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ABSTRACT
With the ever-growing volume of online news feeds, event-based

organization of news articles has many practical applications in-

cluding better information navigation and the ability to view and

analyze events as they develop. Automatically tracking the evolu-

tion of events in large news corpora still remains a challenging task,

and the existing techniques for Event Detection and Tracking do

not place a particular focus on tracking events in very large and

constantly updating news feeds. Here, we propose a new method

for robust and efficient event detection and tracking, which we call

RevDet algorithm. RevDet adopts an iterative clustering approach

for tracking events. Even though many events continue to develop

for many days or even months, RevDet is able to detect and track

those events while utilizing only a constant amount of space on

main memory.We also devise a redundancy removal strategy which

effectively eliminates duplicate news articles and substantially re-

duces the size of data. We construct a large, comprehensive new

ground truth dataset specifically for event detection and tracking

approaches by augmenting two existing datasets: w2e and GDELT.

We implement RevDet algorithm and evaluate its performance on

the ground truth event chains. We discover that our algorithm is

able to accurately recover event chains in the ground-truth dataset.

We also compare the memory efficiency of our algorithm with the

standard single pass clustering approach, and demonstrate the ap-

propriateness of our algorithm for event detection and tracking

task in large news feeds.
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1 INTRODUCTION
Internet today has become the primary source for creation and

widespread dissemination of news articles leading to generation

of huge amounts of news data each day. With this unprecedented

increase in the information available online, one of the major chal-

lenges is providing the user with better information navigation

capability. In this scenario, automatic event-based organization of

news data can lead to better structuring and classification of textual

news articles data from a variety of online news media sources,

and thus provide users with a better online experience. The task of

automatic, event-based organization of textual news article data is

named as event detection and tracking (also referred to as topic de-

tection and tracking in many contexts). The process of discovering

a new event in a stream of news articles is referred to as Event De-

tection. Event tracking involves the identification of further news

stories that discuss the detected event, and provide some additional

information indicating that the event has developed. Hence, the

major task of event tracking techniques is in essence the identifica-

tion of relationships between the news articles based on the event

they report.

The existing techniques for Event Detection and Tracking do not

place a particular focus on tracking events in very large, complex

and constantly updating news feeds.

Figure 1: Per day active event chains of an year formed by
our RevDet algorithm vs the ground truth chains. To form
these chains, RevDet only utilizedmemory required for stor-
ing eight days data.

The major challenge of applying Event Detection and Tracking

techniques to very large news feeds is coping with the Variety,

Velocity and Volume (3V’s of Big Data) of such databases. Large and

constantly updating news feeds exhibit the following properties:

(1) Most of the events occurring across the globe are reported

by multiple news agencies adding a great deal of redundancy

in news feeds and a significant increase in volume.
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Figure 2: RevDet maintains a sliding window of size n for performing memory efficient event tracking. At any given time,
only the latest observed subevents and the events in the sliding window are kept in the main memory. The events inside the
window are clustered together through the Birch clustering method. After clustering, similarity between the earliest events
in these clusters and the latest representatives (represented by triangles) is computed. Similar sub-events are joined together
(represented by red arrow) to form an event chain. The events which are not tracked further are written to the permanent
storage as a complete event chain. The event window then slides by n days and this procedure is repeated until the last event.

(2) News articles reporting a rapidly developing event tend to

occur in bursts and are similar in the mention of locations

i.e. they exhibit strong spatio-temporal correlation.

(3) Relationships between news articles are not always easy

to identify from their text, with the objective details of the

event being obscured by the reporting style used in the news

article e.g. a news article discussing a recently occurring

event may give references to multiple events in the past,

thereby complicating the extraction of correct event details

from the news article.

The key to developing robust and efficient approaches for event

detection and tracking in large news feeds lies in taking each of

these properties into special consideration. In this paper, we propose

a new method for event detection and tracking, which we call the

RevDet algorithm. In our method, we adopt an iterative clustering

approach for tracking events by using only a constant amount of

space. Even though many events continue to develop for many days

or even months, our method is able to track such events and form

chains with a window-size set to a small time unit of eight days.

