
LogDP: Combining Dependency and Proximity
for Log-based Anomaly Detection

Yongzheng Xie1, Hongyu Zhang2, Bo Zhang3, Muhammad Ali Babar1, and
Sha Lu4

1 The University of Adelaide, Australia
{yongzheng.xie,ali.babar}@adelaide.edu.au

2 The University of Newcastle, Australia hongyu.zhang@newcastle.edu.au
3 The University of Newcastle, Australia c3288930@uon.edu.au

4 University of South Australia, Australia sha.lu@mymail.unisa.edu.au

Abstract. Log analysis is an important technique that engineers use
for troubleshooting faults of large-scale service-oriented systems. In this
study, we propose a novel semi-supervised log-based anomaly detection
approach, LogDP, which utilizes the dependency relationships among
log events and proximity among log sequences to detect the anomalies
in massive unlabeled log data. LogDP divides log events into dependent
and independent events, then learns normal patterns of dependent events
using dependency and independent events using proximity. Events violat-
ing any normal pattern are identified as anomalies. By combining depen-
dency and proximity, LogDP is able to achieve high detection accuracy.
Extensive experiments have been conducted on real-world datasets, and
the results show that LogDP outperforms six state-of-the-art methods.

Keywords: Log analysis · log-based anomaly detection · dependency-
based anomaly detection · system operation and maintenance

1 Introduction

Modern software-intensive systems, including service-oriented systems, have be-
come increasingly large and complex. While these systems provide users with
rich services, they also bring new challenges to system operation and mainte-
nance. One of the challenges is to identify faults and discover potential risks by
analyzing a massive amount of log data. Logs are composed of semi-structured
texts, i.e., log messages. Log analysis is one of the main techniques that engineers
use for troubleshooting faults and capturing potential risks. When a fault occurs,
checking system logs helps to efficiently detect and locate the fault. However,
with the increase in scale and complexity, manual identification of abnormal logs
from massive log data has become infeasible.

During the past decade, many automated log analysis approaches, includ-
ing supervised, semi-supervised, and unsupervised approaches, have been pro-
posed to detect system anomalies reflected by logs [1–5]. Although supervised
approaches show promising results, the scarcity of labeled anomalous log data is

ar
X

iv
:2

11
0.

01
92

7v
1

 [
cs

.S
E

]
 5

 O
ct

 2
02

1

2 Y. Xie et al.

a daunting issue. In contrast, unsupervised and semi-supervised approaches have
a significant advantage in that no labeled anomalous data are needed. However,
the existing unsupervised and semi-supervised methods have low accuracy.

In this paper, we propose a log anomaly detection method, LogDP, which
simultaneously utilizes both dependency among log events and proximity among
log sequences to detect anomalous log sequences. LogDP first discovers the nor-
mal patterns for logs, then identifies the log sequences that violate these pat-
terns as anomalies. There are two types of normal patterns, dependency patterns
(DPs) and proximity patterns (PPs). DPs are related to the events that have
dependency relationships with other events, and PPs are for the events that are
independent of other events. To find the DP of an event, LogDP trains a pre-
dictive model to predict this event using some other events as predictors. Here,
we name the log event to be predicted as the focused event, and the predictor
events as the related events of the focused event. To find the PP of an event,
a mean prediction model is trained to use the mean value of the event as the
expected value of the event. When detecting anomalies, given a log sequence,
its expected values on all log events are predicted using the learned models, and
the differences between the observed values and expected values are calculated,
named pattern deviations, which indicate the degree of the log sequence deviat-
ing from their corresponding normal dependency. If any pattern deviations are
beyond normal ranges, i.e., the normal patterns are violated, the log sequence is
flagged as an anomaly.

In summary, our main contributions in this work are as follows:

– We propose LogDP, a novel log-based anomaly detection method, which
utilizes dependency among log events and proximity among log sequences
at the same time. To our best knowledge, we are the first to introduce the
dependency-based anomaly detection techniques in the field of log analysis.

– We experimentally demonstrate the effectiveness of the proposed method
on seven settings of three widely-used log datasets. The empirical experi-
ments show that the proposed approach can outperform the state-of-the-art
unsupervised and semi-supervised log-based anomaly detection methods.

