
CSSR: A Context-Aware Sequential Software
Service Recommendation Model ?

Mingwei Zhang1, Jiayuan Liu1, Weipu Zhang1, Ke Deng2(B), Hai Dong2, and
Ying Liu1

1 Software College, Northeastern University, Shenyang, China
{zhangmw,liuy}@swc.neu.edu.cn, {2071295,1871164}@stu.neu.edu.cn

2 School of Computing Technologies, RMIT University, Melbourne, Australia
{Ke.Deng,Hai.Dong}@rmit.edu.au

Abstract. We propose a novel software service recommendation model
to help users find their suitable repositories in GitHub. Our model first
designs a novel context-induced repository graph embedding method to
leverage rich contextual information of repositories to alleviate the diffi-
culties caused by the data sparsity issue. It then leverages sequence in-
formation of user-repository interactions for the first time in the software
service recommendation field. Specifically, a deep-learning based sequen-
tial recommendation technique is adopted to capture the dynamics of
user preferences. Comprehensive experiments have been conducted on a
large dataset collected from GitHub against a list of existing methods.
The results illustrate the superiority of our method in various aspects.

Keywords: Recommender System · Service Recommendation · Sequen-
tial Recommendation · Software Services · GitHub Repository

1 Introduction

With the development of emerging computing areas such as cloud computing,
big data, and Internet of Things, the Web-based services available on the Inter-
net have increased rapidly in both quantity and type [3]. Following [1], software
service is specifically defined as services which contain code under open-source li-
censes for others to use and modify freely, such as open-source projects or repos-
itories on social coding sites (e.g., GitHub1, Bitbucket2, SourceForge3). Users
can build their Web services, applications, or even scientific experiment systems
quickly by exploiting functional code modules in massive software services [13].

? Please cite the paper as the following: Zhang, M., Liu, J., Zhang, W., Deng, K., Dong,
H., Liu, Y.: CSSR: A Context-Aware Sequential Software Service Recommendation
Model. The 19th International Conference on Service Oriented Computing (ICSOC
2021), 2021. https://doi.org/10.1007/978-3-030-91431-8_45.

1 https://github.com/
2 https://bitbucket.org/
3 https://sourceforge.net/

ar
X

iv
:2

11
2.

10
31

6v
1

 [
cs

.I
R

]
 2

0
D

ec
 2

02
1

https://doi.org/10.1007/978-3-030-91431-8_45

2 M. Zhang et al.

As a representative software service hosting platform, GitHub is widely known
to developers from all over the world, who find it easier and quicker to build
up their complex applications from particular repositories. As of January 2020,
GitHub reports having over 40 million users and more than 100 million reposi-
tories [4], making it the largest host of software services in the world. The large
number of repositories has undoubtedly increased the difficulty of selecting the
most suitable ones to fulfill users’ application development. Therefore, software
service recommendation has become of practical importance [21]. McMillan et
al. [9] designed a tool named CLAN to help users detect similar applications.
It used latent semantic indexing to measure the similarity of repositories rela-
tive to API usage. However, it is limited to Java applications and small-scale
data. LRMF[6] is a pairwise regularization framework for GitHub open source
repository recommendation based on matrix factorization, focusing mainly on
exploiting user language preference. PNCF [1] is the state-of-the-art repository
recommender model, which combined deep learning with collaborative filtering
to enhance recommendation effectiveness, and also focused on language prefer-
ence.

The above methods proposed effective strategies to make software service rec-
ommendation. However, they suffer from the following two common issues. First,
the well-known data sparsity problem is not addressed. Although the number of
users and repositories on GitHub can be very large, the interactions between
users and repositories are highly sparse, i.e., most users typically interact with
a few repositories. Second, user preferences may exhibit dynamic characteris-
tics. For instance, users’ preferences may drift over time due to the continuous
evolution of software technology and the influence of other users.

User

Original

Repository

Forked

Repository

Repository

Contexts

User

Legend:

User

Original

Repository

Forked

Repository

Repository

Contexts

User

Legend:

Fig. 1. Organization of users and repositories on GitHub.

To address the two aforementioned issues, a novel recommendation model
named CSSR (Context-aware Sequential Software Service Recommendation) is
proposed in this paper with two unique traits. Firstly, there is a consensus that
contextual data can be utilized as complementary information to alleviate the
data sparsity issue in general recommender systems [18]. Each original repository

Context-Aware Sequential Software Service Recommendation 3

on GitHub has rich contexts as depicted in Fig. 1. We leverage more compre-
hensive contextual information of repositories (i.e., topics, general description,
README) compared with the state-of-the-art recommendation methods [1,6]. It
can model the similarity between repositories more precisely to make better
recommendation when the interaction data is sparse. Secondly, users on GitHub
interact with repositories in a chronological order as depicted in Fig. 1. The tem-
poral information of user interaction behaviors can help to model users’ dynamic
interests. For example, it is reasonable to assume that a user is most likely to
access the repositories which are relevant to the repositories the user has inter-
acted with recently. Therefore, we adopt sequential user-repository interactions
to capture the dynamics of user preferences. More specifically, CSSR first ex-
plores contextual information to construct a repository graph upon which the
latent vector of each repository can be derived through the graph embedding.
Then, the repository sequences of users are fed into a GRU model, where the la-
tent vector of each repository is applied, to identify the appropriate repositories
and recommend them to users. We have conducted comprehensive experiments
to compare CSSR with the state-of-the-art methods on a large real-world dataset
crawled from GitHub4. The experimental results show that CSSR achieves at
least 16.16%, 22.05% and 11.35% improvements over the best baseline in terms of
Hit Rate, Mean Reciprocal Rank and Normalized Discounted Cumulative Gain
respectively, and the performance boost is more significant in the situation of
high level of data sparsity. Our contributions are summarized as follows:

