Skip to main content

Approximation Algorithm for Maximizing Nonnegative Weakly Monotonic Set Functions

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13116))

Included in the following conference series:

  • 844 Accesses

Abstract

In recent years, submodularity has been found in a wide range of connections and applications with different scientific fields. However, many applications in practice do not fully meet the characteristics of diminishing returns. In this paper, we consider the problem of maximizing unconstrained non-negative weakly-monotone non-submodular set function. The generic submodularity ratio \(\gamma \) is a bridge connecting the non-negative monotone functions and the submodular functions, and no longer applicable to the non-monotone functions. We study a class of non-monotone functions, define as the weakly-monotone function, redefine the submodular ratio related to it and name it weakly-monotone submodularity ratio \(\widehat{\gamma }\), propose a deterministic double greedy algorithm, which implements the \(\frac{\widehat{\gamma }}{\widehat{\gamma }+2}\) approximation of the maximizing unconstrained non-negative weakly-monotone function problem. When \(\widehat{\gamma }=1\), the algorithm achieves an approximate guarantee of 1/3, achieving the same ratio as the deterministic algorithm for the unconstrained submodular maximization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: 20th International Proceedings on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 671–680. Association for Computing Machinery (2014)

    Google Scholar 

  2. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for Greedy maximization of non-submodular functions with applications. In: 35th International Conference on Machine Learning, NSW, Australia, vol. 70, pp. 498–507. Proceedings of Machine Learning Research (2017)

    Google Scholar 

  3. Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: A tight linear time (1/2)-approximation for unconstrained submodular maximization. SIAM J. Comput. 44(5), 1384–1402 (2015)

    Article  MathSciNet  Google Scholar 

  4. Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximization problems. In: 27th International Symposium on Discrete Algorithms, Arlington, VA, USA, pp. 392–403. Society for Industrial and Applied Mathematics (2016)

    Google Scholar 

  5. Cherenin, V.: Solving some combinatorial problems of optimal planning by the method of successive calculations. In: Conference of Experiences and Perspectives of the Applications of Mathematical Methods and Electronic Computers in Planning, Russian, Mimeograph, Novosibirsk (1962)

    Google Scholar 

  6. Coelho, V.N., et al.: Generic Pareto local search metaheuristic for optimization of targeted offers in a bi-objective direct marketing campaign. Comput. Oper. Res. 78, 578–587 (2017)

    Article  MathSciNet  Google Scholar 

  7. Das, A., Kempe, D.: Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection. In: 28th International Conference on Machine Learning, Bellevue, Washington, USA, pp. 1057–1064. Omnipress (2011)

    Google Scholar 

  8. Dobzinski, S., Vondrak, J.: From query complexity to computational complexity. In: 44th International Symposium on Theory of Computing, New York, NY, USA, pp. 1107–1116. Society for Industrial and Applied Mathematics (2012)

    Google Scholar 

  9. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  Google Scholar 

  10. Feldman, M., Naor, J.S., Schwartz, R.: Nonmonotone submodular maximization via a structural continuous Greedy algorithm. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 342–353. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_29

    Chapter  Google Scholar 

  11. Galbiati, G., Maffioli, F.: Approximation algorithms for maximum cut with limited unbalance. Theor. Comput. Sci. 385(1), 78–87 (2007)

    Article  MathSciNet  Google Scholar 

  12. Gharan, S.O., Vondrák, J.: Submodular maximization by simulated annealing. In: 22nd International Symposium on Discrete Algorithms, San Francisco, California, USA, pp. 1098–1116. Society for Industrial and Applied Mathematics (2011)

    Google Scholar 

  13. Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximization with matroid constraints. J. Global Optim. 75(3), 833–849 (2019). https://doi.org/10.1007/s10898-019-00800-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Halperin, E., Zwick, U.: Combinatorial approximation algorithms for the maximum directed cut problem. In: 20th International Symposium on Discrete Algorithms, Washington, DC, USA, pp. 1–7. Association for Computing Machinery/Society for Industrial and Applied Mathematics (2001)

    Google Scholar 

  15. Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over social networks. In: 17th International Proceedings on World Wide Web, Beijing, China, pp. 189–198. Association for Computing Machinery (2008)

    Google Scholar 

  16. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. Assoc. Comput. Mach. 48(4), 761–777 (2001)

    Article  MathSciNet  Google Scholar 

  17. Mansell, R., Collins, B.S.: Introduction: Trust and Crime in Information Societies. Edward Elgar (2005)

    Google Scholar 

  18. Melo, M.T., Nickel, S., Saldanha-da-Gama, F.: Facility location and supply chain management - a review. Eur. J. Oper. Res. 196(2), 401–412 (2009)

    Article  MathSciNet  Google Scholar 

  19. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: 30th International Symposium on Theory of Computing, San Diego, California, USA, pp. 128–134. Association for Computing Machinery (2007)

    Google Scholar 

  20. Roughgarden, T., Wang, J.: An optimal learning algorithm for online unconstrained submodular maximization. In: 31st International Conference on Learning Theory, Stockholm, Sweden, pp. 1307–1325. Proceedings of Machine Learning Research (2018)

    Google Scholar 

  21. Tran, A.K., Piran, M.J., Pham, C.: SDN controller placement in IoT networks: an optimized submodularity-based approach. Sensors 19(24), 5474 (2019)

    Article  Google Scholar 

  22. Tsai, Y.-C., Tseng, K.-S.: Deep compressed sensing for learning submodular functions. Sensors 20(9), 2591 (2020)

    Article  Google Scholar 

  23. Tsiang, S.C.: A note on speculation and income stability. Economica 10(40), 27–47 (1943)

    Article  Google Scholar 

  24. Zhang, H., Vorobeychik, Y.: Submodular optimization with routing constraints. In: 30th International Proceedings on Artificial Intelligence, Phoenix, Arizona, USA, pp. 819–825. AAAI Press (2016)

    Google Scholar 

Download references

Acknowledgements

The first and third authors are supported by National Natural Science Foundation of China (No. 12131003) and Beijing Natural Science Foundation Project No. Z200002. The second author is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant 06446, and Natural Science Foundation of China (Nos. 11771386, 11728104). The fourth author is supported by the Fundamental Research Funds for the Central Universities (No. E1E40108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, M., Du, D., Xu, D., Yang, R. (2021). Approximation Algorithm for Maximizing Nonnegative Weakly Monotonic Set Functions. In: Mohaisen, D., Jin, R. (eds) Computational Data and Social Networks. CSoNet 2021. Lecture Notes in Computer Science(), vol 13116. Springer, Cham. https://doi.org/10.1007/978-3-030-91434-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91434-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91433-2

  • Online ISBN: 978-3-030-91434-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics