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Abstract. Communication between developers and testers can be a rich source 

of insights into software development processes and practices, which may not be 

easily discoverable from other means like retrospectives or project roadmaps. 

With the objective of deriving and capitalizing on potential development-related 

insights, we analyzed developer-tester communication in an industrial setting. 

We conducted a case study at a software-intensive Agile company, within the 

context of the development of one of their flagship products from 2016 to 2018. 

We applied Latent Dirichlet Allocation (LDA) to analyze communication be-

tween developers and testers, and then invited two case-company practitioners to 

study the results for insights into their developments processes: The findings re-

veal the case company’s efforts to improve their product stability, the growing 

emphasis on addressing end-user concerns and other quality-related issues. The 

practitioners interpreted these findings as indicators of evolution in their devel-

opment process. Based on these findings and the state of the art, we propose an 

insight classification to highlight insights discoverable from developer-tester 

communication: Recognizing LDA’s potential for deriving insights, the practi-

tioners are keen on incorporating it into their software development practices. 

The findings from this study serve as evidence for use and benefits of text-mining 

techniques like LDA in industrial setting, which other practitioners could adapt 

to elicit their own context-influenced insights. Furthermore, the insight classifi-

cation can serve as a foundation for further investigation into the extent and type 

of insights discoverable from developer-tester communication.  
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1 Introduction 

During software development, communication between developers and testers is doc-

umented in issue/bug trackers like Jira1 and Mantis2 in unstructured format. Unstruc-

tured data are expressed in natural language [1], and so do not have a clear, semantically 

overt, and easy-for-a-computer structure [2]. Software engineering is a data-rich activ-

ity [3], and developer-tester communication are among the software artifacts that are 

produced in large volume, particularly as a result of modern software development 

methods like Agile software development (ASD) [1]. These artifacts may hold insights 

into software design, developers’ knowledge and decisions, and overall software ad-

vancement [1]. Their analysis can produce actionable information [4] to complement, 

and even improve, the overall software development process [5, 6]. 

Developer communication can be used to classify developer emails based on their 

purpose [7], identify source code activities in mailing list discussions [8], summarize 

software artifacts [9], and identify software architecture knowledge [10] from discus-

sions on forums like Stack Overflow3. Such insights have been used for recommending 

developers for bug triage [11], mentoring [12], and for code comprehension [13]. In 

these investigations, information retrieval (IR) techniques like Latent Semantic Index-

ing (LSI) and Latent Dirichlet Allocation (LDA) techniques have been preferred [7, 

14–16]. LDA is more suitable for handling unstructured text, while retaining semantic 

richness, than other techniques like clustering and bag of words [17]. This may be why 

LDA is the most popular topic modeling technique for indexing, searching, and clus-

tering large amount of unstructured data [5, 18]. Based on the surveys by Chen et al. 

[16] and Sun et al. [4], LDA has been used on source codes, requirement documents, 

bug reports, commit messages, and developer communication. However, its potential 

to derive insights from developer-tester communication remains unexplored.  

In view of the potential insights discoverable from developer communication, ex-

ploration and analysis of developer-tester communication is also very likely to produce 

comparable results. If conducted in an industrial setting and during software product 

development, the results could help practitioners capitalize on their development data 

better by generating insights from them. Owing to such demonstrable positive findings, 

practitioners could expand and benefit from the use of this text-mining technique on 

other unstructured data, like change logs. To our knowledge, developer-tester commu-

nication in an industrial setting has not been studied, especially for discovering devel-

opment-related insights. A study [19] similar to ours has used data-mining techniques 

to recover lost project knowledge from the informal communication conducted over 

instant messaging, and involved stakeholders from two startups to validate the results. 

However, in contrast to our study, the authors used a text-summarization algorithm and 

applied it only to developer communication. 

                                                           
1 https://www.atlassian.com/software/jira  
2 https://www.mantisbt.org/  
3 https://stackoverflow.com/  
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With the objective of exploring developer-tester communication for development-

related insights, we conducted a case study at a large software-intensive company using 

ASD. We targeted the unstructured data captured by Mantis, a bug-tracking tool used 

by the case company (CC). The data relates to discussion between developers and the 

testing team while addressing issues4 revealed during testing, highlighted by the inter-

nal quality team, or reported by end users. We collected the data during the develop-

ment of one of their flagship products Modelio, and we used LDA to analyze those data. 

