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Abstract. Independent cascade (IC) model is a widely used influence
propagation model for social networks. In this paper, we incorporate the
concept and techniques from causal inference to study the identifiabil-
ity of parameters from observational data in extended IC model with
unobserved confounding factors, which models more realistic propaga-
tion scenarios but is rarely studied in influence propagation modeling
before. We provide the conditions for the identifiability or unidentifiabil-
ity of parameters for several special structures including the Markovian
IC model, semi-Markovian IC model, and IC model with a global un-
observed variable. Parameter identifiability is important for other tasks
such as influence maximization under the diffusion networks with unob-
served confounding factors.

Keywords: influence propagation · independent cascade model · iden-
tifiability · causal inference.

1 Introduction

Extensive research has been conducted studying the information and influence
propagation behavior in social networks, with numerous propagation models and
optimization algorithms proposed (cf. [15,2]). Social influence among individuals
in a social network is intrinsically a causal behavior — one’s action or behavior
causes the change of the behavior of his or her friends in the network. Therefore,
it is helpful to view influence propagation as a causal phenomenon and apply
the tools in causal inference to this domain.

In causal inference, one key consideration is the confounding factors caused
by unobserved variables that affect the observed behaviors of individuals in the
network. For example, we may observe that user A adopts a new product and a
while later her friend B adopts the same new product. This situation could be
because A influences B and causes B’s adoption, but it could also be caused by an
unobserved factor (e.g. an unknown information source) that affects both A and
B. Confounding factors are important in understanding the propagation behavior
in networks, but so far the vast majority of influence propagation research does
not consider confounders in network propagation modeling. In this paper, we

ar
X

iv
:2

10
7.

04
22

4v
2 

 [
cs

.S
I]

  1
7 

Se
p 

20
21



2 Shi Feng and Wei Chen

intend to fill this gap by explicitly including unobserved confounders into the
model, and we borrow the research methodology from causal inference to carry
out our research.

Causal inference research has developed many tools and methodologies to
deal with such unobserved confounders, and one important problem in causal
inference is to study the identifiability of the causal model, that is, if we can
identify the certain effect of an intervention, or identify causal model param-
eters, from the observational data. In this paper, we introduce the concept of
identifiability in causal inference research to influence propagation research and
study whether the propagation models can be identified from observational data
when there are unobserved factors in the causal propagation model. We propose
the extend the classical independent cascade (IC) model to include unobserved
causal factors, and consider the parameter identifiability problem for several
common causal graph structures. Our main results are as follows. First, for the
Markovian IC model, in which each unobserved variable may affect only one
observed node in the network, we show that it is fully identifiable. Second, for
the semi-Markovian IC model, in which each unobserved variable may affect ex-
actly two observed nodes in the network, we show that as long as a local graph
structure exists in the network, then the model is not parameter identifiable.
For the special case of a chain graph where all observed nodes form a chain and
every unobserved variable affect two neighbors on the chain, the above result
implies that we need to know at least n/2 parameters to make the rest parame-
ters identifiable, where n is the number of observed nodes in the chain. We then
show a positive result that when we know n parameters on the chain, the rest
parameters are identifiable. Third, for the global hidden factor model where we
have an unobserved variable that affects all observed nodes in the graph, we
provide reasonable sufficient conditions so that the parameters are identifiable.

Overall, we view that our work starts a new direction to integrate rich re-
search results from network propagation modeling and causal inference so that
we could view influence propagation from the lens of causal inference, and ob-
tain more realistic modeling and algorithmic results in this area. For example,
from the causal inference lens, the classical influence maximization problem [15]
of finding a set of k nodes to maximize the total influence spread is really a
causal intervention problem of forcing an intervention on k nodes for their adop-
tions, and trying to maximize the causal effect of this intervention. Our study
could give a new way of studying influence maximization that works under more
realistic network scenarios encompassing unobserved confounders.

2 Related Work

Influence Propagation Modeling. As described in [2], the main two mod-
els used to describe influence propagation are the independent cascade model
and the linear threshold model. Past researches on influence propagation mostly
focused on influence maximization problems, such as [15,22]. In these articles,
they select seed nodes online, observe the propagation in the network, and opti-
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mize the number of activated nodes after propagation by selecting optimal seed
nodes. Also, some works are studying the seed-node set minimization problem,
such as [11]. However, in our work, we mainly consider restoring the parame-
ters in the independent cascade model by observing the network propagation.
After obtaining the parameters in the network, we can then base on this to ac-
complish downstream tasks including influence maximization and seed-node set
minimization.

Causal Inference and Identifiability. For general semi-Markovian Bayesian
causal graphs, [13] and [21] have given two different algorithms to determine
whether a do effect is identifiable, and these two algorithms have both soundness
and correctness. [14] also proves that the ID algorithm and the repeating use of
the do calculus are equivalent, so for semi-Markovian Bayesian causal graphs,
the do calculus can be used to compute all identifiable do effects.

In addition, for a special type of causal model, the linear causal model, arti-
cles [4] and [8] have given some necessary conditions and sufficient conditions on
whether the parameters in the graph are identifiable with respect to the structure
of the causal graph. However, the necessary and sufficient condition for param-
eter identifiability problem is not addressed and it remains an open question. In
this paper, we study another special causal model derived from the IC model.
Since the IC model can be viewed as a Bayesian causal model when the graph
structure is a directed acyclic graph and it has some special properties, we try
to give some necessary conditions and sufficient conditions for the parameters
to be identifiable under some special graph structures.

3 Model and Problem Definitions

Following the convention in causal inference literature (e.g. [19]), we use capital
letters (U, V,X, . . .) to represent variables or a set of variables, and their corre-
sponding lower-case letters to represent their values. For a directed graph, we
use U ’s and V ’s to represent nodes since each node will also be treated as a
random variable in causal inference. For a node Vi, we use N+(Vi) and N−(Vi)
to represent the set of its out-neighbors and in-neighbors, respectively. When
the graph is directed acyclic (DAG), we refer to a node’s in-neighbors as its
parents and denote the set as Pa(Vi) = N−(Vi). When we refer to the actual
values of the parent nodes of Vi, we use pa(Vi). For a positive integer k, we use
[k] to denote {1, 2, . . . , k}. We use boldface letters to represent vectors, such as
r = (r1, r2, . . . , rn) = (ri)i∈[n].

The classical independent cascade model [15] of influence diffusion in a social
network is modeled as follows. The social network is modeled as a directed graph
G = (V,E), where V = {V1, V2, · · · , Vn} is the set of nodes representing individ-
uals in the social network, and E ⊆ V ×V is the set of directed edges representing
the influence relationship between the individuals. Each edge (Vi, Vj) ∈ E is as-
sociated with an influence probability p(i, j) ∈ (0, 1] (we assume that p(i, j) = 0
if (Vi, Vj) /∈ E). Each node is either in state 0 or state 1, representing the idle
state and the active state, respectively. At time step 0, a seed set S0 ⊆ V of
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nodes is selected and activated (i.e. their states are set to 1), and all other nodes
are in state 0. The propagation proceeds in discrete time steps t = 1, 2, . . .. Let
St denote the set of nodes that are active by time t, and let S−1 = ∅. At any time
t = 1, 2, . . ., the newly activated node Vi ∈ St−1\St−2 tries to activate each of its
inactive outgoing neighbors Vj ∈ N+(Vi), and the activation is successful with
probability p(i, j). If successful, Vj is activated at time t and thus Vj ∈ St. The
activation trial of Vi on its out-neighbor Vj is independent of all other activation
trials. Once activated, nodes stay as active, that is, St−1 ⊆ St. The propagation
process ends at a step when there are no new nodes activated. It easy to see that
the propagation ends in at most n− 1 steps, so we use Sn−1 to denote the final
set of active nodes after the propagation.