– This study proposes a context-aware sequential software service recommen-
dation model (CSSR) to improve software service recommendation by miti-
gating the difficulties caused by data sparsity and the dynamic characteristics
of user preferences.

– We design a repository graph construction method. It takes full advantages
of the context characteristics of repositories on GitHub, upon which the
recommendation performance can be improved.

– This study, to the best of our knowledge, is the first work that explores
the sequential interactions in software service recommendation to model the
dynamics of user preferences.

The rest of paper is organized as follows: Sect.2 introduces the related work;
Sect.3 formulates the software service recommendation problem; Sect.4 presents
the CSSR model; Sect.5 is the experiments and result analysis, and Sect.6 is the
conclusion.

2 Related Work

In this section, we will briefly review several lines of works closely related to
ours, including sequential recommendation, service recommendation and soft-
ware service recommendation.

4 The dataset and source code are released on https://github.com/JiaYuan6/CSSR.

4 M. Zhang et al.

Sequential Recommendation. The technology of recommender systems con-
tinues to develop. This results from their significant role in helping users al-
leviate the problem of information explosion and select interesting contents in
many Web application domains. Meanwhile, many recommendation techniques
have been designed, including collaborative filtering[12], matrix factorization[10],
factorization machine[7], and deep-learning-based methods[18]. Sequential rec-
ommendation is a critical research topic of recommender systems, and has been
extensively studied over years. It views the interactions as a sequence in a time
order and aims to predict the successive items that a user is likely to inter-
act with in the near future. Traditional methods [11] utilized Markov Chains
to capture item-item transitions for sequential recommendation. Recently, deep-
sequential-neural-model-based methods [5,14] have shown much superior perfor-
mance. They utilized different sequential neural networks (e.g., RNNs, Trans-
formers) to address concrete issues from different aspects and domains. Aiming
at validating the effectiveness of sequential recommendation in software service
domain, we adopt the classic sequential neural model GRU [2] fusing with graph
embedding techniques to solve next repository recommendation issue.

Service Recommendation. Lots of research works have been done on ser-
vice recommendation in recent years. They can be mainly classified into two
categories, i.e., QoS-based service recommendation[8] and functionality-based
service recommendation[20,19,17]. However, QoS-based service recommendation
approaches cannot help developers find an unknown but interesting service, lim-
ited by their objective. Functionality-based service recommendation approaches
focus on finding the services that meet the functional requirements the best.
Among them, the semantic-based approaches[20] aim at finding services with
the highest matching degree via semantic similarity computation. The social-
network-based approaches[19] tend to apply user interest, social relationship
and link prediction. The information-network-based approaches[17] mainly em-
ploy different kinds of information and multiple semantic meanings of meta paths
to recommend services. In this paper, we focus on recommender systems for a
special kind of Web-based services, i.e., software services.

Software Service Recommendation. Software services are the services with
a focus on providing various code resources to facilitate software development.
GitHub is the largest software service providers. It opens access to the infor-
mation of repository, users, and the interactions between them. This attracts
much interest of researchers, and currently most studies in software service rec-
ommendation are for GitHub repositories. Jiang et al. [6] proposed a repository
recommendation model based on matrix factorization. Chen et al. [1] combined
deep learning with collaborative filtering to do repository recommendation. The
above two methods both concentrated on exploiting user language preference.
Sun et al.[15] proposed an approach to recommend repositories considering both
user behaviors and repository features. Shao et al.[13] designed a novel cross-
platform recommender system, paper2repo. It recommended relevant reposito-

Context-Aware Sequential Software Service Recommendation 5

ries on GitHub that match a given paper, by integrating text encoding and
constrained graph convolutional networks.

In summary, the study in software service recommendation is still in its early
stage. None of the existing studies pay attention to making performance analysis
in different sparsity levels and addressing the really severe data sparsity issue,
together with the problem of dynamic characteristics of user preferences. This
paper aims to fill the research gap.

3 Problem Formulation

Each user has interacted with a sequence of repositories ordered by time on
GitHub. The repositories may be created by a user directly or forked from other
users, as illustrated in Fig. 1. Each repository has contextual information.