2 The LogDP Method

In this section, we first explain log preprocessing, and then present the LogDP
method. The LogDP method consists of two phases, the training phase and the
test phase. In the training phase, for each log event, LogDP trains an expected
value prediction model and produces the corresponding threshold. In the test
phase, the trained prediction modes and thresholds are used to determine if a
log sequence is an anomaly or not.

2.1 Log Preprocessing

Logs are usually semi-structured texts, which are used to record the status of
systems. Each log message consists of a constant part (log event) and a variable

Combining Dependency and Proximity for Log-based Anomaly Detection 3

(a) A snippet of log parsing. (b) An ECM.

Fig. 1: Log preprocessing.

part (log parameter). Log parsers [6–8] can parse log messages into log events,
which are the templates of the log messages. Figure 1a shows a snippet of raw
logs and the results after they are parsed.

Log messages can be grouped into log sequences (i.e., series of log events that
record specific execution flows) according to sessions or time windows. Session-
based log partition often utilizes certain log identifiers to generate log sequences.
When using time windows to partition logs, two types of strategies are usually
used, i.e., fixed window and sliding window. Fixed window strategy uses a prede-
fined window size, e.g., 1 hour, to produce log sequences, while sliding windows
strategy generates log sequences using overlapping between two consecutive fixed
windows. For each log sequence, the occurrences of the events are counted, re-
sulting in an Event Count Matrix (ECM). For example, an ECM is shown in
Figure 1b, where cij indicates the number of occurrences of eventj in sequencei,
namely instanceij .

The notation used in this paper is as follows. We use a boldfaced upper case
letter, e.g. X to denote a matrix; a boldfaced lower case letter, e.g. e, for a vector;
a lower case letter, e.g. c, for a scalar. We have reserved X ∈ Rn×m for an ECM
with n log sequences and m log events. E = {E1, · · · , Em} represents the set
of log events of X and E is a log event, i.e., E ∈ E. A log sequence is denoted
as c = {c1, · · · , cm}, where c is a log instance, i.e., the occurrences count of an
event in c. The log instance of event Ej in sequence ci is represented as cij .

2.2 The Training Phase of LogDP

The workflow of the training phase of the LogDP method is presented in Figure
2. The inputs of the training phase are a training set Xtrain and a validation set
Xval, both of which only contain normal log sequences. Xtrain is used to train
expected value prediction models, and Xval is used to obtain the thresholds. The
training phase is composed of two steps, related event selection and prediction
model training. In the related event selection step, for each event, named focused
event, its related event is selected to be used as predictors to predict the focused
event. In the prediction model training step, two different prediction models are
trained according to if Markov blanket (MB) is found for the focused event. If
the focused event is not independent, i.e., it has MB, a Multi-Layer Perceptron
(MLP) regressor is trained to embody the dependency relationship between the
focused event and its MB. If the focused event is independent, i.e., it has not
MB found, a mean prediction model is trained. That is, DPs are learned for

4 Y. Xie et al.

Fig. 2: The workflow of the training phase of the LogDP method

dependent events using the dependency-based technique, and PPs are for inde-
pendent events using the proximity-based technique. After training the expected
value prediction models, Xval is input to obtain the corresponding thresholds.
The outputs of the training phase include a set of prediction models and their
corresponding thresholds.

Related Event Selection In this step, we aim to identify the related events
for a focused event, which are later used as predictors in a predictive model to
predict the value of a focused (independent) event.

We follow [9] to adopt a causal feature selection technique, MBs, in the
step to achieve a good prediction accuracy and efficiency. MBs are defined in
the context of a Bayesian Network (BN) [10]. A BN is a type of probabilistic
graphical model used to represent and infer the dependency among variables.
In the context of log analysis, variables correspond to log events. A BN can
be denoted as a pair of (G,P), where G is a Directed Acyclic Graph (DAG)
showing the structure of the BN, and P is the joint probability of the nodes in
G. Specifically, G = (E,A), where E is the set of nodes representing the random
variables in the domain under consideration, and A ⊆ E × E is the set of arcs
representing the dependency among the nodes. E1 ∈ E is known as a parent
of E2 ∈ E (or E2 is a child of E1) if there exists an arc E1 → E2. For any
variable E ∈ E in a BN, its MB contains all the children, parents, and spouses
(other parents of the children) of E, denoted as MB(E). Given MB(E), E is
conditionally independent of all other variables in E, i.e.,