We also devise a redundancy removal strategy which effectively

eliminates duplicate news articles and substantially reduces the

size of data. Moreover, instead of utilizing all of the content of

news articles, we develop a concise representation using only the

article’s title and a list of locations. For evaluating our algorithm, we

also construct a large, comprehensive new ground truth dataset by

augmenting two existing datasets: w2e and GDELT. We implement

RevDet algorithm, and evaluate its performance on the ground truth

event chains. We discover that our algorithm is able to accurately

recover event chains in the ground-truth dataset, with precision of

0.82 and an 𝐹1 score of 0.66. We also compare the memory efficiency

of our algorithm with the standard single pass clustering approach

and demonstrate the appropriateness of our algorithm for event

detection and tracking task in large news feeds.

2 RELATEDWORK
The task of Topic Detection and Tracking (with the topic meaning

an event) was first conceived in 1996 and evolved as a joint venture

between University of Massachusetts, Carnegie Mellon University

and Dragon Systems [1]. It was a yearlong pilot study focusing on

segmentation of data streams, identifying events in news stream

and tracking a particular event in different news. This initiative

provided grounds for further research on this topic and established

some initial techniques and methodologies to address the problem.

The problem was divided into three main tasks:

(1) Segmentation of the data/news stream into distinct, topically

homogenous blocks.

(2) Identification the first occurrence of a news story discussing

a new event.

(3) Subsequent tracking of the news stories that discuss the

event.

Three approaches were used for the task of segmentation, de-

tection and tracking: Dragon’s Approach, UMass Approach and

CMU Approach. Dragon’s approach for segmentation treated a

stream of data as a sequence of unlabeled topics. The task of seg-

mentation was then reduced to finding the transitions between

these topics. These topics in the first place were constructed using a

multi-pass k means algorithm which grouped the news stories into

k clusters, with each cluster corresponding to a distinct topic. These

clusters were used to build background language models, which
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Segmentation Retrospective Detec-
tion

Online Detection Tracking

CMU Content based and lexical

features for finding shift

in topics

Incremental Clustering Incremental Clustering

with detection threshold

and time window

K nearest neighbor and

decision tree classifier

Dragon Finding transitions be-

tween background topics

K Means clustering with modified distance measure Adaptation of the seg-

mentation approach

UMass Content based LCA (Lo-

cal Context Analysis) seg-

mentation

Bottom up agglomerative

clustering

Query representation

and belief threshold

Relevance feedback

Table 1: Comparison of the approaches in TDT Initiative

were then used for the segmentation task. All the three approaches

are summarized in Table 1.

Existing event detection and tracking algorithms usually adapt

the single pass clustering algorithm for the identification of news

events [3, 6, 13] . For each incoming news article, its similarity

with previous known events is computed. If the similarity exceeds

a similarity threshold, the news article is flagged as referring to

an existing event. Otherwise, the news article is classified to be

a new event. The inherent problem in the application of single

pass clustering algorithm to very large event data is evident: the

single pass clustering algorithm must maintain a "memory" of news

events. Although this is feasible for small datasets such as TREC,

maintaining all the events in memory quickly becomes a significant

challenge if large news feeds are dealt with, due to the scale at

which events are reported each day all over the world. Alternate

forms of news representation such as forming a query with only

named entities and quantitative details fails to address the problem;

important details form a significant part of news articles, and rigor-

ous preprocessing for a significant reduction in size of news article

in memory can lead to misclassification and a significant drop in

precision.

The solution to this problem is to extend the concept of a growing

’entropy’ of the news article as used by Radinsky [15] i.e. penalizing

an event on the time distance between two events. Experiments on

the TDT4 corpus with different time thresholds have shown n=14

days threshold to be the most appropriate. If we make this a binary

threshold, we will need to place only n days data in the memory,

with n being the upper limit on the number of days between any

two events as determined by experiments.