Influence propagation is naturally a result of causal effect — one node’s ac-
tivation causes the activation of its outgoing neighbors. If the graph is directed
and acyclic, then the IC model on this graph can be equated to a Bayesian
causal model. In fact, we can consider each node in the IC model as a vari-
able, and for a node Vi, it takes the value determined by P (Vi = 1|pa(Vi)) =
1−

∏
j:Vj∈Pa(Vi),vj=1 in pa(Vi)

(1− pj,i). Obviously, this is equivalent to our defi-

nition in the IC model. IC model is introduced in [15] to model influence propa-
gation in social networks, but in general, it can model the causal effects among
binary random variables. In this paper, we mainly consider the directed acyclic
graph (DAG) setting, which is in line with the causal graph setting in the causal
inference literature [19]. We will discuss the extension to general cyclic graphs
or networks in the appendix.

All variables V1, V2, . . . , Vn are observable, and we call them observed vari-
ables. They correspond to observed behaviors of individuals in the social network.
There are also potentially many unobserved (or hidden) variables that affecting
individuals’ behaviors. We use U = {U1, U2, . . .} to represent the set of unob-
served variables. In the IC model, we assume each Ui is a binary random variable
with probability ri to be 1 and probability 1 − ri to be 0, and all unobserved
variables are mutually independent. We allow unobserved variables Ui’s to have
directed edges pointing to the observed variables Vj ’s, but we do not consider
directed edges among the unobserved variables in this paper. If Ui has a directed
edge pointing to Vj , we usually use qi,j to represent the parameter on this edge.
It has the same semantics as the pi,j ’s in the classical IC model: if Ui = 1, then
with probability qi,j Ui successfully influence Vj by setting its state to 1, and with
probability 1−qi,j Vj ’s state is not affected by Ui, and this influence or activation
effect is independent from all other activation attempts on other edges. Thus,
overall, in a network with unobserved or hidden variables, we use G = (U, V,E)
to represent the corresponding causal graph, where U is the set of unobserved
variables, V is the set of observed variables, and E ⊆ (V × V ) ∪ (U × V ) is
the set of directed edges. We assume that G is a DAG, and the state of every
unobserved variable Ui is sampled from {0, 1} with parameter ri, while the state
of every observed variable Vj is determined by the states of its parents and the
parameters on the incoming edges of Vj following the IC model semantics. In
the DAG G, we refer to an observable node Vi as a root if it has no observable
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parents in the graph. Every root Vi has at least one unobserved parent. We use
vectors p, q, r to represent parameter vectors associated with edges among ob-
served variables, edges from unobserved to observed variables, and unobserved
nodes, respectively. We refer to the model M = (G = (U, V,E),p, q, r) as the
causal IC model. When the distinction is needed, we use capital letters P,Q,R
to represent the parameter names, and lower boldface letters p, q, r to represent
the parameter values.

In this paper, we focus on the parameter identifiability problem following the
causal inference literature. In the context of the IC model, the states of nodes
V = {V1, V2, . . . , Vn} are observable while the states of U = {U1, U2, . . .} are
unobservable. We define parameter identifiability as follows.

Definition 1 (Parameter Identifiability). Given a graph G = (U, V,E), we
say that a set of IC model parameters Θ ⊆ P ∪ Q ∪ R on G is identifiable if
after fixing the values of parameters outside Θ and fixing the observed probabil-
ity distributions P (V ′ = v′) for all V ′ ⊆ V and all v′ ∈ {0, 1}|V ′|, the values
of parameters in Θ are uniquely determined. We say that the graph G is pa-
rameter identifiable if Θ = P ∪ Q ∪ R. Accordingly, the algorithmic problem
of parameter identifiability is to derive the unique values of parameters in Θ
given graph G = (U, V,E), the values of parameters outside Θ, and the observed
probability distributions P (V ′ = v′) for all V ′ ⊆ V and all v′ ∈ {0, 1}|V ′|. Fi-
nally, if the algorithm only uses a polynomial number of observed probability
values P (V ′ = v′)’s and runs in polynomial time, where both polynomials are
with respect to the graph size, we say that the parameters in Θ are efficiently
identifiable.

Note that when there are no unobserved variables (except the unique un-
observed variables for each root of the graph), the problem is mainly to derive
the parameters pi,j ’s from all observed P (V ′ = v′)’s. In this case, the parameter
identifiability problem bears similarity with the well-studied network inference
problem [10,16,9,7,18,1,3,6,5,17,20,12]. The network inference problem focuses
on using observed cascade data to derive the network structure and propagation
parameters, and it emphasizes on the sample complexity of inferring parameters.
Hence, when there are no unobserved variables in the model, we could use the
network inference methods to help to solve the parameter identifiability prob-
lem. However, in real social influence and network propagation, there are other
hidden factors that affect the propagation and the resulting distribution. Such
hidden factors are not addressed in the network inference literature. In contrast,
our study in this paper is focusing on addressing these hidden factors in net-
work inference, and thus we borrow the ideas from causal inference to study the
identifiability problem under the IC model.

In this paper, we study three types of unobserved variables that could com-
monly occur in network influence propagation. They correspond to three types
of IC models with unobserved variables, as summarized below.

Markovian IC Model. In the Markovian IC model, each observed variable
Vi is associated with a unique unobserved variable Ui, and there is a directed
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edge from Ui to Vi. This models the scenario where each individual in the social
network has some latent and unknown factor that affects its observed behavior.
We use qi to denote the parameter on the edge (Ui, Vi). Note that the effect of
Ui on the activation of Vi is determined by probability ri · qi, and thus we treat
ri = 1 for all i ∈ [n], and focus on identifying parameters qi’s. Thus the graph
G = (U, V,E) has parameters q = (qi)i∈[n], and p = (pi,j)(Vi,Vj)∈E . Figure 1
shows an example of a Markovian IC model. If some qi = 0, it means that the
observed variable Vi has no latent variable influencing it, and it only receives
influence from other observed variables.

Fig. 1. A Markovian IC model
with five nodes.

Fig. 2. A Markovian IC model
with five nodes and a global un-
observed variable.

Semi-Markovian IC Model. The second type of unobserved variables is the
hidden variables connected to exactly two observed variables in the graph. In
particular, for every pair of nodes Vi, Vj ∈ V , we allow one unobserved variable
Ui,j that has two edges, one pointing to Vi and the other pointing to Vj . This
models the scenario that two individuals in the social network has a common
unobserved confounder that may affect the behavior of two individuals. We call
this type of model semi-Markovian IC model, following the common terminology
of the semi-Markovian model in the literature [19]. In this model, each Ui,j
has a parameter ri,j , and edges (Ui,j , Vi) and (Ui,j , Vj) have parameters qi,j,1
and qi,j,2 respectively. Therefore, the graph has parameters r = (ri,j)(Vi,Vj)∈E ,
q = (qi,j,1, qi,j,2)(Vi,Vj)∈E , and p = (pi,j)(Vi,Vj)∈E .

Within this model, we will pay special attention to a special type of graphs
where the observed variables form a chain, i.e. V1 → V2 → · · · → Vn, and the
unobserved variables always point to the two neighbors on the chain. In this case,
we use Ui to denote the unobserved variable associated with edge (Vi, Vi+1), and
the parameters on the edges (Ui, Vi) and (Ui, Vi+1) are denoted as qi,1 and qi,2,
respectively. Figure 3 represents this chain model.

IC Model with A Global Unobserved Variable. The third type of hidden
variables is a global unobserved variable U0 that points to all observed variables
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Fig. 3. The semi-Markovian IC chain model.

in the network. This naturally models the global causal effect where some com-
mon factor affects all or most individuals in the network. For every edge (U0, Vi),
we use q0,i to represent its parameter.

Moreover, we can combine this model with the Markovian IC model, where
we allow both unobserved variable Ui for each individual and a global unobserved
varoable U0. Figure 2 represents this model.

4 Parameter Identifiability of the Markovian IC Model

For the Markovian IC model in which every observed variable has its own un-
observed variable, we can fully identify the model parameters in most cases, as
given by the following theorem.