Let U = {u1, u2, ..., u|U|} and R = {r1, r2, ..., r|R|} be sets of users and repos-
itories, with |U| and |R| being the sizes, respectively. Each user u can be asso-
ciated with a sequence of repositories Ru = {ru1 , ru2 , ..., ru|Ru|} by sorting inter-
action records in a chronological order, where rut represents the repository that
user u interacted with at time step t. Ru

t1:t2(t1 < t2) refers to the subsequence
from interaction rut1 to rut2 . We learn how to recommend the next repository for
each user based on the recent repository subsequence of length L the user in-
teracted with, where L is a hyperparameter. For each user u at time step t, we
will have a training data record where the features are Ru

t−L:t−1 and the label is
rut . For all users from t = 1 to tcur − 1 (tcur denotes the current time step and
tcur − 1 is greater than L), we will obtain a training data set. Based on it, the
research problem investigated in this study is to (1) represent user preferences
and repositories, and (2) develop a prediction model to identify and recommend
the preferable repositories to users. The objective is to optimize the performance
by addressing the data sparsity issue and the dynamics of user preferences along
with time.

4 Methodology

As illustrated in Fig. 2, the proposed model named CSSR (Context-aware Se-
quential Software Service Recommendation) consists of three steps: (1) con-
structing a repository graph by leveraging contextual information of repositories;
(2) feeding the constructed graph into a graph autoencoder to derive embedding
of each repository, which is fused with other features to form final repository la-
tent vectors; (3) predicting the probability that each repository will be preferred
by each user using a GRU model. These steps are detailed respectively in the
following subsections.

4.1 Context-Induced Repository Graph Construction

First, a repository graph is constructed where the text-based contextual infor-
mation is exploited. On GitHub, developers usually tag their repositories with

6 M. Zhang et al.

Repositories
with contexts

G
rap

h
 co

n
stru

ctio
n

Context-induced
repository graph

A
u

to
en

co
d

er-b
ased

 n
e

tw
o

rk

em
b
ed

d
in

g

Repository
latent vectors

Ranking
scores

r|r|

r1

r2

r3

Fusion with
other features

G
R

U
-b

a
se

d
 re

p
o
s
ito

ry

re
c
o

m
m

e
n
d

a
tio

n

Repositories
with contexts

G
rap

h
 co

n
stru

ctio
n

Context-induced
repository graph

A
u

to
en

co
d

er-b
ased

 n
e

tw
o

rk

em
b
ed

d
in

g

Repository
latent vectors

Ranking
scores

r|r|

r1

r2

r3

Fusion with
other features

G
R

U
-b

a
se

d
 re

p
o
s
ito

ry

re
c
o

m
m

e
n
d

a
tio

n

Fig. 2. Framework of CSSR.

topics using words or phrases. The topics are suggested by a topic extraction
framework, called repo-topix, which was developed by GitHub considering many
engineering problems. We utilize the topics tagged by users with the sugges-
tion of repo-topix directly rather than extracting the similar information using
topic modeling like in existing studies. However, some repositories may not be
tagged with such information explicitly or tagged incompletely. We then, for each
repository, exploit its general description and README to derive and complete
its topics by techniques such as keyword matching against the explicitly-tagged
topics. In addition, the programming language of a repository can also be used
as a special kind of topic-like information. This is because users are more likely
to find source codes with languages they have used before.

Let T = {t1, t2, ..., t|T |} be the set of topics of repositoriesR = {r1, r2, ..., r|R|}.
Each repository r has a repository topic vector RT = {rt1, rt2, ..., rt|T |}, where
rtk = 1 if r has tk (either directly tagged by developers or derived from descrip-
tion, README); otherwise rtk = 0.

Given any two repositories rp and rq, RT p = {rtp·1, rtp·2, ..., rtp·|T |} and
RT q = {rtq·1, rtq·2, ..., rtq·|T |} are their corresponding repository topic vectors.
The similarity between rp and rq is measured using cosine distance betweenRT p

and RT q as follows:

sp,q =
RT p · RT q

‖RT p‖‖RT q‖
=

∑|T |
i=1 rtp·i × rtq·i√∑|T |

i=1 rt
2
p·i

√∑|T |
i=1 rt

2
q·i

(1)

The similarity ranges from 0 (meaning that two repositories don’t have any
same topic) to 1 (meaning two repositories have the exactly same set of topics).
We further define a hyperparameter in our model, i.e., the edge keeping threshold
ε ∈ (0, 1), which is used to help generate an effectual and simple graph. With
the threshold, the similarity between rp and rq is refined as follows:

sp,q =

0, p = q
sp,q, (p 6= q) ∧ (sp,q ≥ ε)
0, (p 6= q) ∧ (sp,q < ε)

(2)

Context-Aware Sequential Software Service Recommendation 7

Context-induced
repository graph

Repository embeddings

Encoder Decoder

First-order proximity
cost L1st for local

structure preserving

S
e
co

n
d
-o

rd
er p

ro
x
im

ity

c
o
st L

2
n

d
 fo

r g
lo

b
a
l

stru
c
tu

re p
re

se
rv

in
g

Context-induced
repository graph

Repository embeddings

Encoder Decoder

First-order proximity
cost L1st for local

structure preserving

S
e
co

n
d
-o

rd
er p

ro
x
im

ity

c
o
st L

2
n

d
 fo

r g
lo

b
a
l

stru
c
tu

re p
re

se
rv

in
g

Fig. 3. Context-induced repository graph embedding.