We addressed our research objectives with the research question (RQ): What software 

development related insights could be discovered from the developer-tester communi-

cation at the case company? 

We collaborated with two practitioners (henceforth stakeholders) from the CC. This 

was necessary to validate the LDA results, and understand their implications, particu-

larly for the ongoing development of Modelio. Stakeholder involvement adds weight to 

our findings, as they are likely to elicit insights that are influenced by their development 

context. Based on these rationales, following are our study’s contributions: 

 In collaboration with stakeholders, we present empirical evidence of using LDA to 

elicit insights from developer-tester communication. Stakeholder-driven validation 

of the results helps retain the embedded development context. Since the results relate 

to one of the flagship products Modelio, the inferred insights carry a higher likeli-

hood of influencing their ongoing software development processes and practices.  

 We demonstrate the use of LDA in an industrial setting to elicit development-related 

insights, which the stakeholders claim would have remained undetected otherwise, 

even with the use of their classical monitoring tools and project roadmaps.  

 Driven by the findings and state of the art, we propose a non-exhaustive insight clas-

sification to highlight examples of insights discoverable from developer-tester com-

munication, recorded in issue trackers like Mantis.  

In the remainder of the paper, we discuss LDA and related work in Section 2, re-

search method in Section 3, followed by the study’s results in Section 4. Discussion of 

the results is presented in Section 5, with limitations and threats to our research’s va-

lidity in Section 6, and conclusion and future research directions in Section 7. 

2 Background and Related Work 

We first describe the LDA algorithm, which is central to our study, followed by a dis-

cussion on how our study relates to, and differs from, the state of the art.  

2.1 LDA 

LDA is one of the best topic modeling techniques to automatically extract topics from 

a corpus of text documents [20]. It creates statistical models to infer latent topics to 

                                                           
4 At the case company, the term issue is used to refer to bugs, anomalies, defects etc.  
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describe a corpus. As a result, an unstructured corpus can be organized by their discov-

ered semantic structure, represented by the topics embedded within the documents [21]. 

LDA identifies topics by using words that co-occur frequently in the documents of the 

corpus. This is due to the nature of natural language use, where frequently co-occurring 

words that constitute a topic are often semantically related [22]. Each document is a 

multi-membership of topics, which in turn is a multi-membership of words. This im-

plies that each document can contain multiple topics, and conversely, each topic can 

appear in more than one document. By extension, each word can then appear in more 

than one topic. In this way, LDA can discover a set of ideas or themes that succinctly 

describe an entire corpus [20].  

Formally, LDA infers for each of T topics an N-dimensional word membership vec-

tor z(ϕ1:N) that describes the extent to which words appear in topic z. This membership 

vector describes the probability that each unique word appears in topic z. In addition, 

LDA infers for each document d in the corpus a T-dimensional topic membership vector 

d(θ1:T), describing the extent to which each topic appears in d. This describes the prob-

ability that each topic appears in document d [21]. LDA makes these inferences using 

Bayesian techniques like Gibbs sampling [20]. 

2.2 Related Work 

Anvik et al. [11] used Support Vector Machines on open bug repositories to identify 

relationships between developers and the bugs they fix, with the aim to propose a de-

veloper recommender system for bug triage. Similarly, Zhang et al. [23] used LDA to 

extract topics from bug reports, capture developers’ interests and experiences vis-à-vis 

these bug reports, to propose a developer recommender system. To identify potential 

software development knowledge embedded in developers’ discussions in mailing lists, 

Shihab et al. [8] used various heuristics to explore 22 GNOME projects. They identified 

that only a small group of developers dominate mailing list activity, and drew a corre-

lation between mailing list activity and code activity, concluding that developers rely 

heavily on mailing lists to discuss source code changes. Also focusing on developers 

mailing list activity, Di Sorbo et al. [7] used natural language parsing to classify the 

mail content according to purpose of communication. The authors demonstrate the use 

of this approach to mine method descriptions from developers’ communication. In a 

similar study, Panichella et al. [13] used Vector Space Model to automatically extract 

method descriptions from developer communications recorded in bug tracking systems 

and mailing lists. The authors used the approach to produce method descriptions from 

developer communication, and argued that such analysis could be used for code com-

prehension, which can be further used for source re-documentation.  