Theorem 1 (Identifiability of the Markovian IC Model). For an arbi-
trary Markovian IC model G = (U, V,E) with parameters q = (qi)i∈[n] and
p = (pi,j)(Vi,Vj)∈E, all the qi parameters are efficiently identifiable, and for ev-
ery i ∈ [n], if qi 6= 1, then all pj,i parameters for (Vj , Vi) ∈ E are efficiently
identifiable.

Proof. For an observed variable (node) Vi, suppose that its observed parents are
Vi1 , Vi2 , · · · , Vit . Therefore, we have

P (Vi = 0|Vi1 = 0, · · · , Vit = 0) = 1− qi, (1)

P (Vi = 0|Vij = 1, Vi1 = 0, · · · , Vij−1
= 0, Vij+1

= 0, · · · , Vit = 0) = (1− qi)(1− pij ,i). (2)

From Eq.(1), we can obtain the value of qi. Then if qi 6= 1, from Eq.(2), we
can derive the value of pij ,i. Moreover, for each root node Vi, we can get qi by
computing qi = P (Vi = 1). The computational efficiency is obvious. ut

The theorem essentially says that all parameters are identifiable under the
Markovian IC model, except for the corner case where some qi = 1. In this case,
the observed variable Vi is fully determined by its unobserved parent Ui, so we
cannot determine the influence from other observed parents of Vi to Vi. But the
influence from the observed parents of Vi to Vi is not useful any way in this
case, so the edges from the observed parents of Vi to Vi will not affect the causal
inference in the graph and they can be removed.
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5 Parameter Identifiability of the Semi-Markovian IC
Model

Following the definition in the model section, we then consider the identifiabil-
ity problem of the semi-Markovian models. We will demonstrate that in most
cases, this model is not parameter identifiable. Actually, from [21] we know that
the semi-Markovian Bayesian causal model is also not identifiable in general.
Essentially, our conclusion is not related to their result. On the other side, we
will show that with some parameters known in advance, the semi-Markovian IC
chain model will be identifiable.

5.1 Condition on Unidentifiability of the Semi-Markovian IC Model

More specifically, the following theorem shows the unidentifiability of the semi-
Markovian IC model with a special structure in it.

Theorem 2 (Unidentifiability of the Semi-Markovian IC Model). Sup-
pose in a general graph G, we can find the following structure. There are three
observable nodes V1, V2, V3 such that (V1, V2) ∈ E, (V2, V3) ∈ E and unobservable
U1, U2 with (U1, V1), (U1, V2), (U2, V2), (U2, V3) ∈ E. Suppose each of U1, U2 only
has two edges associated to it, the three nodes V1, V2, V3 can be written adjacently
in a topological order of nodes in U ∪ V . Then we can deduce that the graph G
is not parameter identifiable.

Figure 4 is an example of the structure described in the above theorem.

Fig. 4. An example of the structure in Theorem 2.

Proof (Outline). To prove that the parameters in the model with this structure
are not identifiable, we give two different sets of parameters directly. We show
that these two different sets of parameters produce the same distribution of
nodes in V , and thus the set of parameters is not identifiable by observing
only the distribution of V . The details of these two sets of parameters and the
distributions they produce are included in Appendix A. ut
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5.2 Identifiability of the Chain Model

We now consider the chain model as described in Section 3 and depicted in
Figure 3. In this structure, we present a conclusion of identifiability under the
assumption that the valuations of some parameters are our prior knowledge.

We divide the parameters of the graph into four vectors

q1 = (q1,1, q2,1, · · · , qn−1,1), q2 = (q1,2, q2,2, · · · , qn−1,2), (3)

p = (p1, p2, · · · , pn−1), r = (r1, r2, · · · , rn−1). (4)

For the chain model, our theorem below shows that once the parameters p1
is known, q2 or r is known, the set consists of remaining parameters in the chain
is efficiently identifiable.

Theorem 3 (Identifiability of the Semi-Markovian IC Chain Model).
Suppose that we have a semi-Markovian IC chain model with the graph G =

(U, V,E) and the IC parameters p = (pi)i∈[n−1], q1 = (qi,1)i∈[n−1], q2 = (qi,2)i∈[n−1]
and r = (ri)i∈[n−1], and suppose that all parameters are in the range (0, 1). If
the values of parameter p1 is known, q2 or r is known, then the remaining pa-
rameters are efficiently identifiable.

Proof (Outline). We use induction to prove this theorem. Under the assumption
that p1 is known and q2 or r is known, suppose p1, p2, · · · , pt−2, r1, r2, · · · , rt−2,
q1,1, q2,1, · · · , qt−2,1 and q1,2, q2,2, · · · , qt−2,2, rt−1qt−1,1 has been determined by
us, and we prove that qt−1,1, rt−1, pt−1, qt−1,2 and rtqt,1 can also be determined.
In fact, by the distribution of the first t nodes on the chain we can obtain three
different equations, and after substituting our known parameters, the inductive
transition can be completed. It is worthy noting that this inductive process can
also be used to compute the unknown parameters efficiently.

The proof is lengthy because of the many corner cases considered and the
need to discuss the cases t = n, t = 2 and 2 < t < n. The details of this proof
are included in Appendix B. �

According to Theorem 3 we get that the semi-Markovian chain is param-
eter identifiable in the case that n particular parameters are known. Simul-
taneously, by Theorem 2, we can show that if just less than bn+1

2 c parame-
ters are known, then this semi-Markovian chain will not be parameter identi-
fiable. Actually, if the chain model is parameter identifiable, utilizing Theorem
2, we know that for each 2 ≤ t ≤ n − 1, at least one of parameters between
pt−1, pt, rt−1, rt, qt−1,1, qt−1,2, qt,1 and qt,2 should be known. Therefore, we let
t = 2, 4, · · · , 2bn−12 c, we can deduce that at least bn−12 c should be known. For-
mally, we have the following collary of Theorem 2 and Theorem 3.

Corollary 1. For a semi-Markovian IC chain model, if no more than bn−12 c
parameters are known in advance, the remaining parameters are unidentifiable;
if it is allowed to know n parameters in advance, we can choose p1, q2 or p1, r
to be known, then the remaining parameters are identifiable.
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6 Parameter Identifiability of Model with a Global
Hidden Variable

Next, we consider the case where there is a global hidden variable in the causal
IC model, defined as those in Section 3. If there is only one hidden variable U0

in the whole model, we prove that the parameters in general in this model are
identifiable; if there is not only U0, the model is also Markovian, that is, there
are also n hidden variables U1, · · · , Un corresponding to V1, V2, · · · , Vn, then the
parameters in this model are identifiable if certain conditions are satisfied.

6.1 Observable IC Model with Only a Global Hidden Variable

Suppose the observed variables in the connected DAG graph G = (U, V,E) are
V1, V2, · · · , Vn in a topological order and there is a global hidden variable U0

such that there exists an edge from U0 to the node for each observable variable
Vi. Suppose the activating probability of U0 is r and the activating probability
from U to Vi is qi ∈ [0, 1) (naturally, q1 6= 0 and there are at least 3 of nonzero
qi’s). Now we propose a theorem according to these settings.

Theorem 4 (Identifiability of the IC Model with a Global Hidden
Variable). For an arbitrary IC model with a global hidden variable G =
(U, V,E) with parameters q = (qi)i∈[n], r and p = (pi,j)(Vi,Vj)∈E such that
qi 6= 1, pi,j 6= 1 and r 6= 1 for ∀i, j ∈ [n], all the parameters in p, r and q are
identifiable.

Proof (Outline). We discuss this problem in two cases, the first one is the
existence of two disconnected points Vi, Vj , i < j in V and qi, qj 6= 0. At this

point we can use 1 − qj =
P (V1=0,V2=0,··· ,Vi=1,Vi+1=0,··· ,Vj=0)
P (V1=0,V2=0,··· ,Vi=1,Vi+1=0,··· ,Vj−1=0) to solve out qj ,

and then use P (V1 = 0, V2 = 0, · · · , Vj = 0) and P (V1 = 0, V2 = 0, · · · , Vj−1 = 0)
to solve out r.