P (E|MB(E)) = P (E|MB(E),S) (1)

where S = E \ ({E} ∪MB(E)).
According to Equation 1, MB(E) represents the information needed to es-

timate the probability of E by making E irrelevant to the remaining variables,
which makes MB(E) is the minimal set of relevant variables to obtain the com-
plete dependency of E. The study in [9] has shown that using MBs as related
variables could achieve better performance than other choices of related events.

Dependency Model Training The goal of the step is to train expected value
prediction models. As shown in Figure 2, after learning MBs in the first step,

Combining Dependency and Proximity for Log-based Anomaly Detection 5

events are categorized into two groups, independent events, i.e., events have no
MB, and dependent events, i.e., events have MB. For an independent event, the
expected value is predicted as the mean of the instances of the event in the
training set. For a dependent event, an MLP regressor is trained to predict the
expected value of E using MB(E) as predictors. Theoretically, any regression
model could be used for the step, and several regression models, such as regres-
sion trees, linear regression and SVM regressors, have been adopted in exiting
dependency-base anomaly detection techniques. We chose MLP as the depen-
dency model because it could deal with more complex data distribution and
shows better performance than other regression models in our experiments.

In LogDP, we consider both dependent and independent log events in anomaly
detection because it is common that some anomalous messages are printed to
system logs only when anomalies occur. These anomalous log messages usu-
ally have no dependency on other log events. If this case is not included in
the anomaly detection, a lot of anomalies could be missed. As these anomalous
events only occur when anomalies happen, they are unlikely presented in normal
log sequences, which is the reason that LogDP detects them by examining the
deviation from the mean of values of normal sequences.

To obtain the threshold, a validation set Xval with normal log sequences
is input into the learned expected value prediction models to get the expected

value of the validation set, i.e., X̂
val

. The deviation matrix of Xval are calculated

as D = |Xval − X̂
val
|. Then, for each event, its threshold is calculated as the

maximum value of the deviations of the event, i.e., ti = maximum(D∗i), where
D∗i is the j-th column of D.

2.3 The Test Phase of LogDP

The goal of the test phase is to use the learned models and thresholds to detect
anomalies. Given a log sequence c = {ci, · · · , cm}, the expected value of each
instance ci ∈ c is predicted by corresponding prediction model. Then, the devi-
ation is calculated as δ = |ci − ĉi|. If δ > ti, then c is flagged as an anomaly. c
is considered to be normal only if it follows all the normal patterns.

3 Evaluation

Datasets Three public log datasets, HDFS, BGL and Spirit, are used in our
experiments, which are available from [11]. From the three datasets, we generate
seven datasets using different log grouping strategies. The HDFS is generated
using session, and BGL and Spirit are generated using 1-hour logs, 100 logs, and
20 logs windows. The names of the datasets of BGL and Spirit are denoted as
Dataset-Window, e.g., BGL-100logs as shown in Table 1.

For LogDP, the first 2/3 sequences of the training set are used for training,
and the remaining 1/3 sequences are used as a validation set.

6 Y. Xie et al.

Table 1: Overview of datasets used in the experiments.

Datasets #Evt Window
Training Set Test Set

#Seq #Anom. %Anom. #Seq #Anom. %Anom.

HDFS 29 session 287,530 8,419 2.93% 287,531 8,419 2.93%

1 hour 3,673 495 13.48% 1,481 170 11.48%

BGL 980 100 logs 37,707 4,009 10.63% 9,426 816 8.66%

20 logs 188,539 17,252 9.15% 47,134 3,005 6.38%

1 hour 1,751 1,213 69.27% 585 225 38.46%

Spirit 1,229 100 logs 79,999 20,598 25.75% 19,999 429 2.15%

20 logs 399,999 82,002 20.50% 99,999 498 0.50%

1 #Evt: number of events; #Seq: number of sequences; #Anom.: number of
anomalies; %Anom.: percentage of anomalies.