After calculating the similarity of any two repositories, we can get a similarity
matrix S = {s1, s2, ..., s|R|} ∈ R|R|×|R|, where sr = {sr,1, sr,2, ..., sr,|R|}. We
represent each repository r as a vertex vr. So, there are {v1, v2, · · · , v|R|} vertices;
and there is a link between two vertices vp and vq only if similarity sp,q is greater
than 0. By this way, we obtain a homogeneous graph where the contextual
similarity between repositories has been captured. The graph is called context-
induced repository graph.

4.2 Context-Induced Repository Graph Embedding

For nodes in a graph, graph embedding automates the process of extracting low-
dimensional node feature vectors. It has been proved very useful in many down-
stream tasks, such as classification, link prediction and recommendation. Vari-
ous graph embedding models have been proposed. For embedding the context-
induced repository graph G, we adopt Structural Deep Network Embedding
model (SDNE) [16], a representative embedding model for homogeneous graphs.
As illustrated in Fig. 3, a multi-layer autoencoder is extended to capture the
non-linear structure of G. The first-order proximity characterizes the local graph
structure (i.e., the direct links between repositories in G). The second-order
proximity characterizes the global graph structure (i.e., the co-neighbor rela-
tions between repositories in G). They are jointly exploited in the embedding
process.

Given the similarity matrix S = {s1, s2, ..., s|R|} of G, we feed sr = {sr,q}|R|q=1,
(1 ≤ r ≤ |R|) into an autoencoder. The input sr is the initial representation of
vertex vr (i.e., repository r). The hidden representations for each layer in the
encoder are shown as follows.

y
(1)
r = σ(W (1)sr + b(1)),

y
(k)
r = σ(W (k)y

(k−1)
r + b(k)), k = 2, ...,K

(3)

where S = {sr}|R|r=1 is the input data; Y (k) = {y(k)r }|R|r=1 is the k-th layer hid-

den representations; W (k) and b(k) are the k-th layer weight matrix and biases
respectively. K denotes the number of encoder layers.

8 M. Zhang et al.

Given the input data sr, we can obtain the final output of the encoder y
(K)
r ;

and then obtain the reconstructed data ŝr by reversing the calculation process
of encoder (i.e., decoder).

The first-order proximity describes the pairwise proximity between vertices.
Intuitively, it implies that two vertices in real-world graphs are always similar
if they are linked by an observed edge. Recall the construction of the context-
induced repository graph G in Sect. 4.1, two repositories are certainly similar if
they are linked by an observed edge in G. The first-order proximity cost function
for local structure preserving is applied on the output layer of the encoder and
defined as follows.

L1st =

|R|∑
r,q=1

sr,q‖y(K)
r − y(K)

q ‖22 (4)

where sr,q is the similarity between any pair of vertices vr and vq in G, which is
computed by Eq. (2).

The second-order proximity exploits the similarity of the vertices’ neighbor-
hood structures to capture the global graph structure. Intuitively, it assumes
that if two vertices share many common neighbors, they tend to be similar. The
second-order proximity cost function for global structure preserving is applied
on the output layer of the decoder. It is shown as follows.

L2nd =

|R|∑
r=1

‖(ŝr − sr)� br‖22 (5)

where � means Hadamard product; sr and ŝr are respectively the corresponding
input of encoder and the output of decoder for vertex vr (i.e., repository r);

br = {br,q}|R|q=1. If sr,q = 0, br,q = 1; else br,q = β > 1. That is, we impose more
penalty to the reconstruction error of the non-zero elements than that of zero

elements. For sr = {sr,q}|R|q=1 is the direct neighborhood data of repository r, the
cost function L2nd ensures the repositories with similar neighborhood to have
similar low-dimensional feature vectors.

We combine Eq. (4) and Eq. (5) and jointly minimize the following objective
function to preserve the first-order and second-order proximity simultaneously:

Lmix = L1st + αL2nd

=

|R|∑
r,q=1

sr,q‖y(K)
r − y(K)

q ‖22 + α

|R|∑
r=1

‖(ŝr − sr)� br‖22
(6)

We use the stochastic gradient descent algorithm to train the model. Through

the trained model, each repository r ∈ R can obtain its initial embedding y
(K)
r ∈

Rdr , where dr is the size of graph embeddings.

4.3 Sequential Repository Recommendation

The sequential repository recommendation component in the framework of CSSR
is illustrated in Fig. 4. Recall, in a training data record, the features are Ru

t−L:t−1

Context-Aware Sequential Software Service Recommendation 9

r
u

t-L

× +

× 1-

σ σ Tanh

×
r z

× +

× 1-

σ σ Tanh

×
r z

u
(t-L)

u
(t-L+1)

u
(t-1)

u
(t)

ũ ũ

r
u

t-1r
u

t-L+1

softmaxloss
y

u(t)
ŷ

u(t)

Context-induced graph embeddings

GRU Blocks

Star ForkWatch

σ σ σ

r
u

t-L r
u

t-L+1 r
u

t-1

Repository Embedding

Fusion Component

Sequential Repository Recommendation Component

Repository embedding

nonlinear transformation

(t-L) (t-1)

Other repository features

r
u

t-L

× +

× 1-

σ σ Tanh

×
r z

× +

× 1-

σ σ Tanh

×
r z

u
(t-L)

u
(t-L+1)

u
(t-1)

u
(t)