After getting r, by the quotients of probabilities of propagating results, we
can get all the parameters.

Another case is that there is no Vi, Vj as described above. At this point
there must exist three points Vi, Vj , Vk that are connected with each other and
qi, qj , qk 6= 0. We observe the probabilities of different possible propagating re-
sults of these three points with all other nodes are 0 after the propagation. From
these, we can solve out qi, qj , qk, and then solve out all parameters by the same
method as in the first case. ut

6.2 Markovian IC Model with a Global Hidden Variable (Mixed
Model)

Suppose the model is G = (U, V,E), where U = {U0, U1, U2, · · · , Un}, V =
{V1, V2, · · · , Vn}. Here, V1, V2, · · · , Vn are in a topological order. The parameters
are r0, q0 = (q0,i)i∈[n], q = (qi)i∈[n] and p = (pi,j)(Vi,Vj)∈E .
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Theorem 5 (Identifiability of Markovian IC Model with a Global Hid-
den Variable (Mixed Model)). For an arbitrary Markovian IC Model with
a Global Hidden Variable G = (U, V,E) with parameters r0, q0 = (q0,i)i∈[n],
q = (qi)i∈[n] and p = (pi,j)(Vi,Vj)∈E, we suppose that all the parameters are not
1. If ∃i, j, k ∈ [n], i < j < k such that each pair in Vi, Vj , Vk are disconnected
and q0,i, q0,j , q0,k 6= 0, then the parameters q0,t, qt and pt,l, l > t > k are iden-
tifiable. Moreover, if Vi, Vj , Vk can be adjacently continuous in some topological
order, i.e. j = i + 1, k = i + 2 without loss of generality, all the parameters are
identifiable.

Proof (Outline). Assuming that there exist Vi, Vj , Vk that satisfy the require-
ments of the theorem, then we can write expressions for the distribution of these
three parameters when all other nodes with subscripts not greater than l are
equal to 0. In fact, we can see that with these 8 expressions, we can solve for
P (V1 = 0, · · · , Vl = 0, U0 = 1) and P (V1 = 0, · · · , Vl = 0, U0 = 0).

Since we have P (V1 = 0, · · · , Vl = 0, U0 = 1) = r
∏l
t=1(1 − qt)(1 − q0,t) and

P (V1 = 0, · · · , Vl = 0, U0 = 0) = (1− r)
∏l
t=1(1− qt), we will be able to obtain

all the parameters very easily by dividing these equations two by two. This proof
has some trivial discussion to show that this computational method does not fail
due to corner cases. ut

Notice that the parameters in this model are identifiable when and only when
a special three-node structure appears in it. Intuitively, this is because through
this structure we can more easily obtain some information about the parameters,
which does not contradict the intuition of Theorem 2.

7 Conclusion

In this paper, we study the parameter identifiability of the independent cascade
model in influence propagation and show conditions on identifiability or uniden-
tifiability for several classes of causal IC model structure. We believe that the
incorporation of observed confounding factors and causal inference techniques is
important in the next step of influence propagation research and identifiability of
the IC model is our first step towards this goal. There are many open problems
and directions in combining causal inference and propagation research. For ex-
ample, seed selection and influence maximization correspond to the intervention
(or do effect) in causal inference, and how to compute such intervention effect
under the network with unobserved confounders and how to do influence max-
imization is a very interesting research question. In terms of identifiability, one
can also investigate the identifiability of the intervention effect, or whether given
some intervention effect one can identify more of such effects. One can also look
into identifiability in the general cyclic IC models, for which we provide some
initial discussions in Appendix E, but more investigations are needed.
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Appendix

A Proof for Unidentifiability of the Semi-Markovian IC
Model (Theorem 2)

Theorem 2 (Unidentifiability of the Semi-Markovian IC Model). Sup-
pose in a general graph G, we can find the following structure. There are three
observable nodes V1, V2, V3 such that (V1, V2) ∈ E, (V2, V3) ∈ E and unobservable
U1, U2 with (U1, V1), (U1, V2), (U2, V2), (U2, V3) ∈ E. Suppose each of U1, U2 only
has two edges associated to it, the three nodes V1, V2, V3 can be written adjacently
in a topological order of nodes in U ∪ V . Then we can deduce that the graph G
is not parameter identifiable.

Proof. To prove that the parameters are unidentifiable, we will construct two
different sets of valuations of parameters such that two distributions of values
taken by the nodes in V are the same. In fact, we assume that the parent nodes of
Vi are Vi,1, Vi,2, · · · , Vi,ti and Ui,1, · · · , Ui,si for i = 1, 2, 3. And, the parameters
are set as shown in Figure 4.

One set of parameters is that all the parameters are set to 0.5. Another set of
parameters is that all the parameters are set to be 0.5 except r1, r2, q1,1, q1,2, q2,2
and q2,3. The exceptions are set to be

r1 =
10r2 − 7

12r2 − 10
, q1,1 =

1

4r1
, (5)

q1,2 =
6r2 − 5

8r2 − 8
, q2,1 =

1

3− 2r2
, q2,2 =

1

4r2
(6)

where r2 is an arbitrary number between 1
4 and 9

14 . Then we only need to prove
that for an arbitrary distribution of the ancestors of V1, V2, V3 except U1, U2, the
distributions of V1, V2, V3 are the same for the two parameter settings. This is
because if this condition is satisfied, then the children of V1, V2, V3 will not be
affected by the differences of the parameter valuations because the parameters
determining them are the same (only the distribution of U1, U2 will change but
each of them only has two children that are in {V1, V2, V3}). In fact, we have

P (V1 = 1, V2 = 1, V3 = 1|pa(V1), pa(V2), pa(V3)) (7)

=
13 + 3P (V2 = 1|pa(V2) + 3P (V1 = 1|pa(V2)(11 + 5P (V2 = 1|pa(V2))

128
, (8)

P (V1 = 1, V2 = 1, V3 = 0|pa(V1), pa(V2), pa(V3)) =
23 + 9P (V2 = 1|pa(V2)

64
, (9)

P (V1 = 1, V2 = 0, V3 = 1|pa(V1), pa(V2), pa(V3)) (10)

=
3(1 + 5P (V1 = 1|pa(V1)))(P (V2 = 1|pa(V2))− 1)

128
, (11)

P (V1 = 0, V2 = 1, V3 = 1|pa(V1), pa(V2), pa(V3)) (12)

=
3(1− P (V1 = 1|pa(V1)))(5P (V2 = 1|pa(V2)) + 3)

64
, (13)

P (V1 = 1, V2 = 0, V3 = 0|pa(V1), pa(V2), pa(V3)) (14)
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=
3(1 + 5P (V1 = 1|pa(V1)))(1− P (V2 = 1|pa(V2)))

128
, (15)

P (V1 = 0, V2 = 1, V3 = 0|pa(V1), pa(V2), pa(V3)) (16)

=
3(1− P (V1 = 1|pa(V1)))(3 + 5P (V2 = 1|pa(V2)))

64
, (17)

P (V1 = 0, V2 = 1, V3 = 1|pa(V1), pa(V2), pa(V3)) (18)

=
3(1 + 5P (V1 = 1|pa(V1)))(1− P (V2 = 1|pa(V2)))

128
, (19)

P (V1 = 0, V2 = 0, V3 = 1|pa(V1), pa(V2), pa(V3)) (20)

=
15(1− P (V1 = 1|pa(V1)))(1− P (V2 = 1|pa(V2)))

64
, (21)

P (V1 = 0, V2 = 0, V3 = 1|pa(V1), pa(V2), pa(V3)) (22)

=
15(1− P (V1 = 1|pa(V1)))(1− P (V2 = 1|pa(V2)))

64
. (23)

Notice that these equations are only related to P (V1 = 1|pa(V1)) and P (V2 =
1|pa(V2)), so until now, we have proved that the two sets of parameters pro-
duce two same distributions for observed variables and therefore G is parameter
unidentifiable at this point. ut

B Proof for the Chain Structure (Theorem 3)

Theorem 3 (Identifiability of the Semi-Markovian IC Chain Model).
Suppose that we have a semi-Markovian IC chain model with the graph G =
(U, V,E) and the IC parameters p = (pi)i∈[n−1], q1 = (qi,1)i∈[n−1], q2 = (qi,2)i∈[n−1]
and r = (ri)i∈[n−1], and suppose that all parameters are in the range (0, 1). If
the values of parameter p1 is known, q2 or r is known, then the remaining pa-
rameters are efficiently identifiable.