Our study is similar to the above studies in the objective of extracting insights from 

unstructured data, such as developer communication. However, we target developer-

tester communication, which may generate insights into both development and testing. 

Moreover, the study is conducted in an industrial setting, in collaboration with two 

stakeholders. According to a survey by Sun et al. [4] and the study by Zhang et al. [23], 

LDA has been used mainly for developer recommendations, which is marginally in 

contrast to our application of LDA on developer-tester communication. Excluding the 
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study by Lima et al. [19], we have not found investigation similar to ours that involved 

stakeholders for interpreting and validating results.   

Bertram et al. [24] classified issue trackers based on their potential utility for its 

users. The authors posit that issue trackers can act as a knowledge repository, boundary 

object, communication and coordination hub, and communication channel. We adapt 

this classification to propose a non-exhaustive issue classification, and highlight the 

development-related insights discoverable from developer-tester communication, rec-

orded in issue trackers like Mantis. Although the foundation for this classification is 

our single case study, but by adapting the knowledgebase from [24], we aim to extend 

its relevance, encouraging further research to review, refine, or refute it.  

3 Research Method 

We followed the guidelines recommended by Runeson and Höst [25] to conduct the 

case study and answer the RQ. 

3.1 Research Context 

The CC is a large-size company, offering commercial services and solutions across 

multiple domains. The CC claims to follow customized agile, as it uses various software 

development methods that adhere to Agile principles, such as iterative development, 

but does not have any predefined sprint cycles. For the case study, we focused on one 

of their flagship products, Modelio, a modeling tool for model-driven development. A 

collocated team of nine practitioners works on Modelio’s development. During our pe-

riod of interest, the CC worked on and released three different versions of this tool.  

3.2 Data Collection 

For our study, we used data from the bug-tracking tool Mantis. The issueDescription 

and testFeedback fields in this tool record communication between the developers and 

testing team in natural language. The issueDescription field records issues raised by the 

testing team and even end users, and the developers respond with a fix. The testing team 

attempts to resolve the issue based on this response, and records the outcome in the 

testFeedback field. The data were collected for the years 2016 (189 entries), 2017 (571 

entries) and 2018 (493 entries). Mantis 2019 dataset was too inadequate (66 entries) to 

be included in our study. By ‘entries’, we mean the total unique textual entries extracted 

from each year’s dataset, both issueDescription and testFeedback fields taken together.  

3.3 LDA Application and Data Analysis 

We divided the Mantis dataset into three subsets, year wise. The year-based division 

approximates well to the three Modelio versions developed in 2016, 2017, and 2018. 

Moreover, a division of less than 12 months would have resulted in too few entries to 

produce any meaningful results, as we learned from the unintelligible topics produced 
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from the analysis of Mantis 2019 dataset. Another reason for the year-based division is 

our previous study [26], where the same division logic was adopted to provide empirical 

evidence for the use and benefits of a metrics program in an industrial setting.  

For applying LDA, we used the tidytext5 format, where the text to be analyzed is 

stored as a table with one-token-per-row. Generally, a token is a single word, but can 

even be an n-gram (n words taken together), sentence, or paragraph [27]. A representa-

tive example of how we applied LDA to our dataset can be found here6. We created a 

tidytext data-frame for issueDescription and testFeedback corpora for each of the three 

subsets. In the context of LDA, issueDescription is the corpus, and the individual en-

tries therein are the documents. This means that the 2016, 2017 and 2018 Mantis subsets 

have 189, 571 and 493 documents, respectively. Next, we preprocessed the is-

sueDescription corpus by performing tokenization, splitting the documents into indi-

vidual tokens (words). We used the tidytext R package7 to perform this step, converting 

the text into tidytext format. Next, we removed stopwords, which are common English-

language words like “the”, “of”, “it”, etc. Typically, numbers are also removed, but 

the corpus contained mentions of Modelio’s different versions (e.g. 3.8.00, 3.8.01), in-

struction set architecture (e.g. x86, 64), and operating system platforms (e.g. 10.0). We 

retained them to avoid losing tokens of potential significance. Next, tokens like ‘xmldi-

agramreader.java’ would typically be split into ‘xmldiagramreader’ and ‘java’ before 

applying LDA. However, we decided against it, because the original text holds more 

meaning, and is easily identifiable and interpretable for the stakeholders.  