ũ ũ

r
u

t-1r
u

t-L+1

softmaxloss
y

u(t)
ŷ

u(t)

Context-induced graph embeddings

GRU Blocks

Star ForkWatch

σ σ σ

r
u

t-L r
u

t-L+1 r
u

t-1

Repository Embedding

Fusion Component

Sequential Repository Recommendation Component

Repository embedding

nonlinear transformation

(t-L) (t-1)

Other repository features

Fig. 4. GRU-based repository recommendation.

and the label is rut . More specifically, Ru
t−L:t−1 includes L repositories, i.e., rut−L,

· · · , rut−1. Correspondingly, the sequential recommendation component consists
of L GRU (Gated Recurrent Unit)[2] blocks as shown in Fig. 4. The input of
GRU block t − i (1 ≤ i ≤ L) is a nonlinear transformed vector ŕut−i of the
combined feature vector of repository rut−i. The repository combined feature
vector is derived from graph embeddings as discussed in Sect. 4.2. It is coupled
with a list of other repository features relevant to repository recommendation.

The output of the last GRU block is the inferred repository ŷu
(t)

which will be
compared against the ground truth (i.e., rut , the label of the training record),
and the GRU parameters will be learned. Next, we introduce the sequential
repository recommendation modeling in more details.

Fusing Multimodal Features for Repositories. For each repository ri ∈
R(1 ≤ i ≤ |R|), we concatenate the features derived from context-induced graph
embedding with other important features (i.e., the number of watches, stars and
forks) to obtain its final representation. Note that these features have different
numerical ranges. We adopt min-max scaling to normalize them into a real num-
ber between 0 and 1, and concatenate them with the graph embedding vectors.
By this way, each repository rui (t − L ≤ i ≤ t − 1) interacted with user u in
Fig. 4 can get its final representation (denoted as rui ∈ Rdr+3) for a GRU model,
where dr is the dimensionality of initial repository embeddings.

Generating User Representation. Next, we present how to derive the latent
vector of user u at time step t via the GRU model based on repositories u
interacted with before t.

10 M. Zhang et al.

Recall Ru
t−L:t−1 = {rut−L, rut−L+1, ..., r

u
t−1} is the sequence of repositories of

size L interacted with u just before time step t. The user representation can be
computed iteratively as follows.

ŕui = σ(Win · rui),
z(i) = σ(Wz[u(i), ŕui]),
r(i) = σ(Wr[u(i), ŕui]),

ũ(i+1) = tanh(Wu[r(i) � u(i), ŕui]),

u(i+1) = z(i) � u(i) + (1− z(i))� ũ(i+1),
s.t. t− L ≤ i ≤ t− 1.

(7)

where Win ∈ Rdu×(dr+3), Wz,Wr,Wu ∈ Rdu×2du are learnable parameters, and
du is the dimensionality of user embeddings. σ(·) is a logistic sigmoid function to
do non-linear projection. � is the Hadamard product between two vectors. z(i)

and r(i) denote update gate and reset gate respectively. They control how infor-
mation flows through the sequence. u(i) represents the hidden state vector, i.e.,
the representation of the user u at time step i. It is dynamic and can remember
past states. rui is the combined feature vector of the repository interacted with u
at time step i. ŕui is its nonlinear transformed vector, here, as the input data of
the i-th GRU block. Note that the dimensionalities of u(i) and ŕui are the same
(i.e., du) for the convenience of prediction, and u(t−L) = ~0 when initializing. For
simplicity, we use u(i+1) = GRU(u(i), rui) to denote the above operations.

Recommending and Model Training. We then illustrate how to recommend
repositories for u at t. Given a user u with a sequence of visited repositories
Ru

t−L:t−1, the embedding u(t) of user u at time step t can be computed by Eq. (7).
Then, the rating score of each candidate repository ri ∈ R (1 ≤ i ≤ |R|) for user
u is computed as follows.

ŷu
(t)

i = softmax(u(t) · ŕi) (8)

where ŷu
(t)

i denotes the recommendation probability of repository ri to user u
at time step t. Finally, we train the GRU model by minimizing the following
objective function.

L = Lcross−entropy + Lreg

= −
∑
u∈U

∑
t∈Tu

∑
i∈T t

u

yu
(t)

i log(ŷu
(t)

i) + λ‖θ‖22 (9)

where Tu denotes the training dataset of user u, and T t
u ⊂ R denotes the training

set of user u at time step t. We adopt the negative sampling strategy to train
the model. T t

u contains the repository rtu that user u interacted with at time step

t and the randomly-sampled 10 negative repositories corresponding to rtu. yu
(t)

i

denotes the ground truth. If repository ri = rtu, yu
(t)

i = 1. Otherwise, yu
(t)

i = 0.
Lreg is an L2-norm regularizer to prevent overfitting, and θ is the set of all
learnable parameters.

Context-Aware Sequential Software Service Recommendation 11

5 Experiments and Evaluation

In this section, we conduct experiments to validate the effectiveness of the pro-
posed model in capturing dynamics of user preferences and addressing data
sparsity issue. We also analyze how the key hyperparameters affect the perfor-
mance.