Proof. In the analysis, we use the following notations. For observed nodes V1, V2,
. . . , Vt, we use V1 · · ·Vt to represent their collective states as a bit string. For a
bit string γ of length t, we write

aγ = P (V1 · · ·Vt = γ), bγ = P (V1 · · ·Vt = γ, Ut = 0),

cγ = P (V1 · · ·Vt = γ, Ut = 1).
(24)

Note that aγ is observable, but bγ and cγ are not observable.
We will use induction method to prove this result. More specifically, we

want to prove the base step that p1, r1, q1,1, q1,2 and q2,1r2 are known. More-
over, we will prove the induction step that if p1, p2, · · · , pt−2, r1, r2, · · · , rt−2,
q1,1, q2,1, · · · , qt−2,1 and q1,2, q2,2, · · · , qt−2,2, rt−1qt−1,1 are already known, we
can compute qt−1,1, rt−1, pt−1, qt−1,2 and rtqt,1 using distributions of observed
variables.

Initially, in order to complete the induction step, we divide the problem into
two cases which are t = n and 3 ≤ t ≤ n− 1.
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Firstly, if t = n, we only need to compute qt−1,1, rt−1, pt−1, qt−1,2. Actually,

we have the following relations of aγ0 and other known variables. If γ[−1] = 0,
we have

aγ0 = bγ + (1− qt−1,2)cγ

=
1− rt−1

1− qt−1,1rt−1
aγ +

rt−1(1− qt−1,1)

1− qt−1,1rt−1
(1− qt−1,2)aγ

= aγ − qt−1,2rt−1(1− qt−1,1)

1− qt−1,1rt−1
aγ

(25)

If γ[−1] = 1 and γ = β1, β[−1] = 0, we have

aγ0 = (1− pt−1)(aγ − qt−1,2cγ)

= (1− pt−1)(aγ − qt−1,2rt−1(aβ − (1− qt−1,1)(aβ − qt−2,2cβ)))
(26)

If γ[−1] = 1 and β[−1] = 1, we have

aγ0 = (1− pt−1)(aγ − qt−1,2cγ)

= (1− pt−1)

(aγ − qt−1,2rt−1(aβ − (1− pt−2)(1− qt−1,1)(aβ − qt−2,2cβ)))

(27)

We should notice that bβ , cβ are both determined by the parameters we
already know, hence, we can see the three types of recursions as functions of
qt−1,2, qt−1,2rt−1 and pt−1. We only need to prove that we can solve the three
parameters from these functions. In order to simplify the equations, we define
some notations as below where |β| = t− 2.

Co1(β) =

{
−aβ + (1− pt−2)(aβ − qt−2,2cβ) β[−1] = 1

−aβ + (aβ − qt−2,2cβ) β[−1] = 0

Co2(β) =

{
−rt−1qt−1,1(1− pt−2)(aβ − qt−2,2cβ) β[−1] = 1

−rt−1qt−1,1(aβ − qt−2,2cβ) β[−1] = 0

(28)

It is easy to verify that Co1(β) + Co2(β) = −aβ1. According to these, we have

aβ110

aβ210
=

Co1(β1)qt−1,2rt−1 + Co2(β1)qt−1,2 − Co1(β1)− Co2(β1)

Co1(β2)qt−1,2rt−1 + Co2(β2)qt−1,2 − Co1(β2)− Co2(β2)
(29)

which is equivalent to

(
Co1(β1)

aβ110
− Co1(β2)

aβ210
)qt−1,2rt−1 + (

Co2(β1)

aβ110
− Co2(β2)

aβ210
)qt−1,2

− (
Co1(β1) + Co2(β1)

aβ110
− Co1(β2) + Co2(β2)

aβ210
) = 0

(30)

To show the relation of the coefficients of qt−1,2rt−1 and qt−1,2, we prove two
lemmas at first.
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Lemma 1. For two arbitrary 0−1 string β1, β2 with the same lengths, we prove

that the equation aβ20

cβ20
= aβ11

cβ11
is impossible.

Proof. Actually, if aβ20

cβ20
= aβ11

cβ11
, we have bβ11

cβ11
= bβ20

cβ20
. We can verify that

bβ20

cβ20
=

1− rt−1
rt−1(1− qt−1,1)

=
bβ11

cβ11

=


1−rt−1

rt−1

bβ1+cβ1−((1−qt−2,2)c
β1+bβ1 )

bβ1+cβ1−(1−qt−1,1)(bβ1+(1−qt−2,2)cβ1 )
β1[−1] = 0

1−rt−1

rt−1

bβ1+cβ1−(1−pt−2)((1−qt−2,2)c
β1+bβ1 )

bβ1+cβ1−(1−pt−2)(1−qt−1,1)(bβ1+(1−qt−2,2)cβ1 )
β1[−1] = 1

(31)

which is impossible if all the terms are not zero. ut

Lemma 2. As we defined above, we have the following equation if the denomi-
nators are not zero:

Co1(β1)

aβ110
− Co1(β2)

aβ210

Co2(β1)

aβ110
− Co2(β2)

aβ210

= − qt−1,2 − 1

qt−1,2rt−1 − 1
(32)

Proof. Actually, we can compute the left hand side of Equation 2 as below:

Co1(β1)

aβ110
− Co1(β2)

aβ210

Co2(β1)

aβ110
− Co2(β2)

aβ210

=

Co1(β1)
Co1(β1)(qt−1,2rt−1−1)+Co2(β1)(qt−1,2−1) −

Co1(β2)
Co1(β2)(qt−1,2rt−1−1)+Co2(β2)(qt−1,2−1)

Co2(β1)
Co1(β1)(qt−1,2rt−1−1)+Co2(β1)(qt−1,2−1) −

Co2(β2)
Co1(β2)(qt−1,2rt−1−1)+Co2(β2)(qt−1,2−1)

=
(Co1(β1)Co2(β2)− Co1(β2)Co2(β1))(qt−1,2 − 1)

(Co1(β2)Co2(β1)− Co1(β1)Co2(β2))(qt−1,2rt−1 − 1)

= − qt−1,2 − 1

qt−1,2rt−1 − 1
(33)

So the lemma is proved. We should also notice that this lemma holds not
only for t = n, it is true for t = 2, 3, · · · , n− 1 because Co1 and Co2 are defined
the same as Equation 28. ut

Now we prove that Equation 25 and Equation 30 are two linear independent
equations for unknown variables qt−1,2rt−1 and qt−1,2. We only need to prove
that the ratio of coefficients of qt−1,2rt−1 and qt−1,2 are different in these two
equations. Because otherwise, we have
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− qt−1,2 − 1

qt−1,2rt−1 − 1
= − 1

qt−1,1rt−1
(34)

which is impossible because qt−1,1rt−1(qt−1,2 − 1) − (qt−1,2rt−1 − 1) = (1 −
qt−1,2rt−1)(1− qt−1,1rt−1) + (1− rt−1)qt−1,1qt−1,2rt−1 > 0. Until now, we have
proved that when t is equal to n, we can compute qt−1,1, rt−1, pt−1, qt−1,2 if the
other parameters are already known.