The preprocessing steps helped standardize the issueDescription corpus, which was 

done for every testFeedback corpus as well. Next, we calculated terms frequency–in-

verse document frequency (TF-IDF) for issueDescription corpora. TF measures how 

frequently a word occurs in a document. IDF also measures word frequencies, but by 

decreasing the weight for commonly used words and increasing it for words rarely used 

in the corpus. Combined, TF-IDF measures frequency of a word, adjusted for how 

rarely it is used, which helps identify how important a word is to a document in a corpus 

[27]. Although not necessary for topic modeling in general, TF-IDF is useful in explor-

ing data and deriving information that can help inform topic modeling.  

Next, we applied LDA to every issueDescription subset separately, to elicit topics 

that best describe each subset. The most essential input for LDA is the number of topics, 

which are typically user defined. After several attempts, we settled on different number 

of topics for different subsets. This decision was dictated by ‘γ’ distribution, which 

measures the probability of each document belonging to a topic. Higher number of top-

ics result in too sparse distribution, indicating that the documents are not being sorted 

well into different topics. Decreasing the number of topics results in less clear division 

among topics, with multiple concepts clubbed under one topic. In addition, the stake-

holders reviewed and validated the topics, aiding our decision on the number of topics.  

LDA application divided every issueDescription corpus into x semantically similar 

but distinct issues-related topics. We wanted to explore if patterns observed in these 

                                                           
5 https://www.tidytextmining.com/tidytext.html  
6 https://www.tidytextmining.com/nasa.html   
7 https://cran.r-project.org/web/packages/tidytext/index.html  

https://www.tidytextmining.com/tidytext.html
https://www.tidytextmining.com/nasa.html
https://cran.r-project.org/web/packages/tidytext/index.html
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topics had corresponding patterns in how the testing team addressed them. Based on 

the γ distribution, we joined each issues-related topic, and their corresponding docu-

ments, with the tokens generated from the testFeedback corpus. Independent analysis 

of the issueDescription corpus would have produced topics about only the issues the 

development team worked on in a given year, without any insight into their possible 

causes and how they were addressed. Similarly, analyzing the testFeedback corpus in 

isolation would have produced topics that provide some visibility into the testing ef-

forts, but without the key insight into the issues those efforts were directed at. By com-

bining the two corpora, we could explore one-to-many relationship between the distinct 

issue-related topics and how they were addressed by the testing team. 

The LDA results were shared with the Product Development Team Lead and the 

R&D Head at the CC, the two stakeholders that we collaborated with. We asked them 

to study the findings to determine their significance from their development perspec-

tive, identify issue-related topics and the one-to-many relationship between these topics 

and the testFeedback tokens. Since LDA generates topics without labeling them, we 

asked the stakeholders to label them manually. Automatic labeling is an objective ex-

ercise [28]. Due to highly contextual knowledge embedded in unstructured data, we 

argue that manual labeling is preferable to automatic labeling, and that the stakeholders 

are in an ideal position to identify and interpret the topics’ significance. The stakehold-

ers provided their interpretations in under a week. We posit that this effort spent would 

be less if the LDA results are reviewed full-time, as part of daily work, instead of as a 

non-urgent task for an industry-academia collaboration. After receiving the stakehold-

ers’ interpretations of the results, we held an hour-long joint meeting with both the 

stakeholders for further clarification on their interpretations and claims made therein, 

which helped us answer the RQ.  

4 Results 

We first present the topics and their significance for each Mantis subset, interpreted by 

the stakeholders. Next, based on this empirical evidence, and the software development 

knowledge that issue trackers tend to capture [24], we present an insight classification, 

to characterize the potential of developer-tester communication for development-re-

lated insights. The LDA results the stakeholders studied and validated are available in 

the Appendix8. The R code for LDA application can be found here9, but the Mantis raw 

data cannot be shared due to confidentiality reasons.  