Other systems have considered tracking more generic ’topics’

within the news articles. In [11] a framework has been presented

for tracking topics in news articles via short, distinct phrases that

remain intact throughout the articles. Our focus, however, is to

develop a technique for tracking ’events’ instead of ’topics’ in news

stories, which are more specific and require a much greater context

than just a few phrases for achieving a high precision. Some efforts

have been made to leverage topic modelling for detection and track-

ing of news events. One such technique, Latent Dirichlet allocation

(LDA), is widely used in detecting events through posts on micro-

blogging sites such as Twitter. Diao et al [4] developed an LDA

model which is able to find bursty topics on Twitter by capturing

two phenomena: posts by same user or around same times are more

likely to correspond to same topic/event. Hierarchical Dirichlet

Process (HDP) is used by Srijith et al [17] for detecting sub-stories/

sub-events by learning subtle variations in them through topics

underlying events. A variation of HDP incorporating time depen-

dency, paired with mixture Gaussian model is used by Wang et al

[19] for detecting bursty words and newsworthy events in Twitter

data. LDA with selectional preferences (LDA-SP) has been used in

combination with ConceptNet by Vo et al [18] to detect events by

first identifying relationships between entities mentioned in Twit-

ter posts, and then classifying them using k-nearest neighbours

technique. Huang et al [8] showed that using LDA together with the

single pass clustering algorithm to deal with the short and sparse

microblog data decreases miss and false alarm rates.

Graph-based modeling approaches have also been used in Event

Detection and Tracking. Sayyadi et al [16] presented an approach

of building a KeyGraph ( graph containing extracted terms [12])

with keywords having lower inverse document frequency (IDF)

filtered out. Connected key words are those that occur in same

document. Closely related words form a community. A community

is considered to be a synthetic document and titled as a key doc-

ument. Clustering then groups together documents similar to the

key documents, and each cluster is considered as an event.

Many event detection and tracking algorithms tend to perform

better on carefully curated test datasets but struggle to generalise

to real world news feeds. To the best of our knowledge, this is the

first attempt to devise an event detection and tracking strategy for

large, noisy and complex news feeds containing a great portion of

duplicate news articles.

3 DEFINITIONS
Event An event is an occurrence at a particular location during

a particular interval of time. An event is further composed of

subevents such that the beginning and the end of an event corre-

spond to two separate subevents. Since we are dealing with online

news data, we will consider newsworthy events only i.e. events that
are significant enough to be reported by at least one online news

agency.

Subevent A subevent, which is an atomic part of an event, is an

occurrence at a particular location and time. A subevent may only

be a part of one event only.

News Article A news article 𝑎 represents a subevent e is charac-
terized by its publication timestamp 𝑡 , title ℎ and a list of locations

3



Figure 3: An event chain showing the progress of subevents related to earthquake in New Zealand.

mentioned in the article 𝑙 .

𝑎 = (𝑡, ℎ, 𝑙) (1)

Event Chain An event chain 𝐶 is an ordered set of sub events

{𝑒1, 𝑒2, 𝑒3, ..., 𝑒𝑛} of a particular event , sorted in increasing order

of timestamp and where each new sub event has some additional

information as compared to its predecessor.

𝐶 = {𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑛} (2)

Latest Representative (LR) Latest representative of an event 𝑎1
is the sub-event in event chain with the latest timestamp i.e. the
most recent news about an event.

Earliest Representative (LR) Earliest representative of an event

𝑎𝑛 is the sub-event in event chain with the smallest timestamp i.e.
the first news about an event.

Event Window Event window consists of unordered subevents of

different events occurring in a particular time frame Δ𝑡 .

4 APPROACH
The first step in devising an approach for event tracking is to con-

sider what makes an event different from others. Depending on

this definition of an event, the event chains formed may be consid-

erably different e.g. an event chain of a general election in a certain

country may involve all the news in relation to the election or only

the news relating to the rallies by one candidate. The decision of

this is made by determining what constitutes the event identity [2]

, which is something unique to every new event, and common to

the sub-events in event chain. If an event is taken to be something

that happens at particular place and time, then the locations men-

tioned in a news story and 𝑡 ± 𝑛 days constitutes the identity of

event, with 𝑡 being the event timestamp. Another option could be

to include named entities e.g. people, organizations as part of event
identity, and this has been seen to considerably increase recall in

event tracking tasks [15].