Now we consider the case that 3 ≤ t ≤ n−1, and we need to prove that if t <
n, we can use p1, p2, · · · , pt−2, r1, r2, · · · , rt−2, q1,1, q2,1, · · · , qt−2,1 and q1,2, q2,2,
· · · , qt−2,2, rt−1qt−1,1 to compute qt−1,1, rt−1, pt−1, qt−1,2 and rtqt,1. First, we
propose a lemma to illustrate the recurrence relationship of the distributions.

Lemma 3. Suppose γ is a 0−1 string with t−1 items, then we have the following
relations:

bγ1 =

{
(1− rt)(aγ − (1− pt−1)(bγ + (1− qt−1,2)cγ)) γ[−1] = 1

(1− rt)(aγ − (bγ + (1− qt−1,2)cγ)) γ[−1] = 0
(35)

bγ0 =

{
(1− rt)(1− pt−1)(bγ + (1− qt−1,2)cγ) γ[−1] = 1

(1− rt)(bγ + (1− qt−1,2)cγ) γ[−1] = 0
(36)

cγ1 =

{
rt(a

γ − (1− pt−1)(1− qt,1)(bγ + (1− qt−1,2)cγ)) γ[−1] = 1

rt(a
γ − (1− qt,1)(bγ + (1− qt−1,2)cγ)) γ[−1] = 0

(37)

cγ0 =

{
rt(1− pt−1)(1− qt,1)(bγ + (1− qt−1,2)cγ) γ[−1] = 1

rt(1− qt,1)(bγ + (1− qt−1,2)cγ) γ[−1] = 0
(38)

Moreover, we have the following relations of aγ0 and other known variables.
If γ[−1] = 0, we have

aγ0 = (1− rtqt,1)(aγ − qt−1,2rt−1(1− qt−1,1)

1− qt−1,1rt−1
aγ) (39)

If γ[−1] = 1 and γ = β1, β[−1] = 0, we have

aγ0 = (1− rtqt,1)(1− pt−1)(aγ − qt−1,2cγ)

= (1− rtqt,1)(1− pt−1)

(aγ − qt−1,2rt−1(aβ − (1− qt−1,1)(aβ − qt−2,2cβ)))

(40)

If γ[−1] = 1 and β[−1] = 1, we have

aγ0 = (1− rtqt,1)(1− pt−1)(aγ − qt−1,2cγ)

= (1− rtqt,1)(1− pt−1)

(aγ − qt−1,2rt−1(aβ − (1− pt−2)(1− qt−1,1)(aβ − qt−2,2cβ)))

(41)
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Each of these equations is only one more factor compared to the t = n case,
so we can still get the similar result

(
Co1(β1)

aβ110
− Co1(β2)

aβ210
)qt−1,2rt−1 + (

Co2(β1)

aβ110
− Co2(β2)

aβ210
)qt−1,2

− (
Co1(β1) + Co2(β1)

aβ110
− Co1(β2) + Co2(β2)

aβ210
) = 0

(42)

which is an equation of qt−1,2rt−1 and qt−1,2. Since we assume that rt−1 or qt−1,2
is known, we can get both rt−1 and qt−1,2 by this equation. Then we can get

rtqt,1 by Equation 39 using rtqt,1 = 1 − aγ0

aγ−
qt−1,2rt−1(1−qt−1,1)

1−qt−1,1rt−1
aγ

. Then all the

terms in Equation 40 except pt−1 are known and not 0, so we can get pt−1. This
completes the inductive transition.

Finally, we consider the base case. We only need to prove that if p1 is known,
one of r1 and q1,2 is known, then q1,1, r2q2,1 and the unknown one between

r1, q1,2 can be computed using a00, a01 and a10. Actually, we have the following
equations

a00 = (1− r1)(1− r2q2,1) + r1(1− q1,1)(1− q1,2)(1− r2q2,1), (43)

a10 = r1q1,1(1− q1,2)(1− r2q1,2)(1− p1), (44)

a01 = (1− r1)r2q2,1 + r1(1− q1,1)(1− (1− q1,2)(1− r2q2,1)). (45)

When we know p1 and r1, we can get the other parameters as below

q1,2 =
1− a00 − a01

r1
, (46)

r2q2,1 = ((a00)2(p1 − 1) + (1− r1)(p1 + a10 − 1)− a01(a01 − 1 + p1 + r1 − p1r1) (47)

− a00(−2 + a01 + a10 + 2p1 − a01p1 + r1 − p1r1)) (48)

/((a00 + a01 − 1)(p1 − 1)(r1 − 1)r2), (49)

q1,1 = 1 +
a10r1

(−1 + p1)q1,1(−1 + r1)r1(q2,1r2 − 1)
. (50)

When we know p1 and q1,2, we can get the other parameters as below

r1 =
1

a10q1,2
(−a00 + (a00)2 + a00a01 + a00a10 + a01a10 + a00p1 − (a00)2p1 (51)

− a00a01p1 + a00q1,2 − (a00)2q1,2 − a00a01q1,2 + a10q1,2 − a00a10q1,2 (52)

− a01a10q1,2 + (a00)2p1q1,2 + a00a01p1q1,2), (53)

q1,1 =
1− a00 − a01

r1
, (54)

r2q2,1 =
−1 + a10 + p1 + (a00 + a01)(−1 + p1)(−1 + q1,2) + q1,2 − p1q1,2

(−1 + a00 + a01)(−1 + p1)(−1 + q1,2)r2
. (55)
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Notice that all the denominators in these solutions are not 0, therefore, we have
proved the base case. Until now, we have proved the whole theorem. ut

C Proof for the Model with a Global Hidden Variable
(Theorem 4)

Theorem 4 (Identifiability of the IC Model with a Global Hidden
Variable). For an arbitrary IC model with a global hidden variable G = (U, V,E)
with parameters q = (qi)i∈[n], r and p = (pi,j)(Vi,Vj)∈E such that qi 6= 1, pi,j 6= 1
and r 6= 1 for ∀i, j ∈ [n], all the parameters in p, r and q are identifiable.

Proof. We have the following equations

P (V1 = 0, V2 = 0, · · · , Vt = 0) = (1− q1)(1− q2) · · · (1− qt)r + (1− r),

P (V1 = 0, V2 = 0, · · · , Vt = 1, Vt+1 = 0, · · · , Vt0−1 = 0)

= (1− q1)(1− q2) · · · qt(1− qt+1) · · · (1− qt0−1)r
∏

(Vt,Vi)∈E,t+1≤i<t0

(1− pt,i),

P (V1 = 0, V2 = 0, · · · , Vt = 1, Vt+1 = 0, · · · , Vt0 = 0)

= (1− q1)(1− q2) · · · qt(1− qt+1) · · · (1− qt0))r
∏

(Vt,Vi)∈E,t+1≤i<t0

(1− pt,i)

(56)

such that Vt0 is not a child of Vt. Therefore, for each pair of unconnected
nodes, if two of them Vi, Vj (i < j) satisfy qi, qj 6= 0, we can get 1 − qj =
P (V1=0,V2=0,··· ,Vi=1,Vi+1=0,··· ,Vj=0)
P (V1=0,V2=0,··· ,Vi=1,Vi+1=0,··· ,Vj−1=0) . Then we can use the following two equa-

tions to solve r:

(1− qj)(r(1− q1)(1− q2) · · · (1− qj−1)) + (1− r)
= P (V1 = 0, V2 = 0, · · · , Vj = 0),

(r(1− q1)(1− q2) · · · (1− qj−1)) + (1− r)
= P (V1 = 0, V2 = 0, · · · , Vj−1 = 0).

(57)

If we see 1 − r and r(1 − q1)(1 − q2) · · · (1 − qj−1) as two unknown variables,
they can be solved by this system of linear equations. With the value of r, we
can solve out q1, q2, · · · , qn by using P (V1 = 0, V1 = 0, · · · , Vt = 1) = (1 −
q1)(1 − q2) · · · qtr for t = 1, 2, · · · , n. For pi,j , it can be computed by 1 − pi,j =

P (V1=0,V2=0,··· ,Vi=1,Vi+1=0,··· ,Vj=0)
P (V1=0,V2=0,··· ,Vi=1,Vi+1=0,··· ,Vj=0)(1−qj) if qi 6= 0. We suppose the parents of Vj
are Vi1 , Vi2 , · · · , Vit such that i1 < i2 < · · · < it < j. Therefore, we have

P (Vi1 = 0, · · · , Vik−1
= 0, Vik = 1, Vik+1

, · · · , Vit = 0, Vj = 0)

P (Vi1 = 0, · · · , Vik−1
= 0, Vik = 1, Vik+1

, · · · , Vit = 0

= (1− qj)(1− pik,j), k = 1, 2, · · · , t
(58)

if P (Vik = 1) > 0. Hence, we can still get all the meaningful pik,j . Until now, we
have got all the parameters solved.
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Now we consider the case that 6 ∃1 ≤ i < j ≤ n such that (Vi, Vj) 6∈ E and
qi, qj 6= 0. This is equivalent to the claim that for all the Vi such that qi 6= 0,
they form a complete graph if we remove all the directions of edges. Suppose
three of them are Vi, Vj , Vk, 1 ≤ i < j < k ≤ n. Then we can get the following
equations:

P (V1 = 0, · · · , Vi−1 = 0, Vi = 1, Vi+1 = 0, · · · , Vj = 0)

P (V1 = 0, · · · , Vi−1 = 0, Vi = 1, Vi+1 = 0, · · · , Vj−1 = 0)
= (1− qj)(1− pi,j),

P (V1 = 0, · · · , Vi−1 = 0, Vi = 1, Vi+1 = 0, · · · , Vk = 0)

P (V1 = 0, · · · , Vi−1 = 0, Vi = 1, Vi+1 = 0, · · · , Vk−1 = 0)
= (1− qk)(1− pi,k),

P (V1 = 0, · · · , Vj−1 = 0, Vj = 1, Vj+1 = 0, · · · , Vk = 0)

P (V1 = 0, · · · , Vj−1 = 0, Vj = 1, Vj+1 = 0, · · · , Vk−1 = 0)
= (1− qk)(1− pj,k),

P (V1 = 0, · · · , Vi−1 = 0, Vi = 1, Vi+1 = 0, · · · , Vj−1 = 0, Vj = 1, Vj+1 = 0, · · · , Vk = 0)

P (V1 = 0, · · · , Vi−1 = 0, Vi = 1, Vi+1 = 0, · · · , Vk−1 = 0)

=
(1− qk)(1− pi,k)(1− pj,k)(1− (1− qj)(1− pi,j))

(1− qj)(1− pi,j)
.

(59)

Therefore, qi, qj , qk, pi,j , pi,k, pj,k can all be solved. Then we can use the same
procedure to get all the q1, q2, · · · , qn and then all the parameters.

In conclusion, we have solved the identifiability problem of the model with a
global hidden variable. ut

D Proof for the Mixed Model (Theorem 5)

Theorem 5 (Identifiability of Markovian IC Model with a Global Hid-
den Variable (Mixed Model)). For an arbitrary Markovian IC Model with
a Global Hidden Variable G = (U, V,E) with parameters r0, q0 = (q0,i)i∈[n],
q = (qi)i∈[n] and p = (pi,j)(Vi,Vj)∈E, we suppose that all the parameters are not
1. If ∃i, j, k ∈ [n], i < j < k such that each pair in Vi, Vj , Vk are disconnected
and q0,i, q0,j , q0,k 6= 0, then the parameters q0,t, qt and pt,l, l > t > k are iden-
tifiable. Moreover, if Vi, Vj , Vk can be adjacently continuous in some topological
order, i.e. j = i + 1, k = i + 2 without loss of generality, all the parameters are
identifiable.

Proof. In order to simplify our proof, we introduce some new notations. Suppose
we already have Vi, Vj , Vk as required in description of this theorem.

al = r

l∏
t=1

(1− qt)(1− q0,t) = P (V1 = 0, V2 = 0, · · · , Vl = 0, U0 = 1),

bl = (1− r)
l∏
t=1

(1− qt) = P (V1 = 0, V2 = 0, · · · , Vl = 0, U0 = 0),

(60)
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xi,l =
1− (1− qi)(1− q0,i)

(1− qi)(1− q0,i)
∏

(Vi,Vt)∈E,t≤l

(1− pi,t)

=
P (V1 = 0, V2 = 0, · · · , Vl = 0, U0 = 1)

P (V1 = 0, · · · , Vi−1 = 0, Vi = 1, Vi+1 = 0, · · · , Vl = 0, U0 = 1)
,

xj,l =
1− (1− qj)(1− q0,j)

(1− qj)(1− q0,j)
∏

(Vj ,Vt)∈E,t≤l

(1− pj,t)

=
P (V1 = 0, V2 = 0, · · · , Vl = 0, U0 = 1)

P (V1 = 0, · · · , Vj−1 = 0, Vj = 1, Vj+1 = 0, · · · , Vl = 0, U0 = 1)
,

xk,l =
1− (1− qk)(1− q0,k)

(1− qk)(1− q0,k)

∏
(Vk,Vt)∈E,t≤l

(1− pk,t)

=
P (V1 = 0, V2 = 0, · · · , Vl = 0, U0 = 1)

P (V1 = 0, · · · , Vk−1 = 0, Vk = 1, Vk+1 = 0, · · · , Vl = 0, U0 = 1)
,

(61)

yi,l =
qi

1− qi

∏
(Vi,Vt)∈E,t≤l

(1− pi,t)

=
P (V1 = 0, V2 = 0, · · · , Vl = 0, U0 = 1)

P (V1 = 0, · · · , Vi−1 = 0, Vi = 1, Vi+1 = 0, · · · , Vl = 0, U0 = 0)
,

yj,l =
qj

1− qj

∏
(Vj ,Vt)∈E,t≤l

(1− pj,t)

=
P (V1 = 0, V2 = 0, · · · , Vl = 0, U0 = 1)

P (V1 = 0, · · · , Vj−1 = 0, Vj = 1, Vj+1 = 0, · · · , Vl = 0, U0 = 0)
,

yk,l =
qk

1− qk

∏
(Vk,Vt)∈E,t≤l

(1− pk,t)

=
P (V1 = 0, V2 = 0, · · · , Vl = 0, U0 = 1)

P (V1 = 0, · · · , Vk−1 = 0, Vk = 1, Vk+1 = 0, · · · , Vl = 0, U0 = 0)
.

(62)

Therefore, we can easily verify that al + bl = P (V1 = 0, V2 = 0, · · · , Vl = 0) ≡
p1. Moreover, because Vi, Vj , Vk are disconnected with each other, we have the
following equations.

alxi,l + blyi,l = P (V1 = 0, · · · , Vi−1 = 0, Vi = 1, Vi+1 = 0, · · · , Vl = 0) ≡ p2,

alxj,l + blyj,l = P (V1 = 0, · · · , Vj−1 = 0, Vj = 1, Vj+1 = 0, · · · , Vl = 0) ≡ p3,

alxk,l + blyk,l = P (V1 = 0, · · · , Vk−1 = 0, Vk = 1, Vk+1 = 0, · · · , Vl = 0) ≡ p4,

alxi,lxj,l + blyi,lyj,l = P (V1V2 · · ·Vl = 0i−110j−i−110l−j) ≡ p5,

alxi,lxk,l + blyi,lyk,l = P (V1V2 · · ·Vl = 0i−110k−i−110l−k) ≡ p6,

alxk,lxj,l + blyk,lyj,l = P (V1V2 · · ·Vl = 0j−110k−j−110l−k) ≡ p7,

alxi,lxj,lxk,l + blyi,lyj,lyk,l = P (V1V2 · · ·Vl = 0i−110j−i−110k−j−110l−k) ≡ p8.