Benchmark Methods Six state-of-the-art log-based anomaly detection meth-
ods are selected as the benchmark methods, including three proximity-based
methods, PCA [12], OneClassSVM [13] (OCSVM), LogCluster [14]; a sequential-
based methods, DeepLog [4]; and two invariant relation-based methods, Invariant
Mining [1] (IM) and ADR [3]. The description of the benchmark methods can
be found in Section 4.

Experimental Results The experimental results (in precision, recall and F1)
of LogDP and benchmark methods are presented in Table 2. The best results are
in boldface. Overall, LogDP produces superior results comparing to benchmark
methods. Out of 7 datasets, LogDP achieves all the best results in F1; five best
results in precision; two best results in recall.

As for different strategies of log partitioning, i.e., session (for HDFS) or
time window (for BGL and Spirit), LogDP performs well with both strategies.
In contrast, as IM, ADR and DeepLog are designed to be more suitable for
session-based log partitioning, they yield good results on the HDFS dataset but
relatively poor results on other datasets. Compared to the benchmark methods
based on proximity-based anomaly detection techniques, i.e., PCA, OCSVM and
LogCluster, LogDP produces significantly better results on all datasets except for
the precision of PCA on the HDFS dataset. In summary, the experiments have
shown the superior performance of LogDP on different datasets with different
log partition strategies.

4 Related Work

Log-based anomaly detection has been intensively studied in recent decades.
In terms of the techniques used for anomaly detection, the existing approach
can be roughly categorized into proximity-based, sequential-based, and relation-
based approaches. Proximity-based methods, such as PCA (Principal Compo-
nent Analysis) [12] and LogCluster [14], cast a log event sequence, as a point in

Combining Dependency and Proximity for Log-based Anomaly Detection 7

Table 2: Experimental results of LogDP and benchmark methods.

Dataset Metrics LogDP PCA OCSVM LogCluster DeepLog IM ADR

HDFS-session
F1 0.987 0.790 0.068 0.800 0.945 0.943 0.974

Precision 0.979 0.980 0.035 0.870 0.958 0.893 0.951
Recall 0.995 0.670 0.940 0.740 0.933 1.000 1.000

BGL-1hour
F1 0.789 0.170 0.393 0.147 0.596 0.490 0.547

Precision 0.935 0.352 0.383 0.009 0.474 0.343 0.377
Recall 0.682 0.112 0.403 0.394 0.802 0.859 1.000

BGL-100logs
F1 0.539 0.130 0.132 0.243 0.378 0.387 0.250

Precision 0.858 0.440 0.075 0.147 0.321 0.324 0.143
Recall 0.393 0.076 0.556 0.705 0.461 0.482 0.987

BGL-20logs
F1 0.460 0.237 0.168 0.226 0.224 0.203 0.204

Precision 0.985 0.447 0.094 0.129 0.126 0.163 0.114
Recall 0.300 0.162 0.744 0.884 0.981 0.269 0.988

Spirit-1hour
F1 0.821 0.187 0.601 0.367 0.582 0.387 0.792

Precision 0.697 0.312 0.742 0.324 0.412 0.678 0.656
Recall 1.000 0.133 0.505 0.422 0.991 0.271 1.000

Spirit-100logs
F1 0.575 0.111 0.003 0.110 0.153 0.107 0.445

Precision 0.405 0.094 0.002 0.152 0.087 0.057 0.287
Recall 0.993 0.135 0.023 0.086 0.643 0.993 0.994