Selecting the clustering algorithm The choice of clustering

algorithm for the formation of event chains is an important one,

since it directly influences the representation of news articles,

quality of chains formed and efficiency of the approach. Some

approaches have used the k nearest neighbours algorithm for find-

ing closest news articles or the k-means algorithm for grouping

together the related news. These methods would fail to work in

a big data setting since they require a parameter 𝑘 as input i.e.
the number of articles to group together. Other algorithms include

Wave-Cluster, DBSCAN and BIRCH. Wave-Cluster is a grid based

algorithm and the main advantage of this algorithm is the fast pro-

cessing time [5] . However, Wave-Cluster does not perform well for

our problem as using a single uniform grid does not result in good

quality clusters nor does it satisfy the time constraints for a highly

irregular data distribution (news articles). DBSCAN is a density

based clustering algorithm. It can efficiently deal with noise while

forming high quality clusters. Unlike k-means, DBSCAN does not

require the input parameter k which is used to identify the num-

ber of clusters to be formed. Although, DBSCAN seems to be a

good choice, the major drawback of this algorithm is its inability

to efficiently cluster data sets with large differences in densities.

BIRCH [20] is an unsupervised hierarchical clustering algorithm

suitable to cluster large data sets. The main advantage of using

BIRCH is that it can work incrementally i.e. does not require the
whole data set in advance and can efficiently adjust the number of

clusters to be formed relative to the input data set. BIRCH typically

requires a single scan of the data set to form good quality clusters

and this quality can be improved using additional scans if required.

Similar to DBSCAN, BIRCH can work without the input param-

eter k and can decide for itself the number of clusters to be formed.

This feature of BIRCH is essential for our research problem as the

number of event chains present in a given set of news articles can

vary. Moreover, BIRCH is a first of its kind algorithm that can ef-

ficiently handle noise. News articles which do not progress are

considered noise in our case as they form an event chain consisting

of only one node i.e. they are not tracked further.

Representation of news articles . We represent every news

article as a vector of title, themes, locations and counts contained

within the news article.
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(1) Title of the news article reporting the event.

Example: Powerful earthquake strikes New Zealand killing

2 people.

(2) Themes associated with the event.

Example:NATURALDISASTER; NATURALDISASTER EARTH-

QUAKE; CAUTION ADVICE; KILL;

(3) Locations contained within the news article.

Example: Wellington, New Zealand, (Lat, Lng): -41.3,174.783

(4) Counts associated with the event reported by the article,

and of a particular location.

Example: KILL 2, New Zealand, NZ;

These fields have been pre-extracted for every article in GDELT

GKG. Instead of a tf-idf representation, we convert themes, loca-

tions and counts into one-hot vectors, and use a sparse representa-

tion of these vectors. This type of representation is readily accepted

by the existing implementations of the Birch algorithm e.g. SciKit
[14] implementation of Birch.

Figure 4 gives an overview of the workflow adopted for form-

ing event chains on the prepared dataset through the proposed

algorithm, and evaluating the results.

Figure 4: A high level overview of the approach taken for
formation of event chains and evaluation of results

5 REVDET ALGORITHM
Now, we describe our algorithm to form event chains from news

data. We say that every sub event 𝑥 in an event chain 𝐶𝑖 contains

sufficient information that enables tracking of further events solely

through 𝑥 , and that these subevents cannot track events of some

other event chain 𝐶 𝑗 . i.e. for every 𝑎, 𝑏 in an event chain 𝐶𝑖 ,

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐶𝑖
𝑎,𝐶

𝑖
𝑏
) > 𝜃 > 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐶𝑖

𝑎,𝐶
𝑗
𝑥 ) | 𝑖 ≠ 𝑗

In other words, if we are presented only with the first event of a

chain, we will be able to recover the whole event chain from the

news feed. We adopt an iterative clustering approach for tracking

events.

(1) Initially we add first 𝑛 days data to the event window.

(2) Then we cluster articles data through the birch clustering

algorithm, and save the resultant event chains to permanent

storage.