(63)
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Here, pt, t ∈ [8] are known because V1, V2, · · · , Vl are observable. Therefore, we
can solve out al, bl using the 8 equations. The result is shown as below.

al =
numerator1 ± numerator2

denominator
,

denominator = 2(−p21p28 + 2p1p2p7p8 + 2p1p3p6p8 + 2p1p4p5p8

− 4p1p5p6p7 − p22p27 − 4p2p3p4p8 + 2p2p3p6p7 + 2p2p4p5p7 − p23p26
+ 2p3p4p5p6 − p24p25),

numerator1 = 2p1
2p2p7p8 + 2p1

2p3p6p8 + 2p1
2p4p5p8 − 4p1

2p5p6p7−
p1p2

2p7
2 − 4p1p2p3p4p8 + 2p1p2p3p6p7 + 2p1p2p4p5p7 − p1p32p62

+ 2p1p3p4p5p6 − p1p42p25 − p31p28,
numerator2 =

(
p1

2p8 − p1p2p7 − p1p3p6 − p1p4p5 + 2p2p3p4
)

(p1
2p8

2 − 2p1p2p7p8 − 2p1p3p6p8 − 2p1p4p5p8 + 4p1p5p6p7 + p2
2p7

2

+ 4p2p3p4p8 − 2p2p3p6p7 − 2p2p4p5p7 + p3
2p6

2 − 2p3p4p5p6 + p4
2p5

2)
1
2 .

(64)

We can verify that

(p2p3 − p1p5)(p2p4 − p1p6)(p3p4 − p1p7) (65)

= −a3l b3l (xi,l − yi,l)2(xj,l − yj,l)2(xk,l − yk,l)2 < 0 (66)

Therefore, there is only one solution of al which is positive because

numerator21 − numerator22 (67)

= −4(p2p3 − p1p5)(p2p4 − p1p6)(p3p4 − p1p7) (68)

(p24p
2
5 − 2p3p4p5p6 + p23p

2
6 − 2p2p4p5p7 − 2p2p3p6p7 + 4p1p5p6p7 + p22p

2
7 (69)

+ 4p2p3p4p8 − 2p1p4p5p8 − 2p1p3p6p8 − 2p1p2p7p8 + p21p
2
8) (70)

= 2(p2p3 − p1p5)(p2p4 − p1p6)(p3p4 − p1p7)denominator, (71)

numerator1 =
1

2
p1denominator. (72)

Because al is fixed now, we can get bl according to al + bl = p1. This process
can be done if and only if the denominator is not zero, which is equivalent to
a2b2(xi− yi)2(xj − yj)2(xk − yk)2 6= 0. Therefore, we only need to find Vi, Vj , Vk
satisfying the conditions in the theorem and q0,i, q0,j , q0,k 6= 0.

Notice that l is an arbitrary number not less than k, we can get qt and
q0,t, k+ 1 ≤ n can be computed using at

at−1
= (1− qt)(1− q0,t) and bt

bt−1
= 1− qt.

For parameter pt,l, l > t > k, we can compute it using

P (V1 = 0, · · · , Vt−1 = 0, Vt = 1, Vt+1 = 0, · · · , Vl = 0)

P (V1 = 0, · · · , Vl = 0)
(73)

=
al

1−(1−qt)(1−q0,t)
(1−qt)(1−q0,t) + bl

qt
1−qt

al + bl

∏
(Vt,Vi)∈E,i≤l

(1− pt,i), (74)
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P (V1 = 0, · · · , Vt−1 = 0, Vt = 1, Vt+1 = 0, · · · , Vl−1 = 0)

P (V1 = 0, · · · , Vl−1 = 0)
(75)

=
al−1

1−(1−qt)(1−q0,t)
(1−qt)(1−q0,t) + bl−1

qt
1−qt

al−1 + bl−1

∏
(Vt,Vi)∈E,i≤l−1

(1− pt,i). (76)

Then we can get
∏

(Vt,Vi)∈E,i≤l−1(1− pt,i) and
∏

(Vt,Vi)∈E,i≤l(1− pt,i) and their

division is what we want. Until now, we have proved the first part of the theorem.
Now suppose we have i = j − 1 = k − 2. Then for an arbitrary 0 − 1 string γ
with i− 1 bits, we still have the following facts.

P (V1 · · ·Vi−1 = γ, Vi = 1, Vj = 1, Vk = 1, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)
=
P (V1 · · ·Vi−1 = γ, Vi = 1, Vj = 0, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 1, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 1, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)
,

P (V1 · · ·Vi−1 = γ, Vi = 1, Vj = 1, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)
=
P (V1 · · ·Vi−1 = γ, Vi = 1, Vj = 0, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 1, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)
,

P (V1 · · ·Vi−1 = γ, Vi = 1, Vj = 0, Vk = 1, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)
=
P (V1 · · ·Vi−1 = γ, Vi = 1, Vj = 0, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 1, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)
,

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 1, Vk = 1, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)
=
P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 1, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 1, Vk = 0, U0 = t)

P (V1 · · ·Vi−1 = γ, Vi = 0, Vj = 0, Vk = 0, U0 = t)

(77)

where t = 0 or t = 1. Therefore, we can still have that 8 equations the same as
Equation 63 and from those equations, we can solve out all of the probabilities in
the facts above. Using those probabilities, we can directly get all the parameters
with indexes not larger than k. Together with the conclusion of the first part of
this theorem, all the parameters are determined. ut

E Discussion on the Cyclic Models

In the last section in appendix, we will introduce how to transform a general IC
model to a causal model so that we can use do calculus method to identify do
effects. In fact, since the propagation of the IC model takes place for at most
n rounds [2], we formulate that the state of Vi in round t is Vi,t and that Vi,t
has three values, 0, 1 and 2, for three states. We construct a causal graph G′ =
(V ′, E′) from these nodes with subscripts of time. Here, state 0 means that the
node is not activated, 1 means that the node was activated at the last time point,
and state 2 means that the node is activated and has already tried to activate
its child nodes. Moreover, all edges are defined as (Vi,t, Vi,t+1), 1 ≤ i, t ≤ n and
(Vi,t, Vj,t+1), 1 ≤ i, j, t ≤ n, (Vi, Vj) ∈ E′. Furthermore, we define the following
propagating equations.

P (Vi,t = 2|Vi,t−1 = 2, Vj,t−1 = vj,t−1,∀j, (Vj , Vi) ∈ E) = 1, (78)
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Fig. 5. An example of transformation from IC model to Bayesian causal graph.

P (Vi,t = 2|Vi,t−1 = 1, Vj,t−1 = vj,t−1,∀j, (Vj , Vi) ∈ E) = 1, (79)

P (Vi,t = 2|Vi,t−1 = 0, Vj,t−1 = vj,t−1,∀j, (Vj , Vi) ∈ E) = 0, (80)

P (Vi,t = 1|Vi,t−1 = 0, Vj,t−1 = vj,t−1,∀j, (Vj , Vi) ∈ E) (81)

= 1−
∏

1≤j≤n,(Vj ,Vi)∈E

(1− pj,ivj,t−1I[vj,t−1 6= 2]), (82)

P (Vi,t = 0|Vi,t−1 = 0, Vj,t−1 = vj,t−1,∀j, (Vj , Vi) ∈ E) (83)

=
∏

1≤j≤n,(Vj ,Vi)∈E

(1− pj,ivj,t−1I[vj,t−1 6= 2]). (84)

By definition, we obtain that G′ as a Bayesian causal model, so we can use
the do calculus method [19] to solve out the identifiable do effects. For example,
suppose G has V1, V2, V3 as observed nodes and U1 as an unobserved node. The
edges in E are (U1, V1), (U1, V2), (V1, V2), (V2, V3) and (V3, V1). There exists a
cycle in G so it cannot be seen as a DAG. However, utilizing our transformation,
the result graph G′ is in Figure 5, which is a Bayesian causal model.
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