5.1 Dataset Description

We evaluate the proposed method on a large dataset crawled from GitHub.
We use GitHub REST API to create calls to obtain the data in JSON format
and store them in MongoDB. A user is considered to prefer a repository if the
user forked it. This means the user produced a personal copy of someone else’s
repository so that she can contribute to it or use it as the starting point for
her own. All the repositories that a user created or forked are listed in her Web
page in a chronological order. We randomly select users who forked more than
5 repositories. For each selected user, we crawl the information of all her forked
repositories (e.g. topics, programming languages, README). Such information is
used to construct context-induced repository graph. We eliminate repositories
forked by fewer than 5 users. There are 2,616 users, 3,126 repositories, and 21,924
interactions in the dataset after preprocessing. The data sparsity is 0.268%.

To capture dynamics of user preferences, we also try to consider temporal
information of user-repository interactions (e.g., the absolute time span, the rela-
tive time interval, the relative temporal position interval) in our model. However,
the experimental results don’t show performance improvement. Thus, CSSR just
utilizes the sequential interactions to make repository recommendation as de-
scribed above.

5.2 Baseline Methods

Next, we compare CSSR against the following baseline methods.

– Pop simply recommends top ranked repositories based on popularity in
training data.

– Item-KNN [12] recommends a user the repositories similar to the previously
forked repositories by the user based on cosine similarity.

– BPR [10] is a classic method for non-sequential recommendation, which
optimizes a Matrix Factorization model using a pairwise ranking loss.

– FFM [7] is the representative recommendation model based on factorization
machine. It groups features into fields, and learns the interactions between
users and repositories to complete the user-repository implicit rating matrix.

– GRU4Rec [5] is a representative sequential recommendation model, which
also utilizes GRU to model user action sequences. We feed randomly-generated
repository embeddings into GRU blocks, and obtain the best performance
by using Xavier initializer against other random number generators.

12 M. Zhang et al.

– PNCF [1] is the state-of-the-art GitHub repository recommendation method
by building a preference-based neural collaborative filtering recommender
model. We feed the model not only with the language features in the original
paper but also all our utilized topic features to make it fair.

5.3 Experimental Settings

For constructing the context-induced repository graph, we conduct stemming
and lemmatization on all topics tagged by users with the help of repo-topix,
and extract 4,015 topics. Then, for each repository, we conduct tokenization,
stop words removing, stemming, lemmatization, typo corrections, and string
matching on its textual contexts to complete its topics as introduced in Sect. 4.1.
RE, NLTK and Spacy packages of Python are used for these tasks. Next, we
compute the cosine similarity between each pair of repositories by using Numpy
package and save the constructed graph into a file by using Pandas package. The
edge keeping threshold ε is set to 0.3, which can generate a reasonable number
of edges. The final constructed graph contains 3,126 repositories with 168,039
edges between them.

For each user, we hold the first 80% of interactions as the training set. We
then use the next 10% of interactions as the validation set for hyperparameter
tuning. The latest 10% constitute the test set for reporting model performance.
We conduct experiments with each model for five times independently, and re-
port the average results.

The hyperparameters are learned from the validation dataset and set as fol-
lows. The size of initial repository embedding is 140. The size of user embedding
is 64. L = 4 means that the recent 4 interacted repositories are considered to in-
fer recommendations. The learning rate is 0.009. The maximum number of epoch
is 100 during the model training. All the experimental results of our model are
achieved by using the above hyperparameter configuration settings if no specific
situations are provided. The optimal hyperparameters of each baseline method
are set based on the experiment reports of the relevant research papers. We
implement our CSSR model in Tensorflow.

We adopt three commonly-used metrics to evaluate the recommendation per-
formance, i.e., Hit Rate (HR@N), Mean Reciprocal Rank (MRR@N) and Nor-
malized Discounted Cumulative Gain (NDCG@N) where N indicates top-N
ranked repositories. In general, HR@N doesn’t care about rank position in the
recommendation list, MRR@N considers only the position of the first matched
recommendation, and NDCG@N is a full position-aware metric which assigns
greater weights on higher positions. They reflect different aspects of recommen-
dation quality. The higher values indicate the better repository recommendation
quality for all the three metrics.

5.4 Performance Comparison

The experimental results of of CSSR and all the baselines are reported in Table 1.
We have the following observations. (1) In most cases, the state-of-the-art base-

Context-Aware Sequential Software Service Recommendation 13

Table 1. The performance comparison (The method with the best performance is
starred and the method with the second-best performance is boldfaced; columns
“KNN” and “GRU” denote the baseline “Item-KNN” and “GRU4Rec” respectively;
column “Improv.” denotes the improvement ratio of CSSR relative to the best base-
line).

top-N Metrics Pop KNN BPR FFM GRU PNCF CSSR Improv.

