarantee answers in a short amount of times
and therefore, it is mainly targeting clusters encompassing a limited amount of
computing nodes (e.g., dozen nodes) and applications that do not require high
variability (i.e., less than a hundred new deployment requests per minute).
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Boreas is only a proof-of-concept implementation that does not support all
the deployment constraints recently introduced in Kubernetes. We plan to ex-
tend it further to capture all the possible varieties of deployment constraints
(e.g., affinity constraints with different matching criteria for pod labels) and
also improve the resolution of the optimization problem. Further evaluations
and tests are required to study the impact of possible backup plans for situa-
tions in which the solver can not prove the optimality of the solution in time
(e.g., use the best solution so far retrieved or the solution produced by the de-
fault scheduler). In particular, we are interested in leveraging Boreas to solve the
local deployment problems created when topology spread constraints are used.
These constraints, introduced in the 1.19 recent version of Kubernetes, are used
to control how pods are spread across the cluster regions, zones, or nodes and
can split the global problem of scheduling pods into smaller sub-problems that
can be solved independently.

Aside from improving Boreas, we are also interested in providing comprehen-
sible explanations for the DevOps operators managing a Kubernetes cluster when
a system is not deployable. This can be achieved by exploiting the conflicting
constraints found by Boreas when solving the deployment problem. Moreover, in-
spired by [4,13], we are also interested in introducing more complex deployment
constraint directly in Kubernetes to describe dependencies between the pods
that allow the cluster operators to avoid “domino” effects due to unstructured
scaling actions that may cause cascading slowdowns or outages [35].
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