4.1 Development-related insights from developer-tester communication 

The topics for all the Mantis subsets and their interpreted significance, based on their 

relation with the testFeedback tokens, is presented in Table 1. A more detailed table 

with a sample of both issueDescription and testFeedback tokens the stakeholders used 

                                                           
8 https://doi.org/10.5281/zenodo.4761727   
9 https://github.com/prabhatram/devtester_topicmodeling  

https://doi.org/10.5281/zenodo.4761727
https://github.com/prabhatram/devtester_topicmodeling
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to infer the topics’ significance is available in the Appendix. The ‘NA’ entries mean the 

stakeholders could not find any meaningful one-to-many relationship between test-

Feedback tokens and the corresponding issues-related topics.  

Table 1. Topics extracted from Mantis dataset and practitioners’ interpretation 

No. Topic Practitioners’ Interpretation 

Mantis 2016 subset 

1 Diagram Implementation of the tool’s diagram component  

2 Modelio extensions Modelio API to integrate new functionality 

3 Core feature / Integration 
Integration aspects of the tool and model storage lay-

ers 

4 Project configuration Project configuration and its external elements  

5 
Interoperability, Im-

port/export 

OS incompatibilities and issue reproducibility in 

different environment / version of Modelio 

6 Model creation NA 

Mantis 2017 subset 

1 Project lifecycle NA 

2 Diagram Diagrams worked on during the development in 2017 

3 Workbench support Feature containing workbench implementation 

4 
BPMN metamodel evolu-

tion 
NA 

5 
BPMN metamodel evolu-

tion 

BPMN diagram implementation and import/export 

feature 

6 
ArchiMate metamodel 

support NA 

7 BPMN diagrams 

   

Mantis 2018 subset 

1 General customer support Customer relations  

2 BPMN metamodel 
NA 

3 Methodological links 

4 
Modelio module (exten-

sions for Modelio) 

Solution dedicated for the tool’s module develop-

ment 

5 Document view NA 

6 
Collaborative work / con-

stellation 
Collaborative work with Constellation 

7 Diagrams 
Diagrams definition, implementation, commands and 

controllers in Eclipse RCP  

Mantis Topics. The stakeholders claim that the six topics for the 2016 subset reflected 

their project structure and implementation of their product’s lower layers. There was 

major work for redesigning the model kernels, and the related issues were identified in 

the topic ‘Core feature / Integration’. Stakeholders also claim that issues identified by 

the above topic and ‘Project configuration’ highlight several non-development related 
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anomalies that were relevant to the key components of Modelio. Overall, these topics 

reveal development process themes that could not have been discovered from sources 

like a project roadmap. The stakeholders regard these topics as evidence of develop-

ment activities to improve stability of the core components of Modelio. 

Of the seven topics for the 2017 subset, stakeholders could not find any relation 

between four of the topics and the corresponding testFeedback tokens. The tokens were 

too generic to provide visibility into how the issues were addressed. Still, the stake-

holders identified an overarching theme, characterizing their development activities for 

that year. The focus was on implementation of new Modelio meta-model, as evidenced 

in the ‘BPMN metamodel evolutions’ and ‘ArchiMate metamodel support’ topics. 

Stakeholders identified two topics for the same issue of ‘BPMN metamodel evolutions’. 

Reducing the number of topics led to failure in identifying any relationship between the 

issues and the testFeedback tokens, and so we decided to retain this redundancy. Doing 

so helped the stakeholders identify a relation between one of the ‘BPMN metamodel 

evolutions’ topics (#5) and the corresponding testFeedback tokens, thereby validating 

the decision to have seven topics for the 2016 subset. Next, the ‘Workbench support’ 

topic also suggested the focus on development of new features. The topics ‘BPMN met-

amodel evolution’ and ‘BPMN diagrams’ highlighted the significant work that had be-

gun on integrating BPMN standard. Stakeholders also claim that issues highlighted by 

the ‘Diagram’ topic would have remained undetected without the use of LDA. Stake-

holders also found issues related to user interface components, while issues related to 

Modelio core components, present in the 2016 subset, did not recur. This suggested that 

the development activities in 2017 grew closer to addressing end-user concerns. 