(3) Now, we extract the latest representatives of these event

chains, and keep them in temporary storage, discarding the

rest of data in the chains (at any given time, we only keep

latest representatives belonging to at most one event window

in the past). We slide the event window by 𝑛 days.

(4) We then again cluster articles data to form chains 𝑦. For

each latest representative 𝑙𝑖 saved in the previous step , we

compute its similarity with each of the earliest representative

𝑒 of 𝑦.

𝑠𝑖𝑚(𝑙𝑖 , 𝑒)
where the similarity of two events 𝑠𝑖𝑚(𝑎, 𝑏) is defined as:

𝑗𝑎𝑐𝑐𝑎𝑟𝑑 (𝑎𝑡𝑖𝑡𝑙𝑒 , 𝑏𝑡𝑖𝑡𝑙𝑒 ) ∗ 𝑗𝑎𝑐𝑐𝑎𝑟𝑑 (𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑏𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)
This ensures that two events are be considered similar if they

both belong to a certain subject (represented by title) and

occur in proximity (represented by location).

(5) If the similarity is greater than 0, this indicates that the event

has developed; hence we merge these event chains with their

previous one. Otherwise, we save the event chains 𝑦.

This whole process is repeated until event window reaches the

end. The overall RevDet method is outlined in Algorithm (1).

5.1 Implementation
We have implemented the RevDet algorithm

1
in Python on top of

the Birch Clustering Algorithm available in SciKit Learn [14]. Our

algorithm takes as input news articles data (with two necessary

columns: a list of locations and title) in the form of per day files

(sorted by ascending timestamp of the event), window size and

birch threshold. It then forms event chains and outputs each chain

in a separate file. During the formation process, it also writes some

temporary files to the permanent storage, and removes them once

all chains have been formed.

6 EXPERIMENTS
6.1 Dataset
GDELT

GDELT [10] is a real-time database of global human society,

and essentially contains a large amount of processed world news

. The GDELT global knowledge graph (GKG) is a part of GDELT

database, and is the largest publicly available dataset of news events

across the globe. It contains processed data from real-time news

from around the world including locations, themes, organizations,

people and tone of every news event. The GKG table in the GDELT

database has 27 columns containing a wealth of information about

each news article. This dataset provides us with pre-extracted fields

of each news article for running our Event Detection and Tracking

algorithm.

Along with this, we require a fairly large event tracking dataset

with fine-grained ground truth for an effective evaluation of our

algorithm. TREC’s TDT’s datasets are unsuitable for this purpose, as

1
Code and Data are available at https://github.com/ahazeemi/RevDet
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Figure 5: Formation of the RevDet dataset for evaluating event detection and tracking approaches.

Algorithm 1 Event Chain Formation

1: procedure RevDet(𝑑𝑎𝑦𝑠 ,𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 ,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

2: 𝑓 𝑖𝑙𝑒𝐼𝑛𝑑𝑒𝑥 ← 𝑑𝑖𝑐𝑡 ()
3: 𝑓 𝐼𝑛𝑑𝑒𝑥 ← 0
4: 𝑙𝑎𝑡𝑒𝑠𝑡𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠 ← []
5: 𝑖 ← 0
6: while 𝑖 ≤ 𝑛 do
7: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑊 𝑖𝑛𝑑𝑜𝑤 ← 𝑑𝑎𝑦𝑠 [𝑖 −𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 : 𝑖]
8: 𝑙𝑎𝑡𝑒𝑠𝑡𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠.𝑘𝑒𝑒𝑝 (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑊 𝑖𝑛𝑑𝑜𝑤)
9: 𝑒𝑛𝑑 ← 𝑖 +𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒

10: 𝑑𝑎𝑡𝑎 ← 𝑔𝑒𝑡𝐷𝑎𝑡𝑎(𝑑𝑎𝑦𝑠 [𝑖 : 𝑒𝑛𝑑])
11: 𝑑 𝑓 ← 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑑𝑎𝑡𝑎[′𝑡𝑖𝑡𝑙𝑒 ′], 𝑑𝑎𝑡𝑎[′𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ′])
12: 𝑑 𝑓 ← 𝑜𝑛𝑒𝐻𝑜𝑡𝐸𝑛𝑐𝑜𝑑𝑒 (𝑑 𝑓 , 𝑠𝑝𝑎𝑟𝑠𝑒𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑡𝑟𝑢𝑒)
13: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← 𝑏𝑖𝑟𝑐ℎ𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝑑 𝑓 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
14: for cluster in clusters do
15: 𝑓 𝑖𝑙𝑒𝑃𝑎𝑡ℎ ← 𝑠𝑡𝑟 (𝑓 𝐼𝑛𝑑𝑒𝑥) + ”.𝑐𝑠𝑣”
16: 𝑓 𝐼𝑛𝑑𝑒𝑥 + +
17: 𝑒𝑅 ← 𝑔𝑒𝑡𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟 )
18: for row in latestRepresentatives do
19: 𝑠1← 𝑗𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑟𝑜𝑤.𝑡𝑖𝑡𝑙𝑒, 𝑒𝑅.𝑡𝑖𝑡𝑙𝑒)
20: 𝑠2← 𝑗𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑟𝑜𝑤.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑒𝑅.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)
21: if 𝑠1 > 0 and 𝑠2 > 0 then
22: 𝑓 𝑖𝑙𝑒𝑃𝑎𝑡ℎ ← 𝑓 𝑖𝑙𝑒𝐼𝑛𝑑𝑒𝑥 [𝑒𝑅.𝑖𝑑]
23: 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 ← 𝑔𝑒𝑡𝐷𝑎𝑡𝑎(𝑓 𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
24: 𝑑 𝑓 ← 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠, 𝑑 𝑓 )
25: 𝑙𝑎𝑡𝑒𝑠𝑡𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑟𝑜𝑤)
26: 𝑙𝑅 ← 𝑑 𝑓 .𝑡𝑎𝑖𝑙 ()
27: 𝑓 𝑖𝑙𝑒𝐼𝑛𝑑𝑒𝑥 [𝑙𝑅.𝑖𝑑] ← 𝑓 𝑖𝑙𝑒𝑃𝑎𝑡ℎ

28: 𝑙𝑎𝑡𝑒𝑠𝑡𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠.𝑐𝑜𝑛𝑐𝑎𝑡 (𝑙𝑅)
29: 𝑑 𝑓 .𝑠𝑜𝑟𝑡 ()
30: 𝑑 𝑓 .𝑤𝑟𝑖𝑡𝑒𝑇𝑜𝐹𝑖𝑙𝑒 (𝑓 𝑖𝑙𝑒𝑃𝑎𝑡ℎ)
31: 𝑖 ← 𝑖 +𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒

they are obsolete and small: they were collected in the year 2000 and

have around only 13k articles grouped in 279 topics. The recently

released dataset w2e [7] is a manually constructed substantially

large TDT dataset containing 207,722 events grouped in 4501 events

and 2015 event chains. Each event chain contains urls of news

articles and short text describing each subevent in the chain.

Although w2e contains a short description of each event, it lacks

the specific processed details of news events as available in GKG

(themes, locations, tone etc.). To address this problem, we recon-

struct the w2e dataset by augmenting it with the GDELT dataset

i.e. each url in the original w2e dataset is searched in GDELT GKG

table, and the details contained in the matched row in GKG table are

appended to w2e. From the resultant data, we keep only the chains

which adhere to the concept of event defined earlier i.e. throughout
its development, a news event must contain similar locations. This

process discards chains with a more general topic for example a

chain containing all news related to the US Presidential Election,

instead of a specific event. Following this process (Figure 5), we are

able to construct a fairly large and a rich dataset: RevDet dataset, for

evaluation of our event tracking algorithm containing 1329 event

chains.