Spirit-20logs
F1 0.905 0.095 0.009 0.173 0.135 0.032 0.558

Precision 0.835 0.051 0.005 0.150 0.191 0.016 0.387
Recall 0.988 0.639 0.057 0.205 0.104 0.974 0.999

a feature space and utilize distances or density metrics to evaluate the proximity
of the log sequence with others. The sequences far from the others are flagged as
anomalies. Sequential-based methods, such as DeepLog [4] and LogAnomaly [5],
use sequences of the log events to train models and try to predict future events.
The log sequences that do not comply with the predicted sequential patterns are
identified as anomalies. Relation-based methods such as Invariants Mining [1]
and ADR [3], try to find meaningful relations among the log events and use
the relations to detect anomalies. As a relation-based method, LogDP is more
flexible than the existing ones. Existing relation-based methods [1, 3] are based
on the invariant relationships among log events. Invariant relations refer to the
linear relationships among log events that are related to the program workflows.
However, there are two limitations in the existing invariant relation-based meth-
ods: (1) the mined relations are sensitive to data noise; (2) the mined relations
are restricted to linear relations among the events. In contrast, LogDP utilizes
the probabilistic relationships among log events, which makes it less sensitive
to data noise. LogDP also adopts MLP regressors as dependency models, which
can deal with both linear and non-linear relationships.

5 Conclusion

We have proposed a log-based anomaly detection method, LogDP, which uti-
lizes the deviations from normal patterns to effectively detect anomalous log
sequences. LogDP divides log events into two types, dependent events and in-
dependent events. For dependent events, the normal patterns are learned from

8 Y. Xie et al.

the probabilistic relationship among an event and its MB, i.e., the dependency
among events. For independent events, the normal patterns are obtained from
the mean prediction models, i.e., the proximity among sequences. The log se-
quences that violate any normal pattern are identified as anomalies. Our ex-
perimental results show that LogDP outperforms the state-of-the-art bench-
mark methods. Our source code and experimental data are available at: https:
//github.com/ilwoof/LogDP.

6 Acknowledgments

This research was supported by an Australian Government Research Training
Program (RTP) Scholarship, and by the Australian Research Council’s Discovery
Projects funding scheme (project DP200102940). The work was also supported
with super-computing resources provided by the Phoenix High Powered Com-
puting (HPC) service at the University of Adelaide.

References

1. J. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining invariants from console logs for
system problem detection. In USENIX Annual Technical Conference, 2010.

2. S. He, J. Zhu, P. He, and M. Lyu. Experience report: System log analysis for
anomaly detection. In ISSRE, pages 207–218. IEEE, 2016.

3. Bo Zhang, Hongyu Zhang, Pablo Moscato, and Aozhong Zhang. Anomaly detection
via mining numerical workflow relations from logs. In SRDS. IEEE, 2020.

4. M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection and di-
agnosis from system logs through deep learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017.

5. W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao,
P. Sun, et al. Loganomaly: Unsupervised detection of sequential and quantitative
anomalies in unstructured logs. In IJCAI, volume 19, pages 4739–4745, 2019.

6. P. He, J. Zhu, Z. Zheng, and M. Lyu. Drain: An online log parsing approach with
fixed depth tree. In ICWS. IEEE, 2017.

7. Min Du and Feifei Li. Spell: Streaming parsing of system event logs. In IEEE
ICDM, pages 859–864. IEEE, 2016.

8. H. Dai, H. Li, C. Chen, W. Shang, and T. Chen. Logram: Efficient log parsing
using n-gram dictionaries. IEEE Transactions on Software Engineering, 2020.

9. S. Lu, L. Liu, J. Li, T. D. Le, and J. Liu. Lopad: A local prediction approach to
anomaly detection. Advances in Knowledge Discovery and Data Mining, 2020.

10. Judea Pearl. Causality: models, reasoning and inference. Springer, 2000.
11. He S., Zhu J., He P., and R. Lyu M. Loghub: A large collection of system log

datasets towards automated log analytics. arXiv e-prints, 2020.
12. W. Xu, L. Huang, A. Fox, D. Patterson, and M. I Jordan. Detecting large-scale

system problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 117–132, 2009.

13. B. Schölkopf, J. C Platt, John S-T., A. J Smola, and R. C Williamson. Estimating
the support of a high-dimensional distribution. Neural computation, 2001.

14. Q. Lin, H. Zhang, J. Lou, Yu Zhang, and X. Chen. Log clustering based problem
identification for online service systems. In ICSE-C. IEEE, 2016.

https://github.com/ilwoof/LogDP
https://github.com/ilwoof/LogDP

	LogDP: Combining Dependency and Proximity for Log-based Anomaly Detection