Of the seven topics for the 2018 subset, no relation were found among three of the 

topics and the corresponding testFeedback tokens. Overall, these topics suggested a 

mixture of development activities for the year. The ‘General customer support’ topic 

suggested an emphasis on addressing end-user reported issues, which were absent from 

both 2016 and 2017 findings. The stakeholders claim that this insight would have gone 

unnoticed if they had relied on their classical monitoring tools. The topics of ‘Method-

ological links’ and ‘Document view’ indicate new features development. However, the 

four topics of ‘BPMN metamodel’, ‘Modelio module (extensions), ‘Collaborative work 

/ Constellation’ and ‘Diagrams’ carry more significance. Stakeholders interpreted that 

the team emphasized on general quality improvement of several features, a develop-

ment activity missing from both 2016 and 2017. Overall, 2018 development activity 

focused on general quality improvements of the products delivered. 

Mantis is used to manage issues discovered by the quality team and reported by end 

users. Issues discovered by the quality team on newly developed features are more crit-

ical than those reported by end users, as density of the former is directly proportional 

to the quality of the development team’s work. In 2016 and 2017, most topics point 

towards development of new features, which stakeholders interpret as quality problems 

with the products delivered, and under-representation of issues related to the quality of 

existing features (GUI, end-user reported issues). This may suggest either poor man-

agement or smooth resolutions of these issues. Conversely, there is an under-represen-

tation of issues related to development of new features in 2018. Stakeholders view this 

as their development process evolving from addressing issues affecting Modelio’s core 
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components, to addressing issues reported by end users and implementing general im-

provements. This is indicative of improvement in Modelio’s quality, with its core com-

ponents stabilizing, giving stakeholders more time to address end user reported con-

cerns and the overall product quality. 

Based on the stakeholders’ interpretation, and the overarching development themes 

identified therein, we posit three development-related insights. First, bulk of the devel-

opment activities in 2016 centered on developing new features and improving 

Modelio’s stability by working on its core components. Second, in 2017 and particu-

larly 2018, development activities focused on addressing overall product quality and 

issues reported by the end users. Viewing these development activities together, the 

third insight relates to how the development process evolved from emphasizing devel-

opment of new features and Modelio’s internal quality (core components stability) to 

emphasizing Modelio’s external quality (end-user issues). Stakeholders point out that 

this evolution was natural, but would have remained undetected without this study. 

Insights Classification. Based on the insights interpreted from the topics and the state 

of the art, we propose the following non-exhaustive insight classification, to character-

ize insights discovered from developer-tester communication recorded in Mantis.  

 

Fig. 1. Insight Classification 

Stakeholders were specific in their interpretation of how different topics for different 

years afforded them visibility into their development processes and practices. Piece-

meal, the insights highlighted the efforts to address and improve the Modelio’s quality, 

both internal (core component stability) and external (end-user issues). Cumulatively, 

the insights are indicative of an evolution in the CC’s development process from 2016 

to 2018, as development efforts evolved from focusing on new features development 

to addressing product’s quality, especially external quality.  

5 Discussion 

We first elaborate on the development-related insights the stakeholders inferred, and 

how they improve upon the benefits reported in the state of the art. We also discuss the 

‘insight classification’ from the standpoint of existing literature, and the relevance and 

utility that companies similar to the CC may derive from it. 
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5.1 Development-related insights from developer-tester communication 

Despite the abundance of data generated as a result of modern software development 

methods like ASD, software development is still a risky endeavor, as existing tools are 

still inadequate at facilitating decision-making [3]. Software analytics can help address 

this shortcoming by automating processes to extract actionable information from data 

[29]. Still, companies struggle to capitalize on their development data, as a clear pur-

pose for data collection [30, 31] and interpreting that data’s significance [3] still remain 

a challenge. Our study’s findings can help with both these challenges, especially for 

unstructured data that represent most of the development data produced [1]. The devel-

opment-related insights that can be generated from unstructured data, with the help of 

text-mining techniques like LDA, could help companies capitalize on their data. 