6.2 Redundancy Removal
Most of the events are cited by multiple news agencies across the

globe, thereby adding a substantial amount of redundancy to data

in news feeds. This redundancy needs to eliminated since two news

articles referring to the same subevent would occur as two nodes in

an event chain, with the latter node providing no upgraded knowl-

edge about the event. For removing this type of redundancy in

news articles, we utilize the birch clustering algorithm for clus-

tering news articles on various attributes like Themes, Locations

and Counts. Now, we have four different methods for performing

clustering on these attributes:

(1) Clustering on title and locations first, then sub-clustering

the resulting clusters on the basis of counts,

(2) Clustering on title, then sub-clustering on locations and

counts,

(3) Clustering on title, locations and counts, or

(4) Clustering on locations, then sub-clustering on title and

counts

To compare the performance of these four methods and tune

birch parameters, we manually cluster a subset of GKG data of 354

news articles containing 7 events and construct a ground-truth

dataset containing clusters of duplicate news articles. Two news are

grouped together only if they represent the exact same subevent. It

is important to note here that while they contain the same infor-

mation, they are two different news articles with possibly different

reporting styles and the choice of words. Hence, our task is tailored

towards news data and slightly different from the approaches for
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First Level Second Level Precision Recall 𝐹1

Title, Locations Counts 0.97 0.77 0.86

Title Locations, Counts 0.75 0.79 0.77

Title, Locations, Counts - 0.67 0.68 0.67

Locations Title, Counts 0.92 0.41 0.57

Table 2: Precision, recall and 𝐹1 score for four different ap-
proaches of clustering redundant news. Clustering on title
and locations first, and then sub-clustering on counts yields
the best result, implying that the title and locations com-
bined have the greatest discriminatory power of correctly
separating two different news.

near-duplicate detection, which are more general and do not con-

sider specific properties of news articles like title, locations and

counts etc.

We evaluate performance by clustering the news articles and

comparing to the ground truth clusters. Clustering accuracy is

evaluated by calculating Precision, Recall and 𝐹1-Score over pairs

of articles i.e. through the pair-counting method. The precision is

calculated as

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
i.e. the fraction of pairs correctly put in one cluster, and recall as

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
i.e. how many actual pairs were identified. 𝐹1-score is the harmonic

mean of precision and recall and is used for selecting the best birch

parameters for each clustering approach, and we use this score

for comparing the four clustering approaches (Table 2). As shown,

clustering on title and locations first, then subclustering on counts

yields the best result making it a suitable approach for removing

duplicate news articles. This procedure results in a 57% decrease in

the data size.

Article’s Title vs Content We now consider using article’s

content instead of title for detecting duplicate news articles to see

whether there is a significant gain in the 𝐹1-score. For this task,

we use the themes field (originally contained in GDELT GKG) in

the dataset, which describes all the themes contained in a news

article through special categories and taxonomies which accurately

capture the content e.g. a news article about the destruction of roads
by heavy rain contains themes like

• NATURAL_DISASTER_MONSOON

• INFRASTRUCTURE_BAD_ROADS

We compare the performance by first clustering duplicate news on

title, locations and then counts. We repeat the same process with

themes instead of title. As the results in Table 3 show, using article’s

content (themes) does not lead to a significant change in the 𝐹1 score.

This shows that a news article’s title has the ability to accurately

and succinctly describe the event reported in it. Moreover, as the

average content length of a news article in the data (represented

by themes length) is significantly greater than the article’s title,

clustering on title is a more suitable option of removing duplicate

news than clustering on article’s content.

Method Av. length in characters Precision Recall 𝐹1 score

Title 18.7 0.97 0.77 0.86

Themes 16476.0 0.96 0.81 0.88

Table 3: Comparing the performance of title and content
(represented by themes) for clustering duplicate news to-
gether.

Algorithm Birch Threshold Window Size Precision Recall 𝐹1

RevDet 2.3 8 0.81 0.56 0.66

In-Memory 2.2 - 0.56 0.24 0.34

Table 4: RevDet vs In-Memory clustering performance on
tuned parameters as evaluated on ground truth chains.
RevDet performs far better than the in-memory clustering
approach.