HR (%) 1.566 2.467 3.103 2.709 3.086 3.231 3.769* 16.65%
MRR (%) 0.662 1.421 1.646 1.428 1.288 1.705 2.085* 22.29%5
NDCG (%) 0.886 1.923 2.003 1.746 1.712 2.079 2.497* 20.11%

HR (%) 2.428 3.955 4.713 3.926 4.414 4.962 6.077* 22.47%
MRR (%) 0.762 1.628 1.857 1.586 1.448 1.926 2.378* 23.47%10
NDCG (%) 1.151 2.599 2.519 2.136 2.099 2.629 3.206* 21.95%

HR (%) 4.855 5.090 6.206 5.300 5.781 6.115 7.308* 17.76%
MRR (%) 0.962 1.723 1.975 1.694 1.576 2.018 2.472* 22.50%15
NDCG (%) 1.803 3.064 2.915 2.499 2.501 2.935 3.523* 14.98%

HR (%) 5.834 5.991 7.384 6.203 6.680 7.269 8.577* 16.16%
MRR (%) 1.016 1.774 2.042 1.745 1.620 2.082 2.541* 22.05%20
NDCG (%) 2.032 3.444 3.194 2.712 2.685 3.206 3.835* 11.35%

Table 2. The performance comparison at different sparsity levels.

Ratio
(Sparsity)

Metrics Pop KNN BPR FFM GRU PNCF CSSR Improv.

HR (%) 2.346 1.006 2.194 1.735 1.904 2.250 3.369* 43.61%
MRR (%) 0.741 0.402 0.748 0.927 0.711 0.772 1.457* 57.17%

ALL
(0.096%)

NDCG (%) 1.103 0.543 1.085 1.116 0.989 1.119 1.881* 68.09%

HR (%) 2.747 2.709 3.403 2.624 3.633 3.640 4.648* 27.69%
MRR (%) 0.924 0.872 1.434 1.067 1.323 1.511 1.922* 27.20%

Half
(0.182%)

NDCG (%) 1.350 1.538 1.893 1.429 1.853 2.004 2.487* 24.10%

HR (%) 2.428 3.955 4.713 3.926 4.414 4.962 6.077* 22.47%
MRR (%) 0.762 1.628 1.857 1.586 1.448 1.926 2.378* 23.47%

No
(0.268%)

NDCG (%) 1.151 2.599 2.519 2.136 2.099 2.629 3.206* 21.95%

line PNCF achieves the best performance than the other baseline methods. (2)
The proposed CSSR consistently achieves better performance on all the metrics
at different N values compared with all the baselines by at least 10%. Specifically,
it improves the performance slightly more on the metric MRR than on HR and
NDCG. It achieves slightly more performance improvement when N = 10 than
other N values. (3) All the baselines except GRU4Rec are sequential-information
free models. However, GRU4Rec doesn’t outperform the other baselines by just
using randomly-initialized repository embeddings. Compared with GRU4Rec,
the significant improvement of CSSR validates the importance of the context-
induced repository graph embedding component in our model.

14 M. Zhang et al.

20 40 60 80 100 120 140 160

Repository Embedding Size

3

4

5

6

HR
(%

) 2.0

1.5

1.0
20 40 60 80 100 120 140 160

Repository Embedding Size

M
RR

(%
)

(a)

3.0

2.5

2.0

1.5

20 40 60 80 100 120 140 160

Repository Embedding Size

ND
CG

(%
)

25050 100 150 200

User Embedding Size
1

2

3

4

5

6

HR
(%

)

25050 100 150 200

User Embedding Size

0.5

1.0

1.5

2.0

2.5

M
RR

(%
)

(b)

25050 100 150 200

User Embedding Size

1

2

3

ND
CG

(%
)

1 62 3 4 5

Sequence Length

5.4

5.6

5.8

6.0

HR
(%

)

1 62 3 4 5

Sequence Length

2.15

2.20

2.25

2.30

2.35

M
RR

(%
)

(c)

1 62 3 4 5

Sequence Length

2.9

3.0

3.1

3.2

ND
CG

(%
)

Fig. 5. The sensitivity of CSSR performance to hyperparameters (a) repository em-
bedding size; (b) user embedding size; (c) sequence length (L).

5.5 Impact of Data Sparsity

We compare CSSR and all the baselines at different levels of data sparsity. The
aim is to evaluate the solution applied in CSSR for mitigating the issue of sparse
data. Since each user has at least 3 repositories and a repository has at least one
user, we delete at most 14,081 interactions in our dataset to simulate different
settings of sparsity. Table 2 shows the performance of all the methods at three
levels of sparsity, i.e., deleting all/half of/none of the 14081 interactions respec-
tively. We set N=10, and adopt all repositories in the training set that a user
has interacted with to train the model in the first two sparsity levels, i.e., the
repository sequence length L is not fixed. From Table 2, we have the following
observations. (1) The performance of all the methods gets worse and worse when
the data sparsity changes from 0.268% to 0.182% and then to 0.096%. (2) Com-
pared with all the baselines except Pop, the impact of data sparsity on CSSR
is much weaker. CSSR can have much more stable performance than the other
methods except Pop, and achieve more significant improvements against the best
baseline in the sparser data set. (3) Although the impact of data sparsity on Pop
is weaker than CSSR, the performance of Pop is very poor among baselines. In
short, our model achieves the best performance and demonstrates robustness in
the situation of data sparsity.