In contrast to the LDA benefits reported in the current literature, our exploration-

centric approach helped identify insights of developers’ and testers’ engagement in ad-

dressing product stability, issues reported by end users, and general product quality, in 

addition to an overarching theme of process evolution. Stakeholders argue that these 

insights would have gone unnoticed without the study. These findings may be case 

specific, but they are evidence of LDA’s use for extracting development-related in-

sights in an industrial setting. LDA also helped the stakeholders discover transversal 

activities that was not documented in their project plan, something that their classical 

monitoring tools could not have detected. Insights related to addressing end-user re-

ported issues and general quality improvements are part of background work and diffi-

cult to assess over time, as they are unplanned and, therefore, not monitored. Conse-

quently, the stakeholders are now open to using LDA to analyze their development data 

at regular intervals. Incorporating a text-mining technique into the development process 

can help the CC create awareness among other stakeholders about the topics that may 

provide an early indicator of changes or problems warranting further attention.  

In general, stakeholders are interested a system’s history and how it evolves to un-

derstand their software development process [4]. Within the context of software evolu-

tion, how and why a software system changes can provide insights into both the specific 

software system and the software development as a whole [16]. LDA applied to the 

three-year Mantis data provided the CC stakeholders the historical knowledge, and the 

LDA topics helped them understand how and why their product development evolved, 

highlighting an evolution in their development process. Stakeholders’ tacit contextual 

knowledge contributed to their interpretation of the LDA results, which lends plausi-

bility to the above claim. Although LDA was applied to old data, the findings offer the 

stakeholders visibility into the development process of one of their flagship products, 

which can be leveraged to manage the development of future Modelio versions.  

LDA results could be seen as summarization [15] of the developer-tester communi-

cation at the CC, which could be a useful way of presenting reusable software engi-

neering knowledge to stakeholders [32]. Even though stakeholders-driven validation of 

LDA topics is seen as a critical requirement [33], this practice is not widely adopted 

[34], which reinforces our decision to include the stakeholders from the CC to study 

and validate the LDA results. In agreement with Hindle et al. [35], the stakeholders 

identified most of the relevant topics due to their familiarity of the concepts (conveyed 
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by tokens), but had difficulty interpreting and labelling some, due to the topics’ lack of 

significance. Furthermore, our study supports another finding from Hindle et al. [35], 

where most topics labelled by the stakeholders matched their perception of the devel-

opment processes and activities for Modelio between 2016 and 2018. Overall, our 

study’s findings are indicative of the importance and the necessity of including stake-

holders to validate LDA results, when conducted in an industrial setting. 

Based on the classification of issue trackers’ utility by Bertram et al. [24], Mantis’ 

use as a coordination and communication hub and communication channel is typical of 

any issue tracker. Mantis is used by developers, testers, and the quality team for ad-

dressing issues, and so its utility as a boundary object is also evident at the CC, where 

stakeholders utilize the stored data based on their custom needs and purposes. Most 

importantly, the overall process evolution the stakeholders interpreted points to Mantis 

serving as a knowledge repository, storing organizational knowledge that is difficult to 

detect otherwise. With this insight, and the potential future use of LDA at the CC to 

derive more such insights, stakeholders can plan their future development of Modelio 

better. For example, the stakeholders claim that once Modelio’s core components were 

stabilized, the team could focus on the issues reported by the end users. Modelio’s core 

components stability points to the product’s internal quality, as the related issues were 

identified before the use of the tool by end users [36]. Conversely, issues reported by 

the end users relate to Modelio’s external quality, as these issues were identified by 

them while using it [36]. The stakeholders can leverage this knowledge to estimate and 

allocate their efforts optimally. The classification is more relevant for other researchers 

and practitioners, interested in investigating insights that developer-tester communica-

tion may hold, and which could be extracted using text-mining techniques like LDA.  

6 Limitations and Threats to validity 

LDA is typically applied to large datasets, with thousands and millions of documents 

[37, 38]. Our dataset may be very small, but there exists no standard for sample size. 