6.3 Algorithm Evaluation
We evaluate the performance of the algorithm by comparing the

event chains in the ground-truth dataset with the event chains

formed by the algorithm. For this, we first transform the dataset

into per day files, simulating the way in which data would be

available to the algorithm in a news feed (Figure 6). We then run

RevDet on these per day files and evaluate performance through

Precision, Recall and 𝐹1 score over pairs of articles in the ground

truth event clusters and the formed clusters.

Clustering Performance The best performance of RevDet is

reached on Birch Threshold 2.3, and Window Size (Table 4). The 𝐹1
score of 0.66 on 0.82 precision is adequate enough to form event

chains of good quality as have focused on precision focused tuning

to avoid distortion of event chains with irrelevant news. A relatively

low recall indicates the difficulty in clustering news events together

with different wordings of the title. This problem can be alleviated

in future work through the use of pretrained paragraph level em-

beddings like Doc2Vec [9]. The in-memory clustering approach has

a much lower precision and recall. This is due to a greater chance

of an event landing in the wrong chain as the time-dependancies

between events are ignored by loading all the data into the memory

at start and then performing clustering.

We next present a macro-level comparison of active event chains

in the original dataset and in the formed ones in Figure 1, which

shows the number of event chains that are still being developed

on each day. It can be seen that RevDet has been able to closely

replicate the ground truth events.

Window SizeWe next focus on the effect of window size on the

results (Figure 7). We discover that varying the window size after 8

has little effect on the 𝐹1 score i.e. it stays between 0.64 and 0.66.

This makes 8 a good choice for window size, and implies that most

of event chains do not have a gap of greater than 8 days between

any two consecutive news. We also observe that the precision drops

slightly as the window size is increased, owing to the greater data

in the event window.
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Figure 6: An overviewof the steps involved in preparing data
for evaluation of event chains formed by RevDet

Figure 7: Plot of precision, recall and 𝐹1 score vs. window size
of RevDet. At window size 8, RevDet is able to track events
with almost same clustering accuracy as with window sizes
closer to 20, while needing much lesser memory.

6.4 Scalability of RevDet
We next examine the memory efficiency and scalability of RevDet.

The plot in Figure 8 shows the memory usage as the algorithm pro-

gresses. As expected, the space requirement of temporary storage

(RAM) is constant with respect to the input data. The spikes are

representative of the movement of event chains to and from the

memory. RevDet has the ability to scale efficiently with respect to

the number of news articles in the dataset which makes it a very

suitable approach for event detection and tracking in large news

feeds. We also examine the space requirement of the in-memory

Figure 8: Memory usage vs running time of RevDet algo-
rithm. The small spikes represent the movement of event
chains to and from the main memory according to their de-
velopment.

Figure 9: Memory usage vs running time of an in-memory
clustering approach which loads all the data into the mem-
ory once and then performs clustering. The memory in-
crease from 40s to 50s represents the transfer of all data to
the memory; the spike at 50s is due to clustering all data
through Birch at once.

clustering approach in Figure 9. The memory usage rises sharply

as all of news data is loaded into the main memory at the start, and

becomes constant once formed chains are being written to the per-

manent storage. Peak memory usage of the in-memory clustering

approach (≈ 1000MB) is 7 times the peak memory usage of RevDet

(≈ 140 MB). Moreover, as the input data will increase, the mem-

ory requirements of the former approach will grow proportionally

making it infeasible to form event chains.

7 CONCLUSION AND FUTUREWORK
In this paper, we have tackled the problem of robust and efficient

detection and tracking of news events in large news feeds. An itera-

tive clustering based algorithm has been proposed for this purpose

which is able to extract event chains of events that continue to de-

velop for a long period of time, using memory as low as required for

clustering eight day news. We also propose a redundancy removal

strategy for removing duplicate news articles. We construct a new,

comprehensive ground truth dataset by augmenting two existing
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datasets: GDELT and w2e, specifically for evaluating event detec-

tion and tracking approaches. We show the efficacy of our method

by evaluating it on the ground-truth chains. We leave for future

work the improvement in recall by clustering news articles through

incorporation of more robust text representations like Doc2Vec.

RevDet can also be extended easily to work for streaming news data

and this can lead to a truly automated and robust event classifier

and an event search engine.
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