5.6 Sensitivity of Hyperparameters

The size of initial repository embeddings, the size of user embeddings, and the
sequence length L are the three important hyperparameters in our model. In
this study, we further investigate the impact of the three hyperparameters on

Context-Aware Sequential Software Service Recommendation 15

the recommendation performance. We set N=10. Fig. 5 (a) illustrates the effect
of the initial repository embedding size (i.e., the size of graph embeddings). We
can see that our CSSR would achieve the best performance when the graph
embedding size is 140. Fig. 5 (b) illustrates the effect of the user embedding size
(i.e., the size of hidden state in the GRU model). We can see that CSSR would
achieve the best performance when the user embedding size is 32 or 64. Fig. 5
(c) illustrates the effect of the sequence length L. We can see that CSSR would
achieve the best performance when it equals 4.

6 Conclusion

This paper presented a context-aware sequential software service recommenda-
tion model—CSSR. It can recommend repositories on GitHub matching users’
interests. CSSR is a joint model that incorporates a graph embedding technique
into a GRU formulation to generate latent vectors of users and repositories.
Specifically, graph embedding technique is leveraged to exploit rich repository
contextual information to alleviate the data sparsity problem. The context-aware
latent vectors of repositories are then fed into a GRU model, which captures the
dynamics of user preference and eventually recommend repositories to users.
The results of extensive experiments show that our method can significantly
outperform the existing state-of-the-art repository recommender models in var-
ious aspects.

Acknowledgements. This work is partially supported by Australian Research Coun-
cil Linkage Project (No.LP180100750) and Discovery Project (No.DP210100743).

References

1. Chen, L., Zheng, A., Feng, Y., Xie, F., Zheng, Z.: Software service recommendation
base on collaborative filtering neural network model. In: Proceedings of ICSOC.
pp. 388–403. Springer (2018)

2. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties
of neural machine translation: Encoder-decoder approaches. In: Proceedings of
SSST@EMNLP. pp. 103–111. Association for Computational Linguistics (2014)

3. Deng, S., Wu, H., Tan, W., Xiang, Z., Wu, Z.: Mobile service selection for compo-
sition: An energy consumption perspective. IEEE Trans Autom. Sci. Eng. 14(3),
1478–1490 (2017)

4. GitHub: The state of the octoverse (2020), https://octoverse.github.com/
5. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-

tions with recurrent neural networks. In: Proceedings of ICLR. pp. 1–10 (2016)
6. Jiang, J., Cheng, P., Wang, W.: Open source repository recommendation in social

coding. In: Proceedings of SIGIR. pp. 1173–1176. ACM (2017)
7. Juan, Y., Zhuang, Y., Chin, W., Lin, C.: Field-aware factorization machines for

CTR prediction. In: Proceedings of RecSys. pp. 43–50. ACM (2016)
8. Ma, Y., Wang, S., Yang, F., Chang, R.N.: Predicting qos values via multi-

dimensional qos data for web service recommendations. In: Proceedings of ICWS.
pp. 249–256. IEEE (2015)

https://octoverse.github.com/

16 M. Zhang et al.

9. McMillan, C., Grechanik, M., Poshyvanyk, D.: Detecting similar software applica-
tions. In: Proceedings of ICSE. pp. 364–374. IEEE (2012)

10. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian
personalized ranking from implicit feedback. In: Proceedings of UAI. pp. 452–461.
AUAI Press (2009)

11. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
markov chains for next-basket recommendation. In: Proceedings of WWW. pp.
811–820. ACM (2010)

12. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative fil-
tering recommendation algorithms. In: Proceedings of WWW. pp. 285–295. ACM
(2001)

13. Shao, H., Sun, D., Wu, J., Zhang, Z., Zhang, A., Yao, S., Liu, S., Wang, T., Zhang,
C., Abdelzaher, T.F.: paper2repo: Github repository recommendation for academic
papers. In: Proceedings of WWW. pp. 629–639. ACM / IW3C2 (2020)

14. Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., Jiang, P.: Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In:
Proceedings of CIKM. pp. 1441–1450. ACM (2019)

15. Sun, X., Xu, W., Xia, X., Chen, X., Li, B.: Personalized project recommendation
on github. Sci. China Inf. Sci. 61(5), 1–14 (2018)

16. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of KDD. pp. 1225–1234. ACM (2016)

17. Xie, F., Li, S., Chen, L., Xu, Y., Zheng, Z.: Generative adversarial network based
service recommendation in heterogeneous information networks. In: Proceedings
of ICWS. pp. 265–272. IEEE (2019)

18. Xie, R., Qiu, Z., Rao, J., Liu, Y., Zhang, B., Lin, L.: Internal and contextual
attention network for cold-start multi-channel matching in recommendation. In:
Proceedings of IJCAI. pp. 2732–2738. ijcai.org (2020)

19. Xu, W., Cao, J., Hu, L., Wang, J., Li, M.: A social-aware service recommendation
approach for mashup creation. In: Proceedings of ICWS. pp. 107–114. IEEE (2013)

20. Yao, L., Sheng, Q.Z., Ngu, A.H.H., Yu, J., Segev, A.: Unified collaborative and
content-based web service recommendation. IEEE Trans. Serv. Comput. 8(3), 453–
466 (2015)

21. Zhou, Y., Wu, J., Sun, Y.: Ghtrec: A personalized service to recommend github
trending repositories for developers. In: Proceedings of ICWS. IEEE (2021)

	CSSR: A Context-Aware Sequential Software Service Recommendation Model