The dataset should be large enough to generate distinct but not redundant topics, and 

small enough for topics that are not too broad and heterogeneous [39]. Although the 

small dataset is a limitation, stakeholders were able to extract distinct topics and non-

trivial insights characterizing their development process from 2016 to 2018.  

The number of topics is another limitation of our study. Similar to ideal sample size, 

there is no standard for ideal number of topics in LDA. Sbalchiero and Eder [39] pro-

vide a guide to aid in this decision, but those recommendations appear to be for sample 

sizes that are larger than ours. Informed by the γ distribution and stakeholders’ valida-

tion, we have tried to address this limitation to some extent.  

We address threats to our study’s validity based on the guidelines recommended by 

Runeson and Höst [25]. We acknowledge that the developer-tester communication doc-

umented in Mantis does not capture the process of identifying and addressing issues in 

their entirety. Since the CC employs multiple tools in their software development, in-

vestigation of Mantis’ data can provide only partial visibility into their development 

processes and practices. Even though the stakeholders claimed that the LDA topics 
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helped highlight an evolution in their development process, the findings are still limited 

by the extent of information shared among the developers and the testers through Man-

tis. By including the Product Development Team Lead and the R&D Head in our study, 

we mitigate the threat to our study’s construct validity to some extent. These stakehold-

ers were better judges of the significance and validity of the topics, and how these topics 

represent the process of identifying and addressing issues.  

Absence of contextual knowledge and other confounding factors interfere with the 

validity of interpretations of LDA topics. In our study, we relied on the CC stakeholders 

to interpret our findings and comment on its validity, as they possessed the necessary 

contextual knowledge to justify proper interpretation of their data. This helps us 

strengthen the internal validity of our study, but the potential of confirmation bias 

threatens it at the same time [40], and we acknowledge this tradeoff.  

Being a single case study, external validity of our findings is affected. However, the 

objective of our study is to explore development-related insights that could be extracted 

from unstructured data using LDA, in an industrial setting. We hope that the positive 

findings help trigger more exploratory investigation to discover the extent of 

knowledge that can be extracted from such unstructured data. To this effect, we pro-

posed an insight classification, which may be of utility to organizations with context 

similar to the CC. Similarly, interested researchers could build upon the classification, 

and conduct similar investigations to refine and supplement it.  

Only one author was involved in collecting the data and applying LDA, and in cre-

ating the classification, which can affect the reliability of the study. However, our find-

ings have been studied and validated by the collaborating stakeholders and the co-au-

thors of this study, which helps mitigate the threat to our study’s reliability. 

7 Conclusion 

Modern software development methods like ASD produce voluminous unstructured 

data on a daily basis, which may hold insights not easily discoverable from other means. 

Data related to developer communication have been leveraged to classify developer 

communication, propose developers for bug triage, aid in code comprehension, etc. 

However, the potential of developer-tester communication in generating development-

related insights remains unexplored, especially in industrial setting. 

We conducted a case study at a large software-intensive Agile company to explore 

development-tester communication for their potential to generate development-related 

insights. We applied LDA on this communication data from year 2016 to 2018, and 

invited two stakeholders to study and validate the results. Unexpectedly, they were able 

to find insights related to the development efforts to address their flagship product’s 

internal quality, external quality and general improvements. The stakeholders identified 

another insight of an overarching theme of process evolution, as their development ef-

forts evolved from addressing new features and internal quality to emphasizing on its 

external quality. The stakeholders claim that without the study, these insights may not 

have been discovered. Now, stakeholders are keen on incorporating LDA in their de-
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velopment process to keep track of these insights, despite the additional efforts the tech-

nique demands. We also proposed an insight classification to characterize the insights 

that we discovered. Companies will similar development context could use these in-

sights to guide their analysis of developer-tester communication unstructured data. In-

terested researchers are encouraged to critique and improve upon this classification.  

As part of future work, we plan to develop software metrics that help the stakehold-

ers monitor and track the LDA topics they are interested in. This real-time tracking of 

the significant topics can remove the requirement of conducting LDA every x months 

to derive insights. Instead, stakeholders can apply LDA only when there are legitimate 

and major changes to the project, resulting in different sets of topics, which in turn 

could be used to update the metrics.  
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