Skip to main content

Quantum Machine Learning and Fraud Detection

  • Chapter
  • First Online:
Protocols, Strands, and Logic

Abstract

One of the most common problems in cybersecurity is related to the fraudulent activities that are performed in various settings and predominantly through the Internet. Securing online card transactions is a tough nut to crack for the banking sector, for which fraud detection is an essential measure. Fraud detection problems involve huge datasets and require fast and efficient algorithms. In this paper, we report on the use of a quantum machine learning algorithm for dealing with this problem and present the results of experimenting on a case study. By enhancing statistical models with the computational power of quantum computing, quantum machine learning promises great advantages for cybersecurity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the purposes of this paper, it is sufficient to restrict ourselves to the finite-dimensional case where bounded linear operators can always be represented as matrices.

  2. 2.

    The security of RSA and Diffie-Hellman cannot be demonstrated anymore with the prospective use of a quantum computer, since efficient quantum algorithms exist for factorization and for computing the discrete logarithm.

  3. 3.

    The quantum computer currently available to the public is a very limited 16-qubit device, which is much too primitive (in terms of both stability and error tolerance) for practical problems.

References

  1. Aaronson, S.: Read the fine print. Nat. Phys. 11(4), 291–293 (2015). https://doi.org/10.1038/nphys3272

    Article  Google Scholar 

  2. Aleksandrowicz, G., et al.: Qiskit: an open-source framework for quantum computing (2019). https://doi.org/10.5281/zenodo.2562110

  3. Ambainis, A., Leung, D., Mancinska, L., Ozols, M.: Quantum random access codes with shared randomness (2008). arXiv preprint arXiv:0810.2937

  4. Ben-Israel, A., Greville, T.N.E.: Gereralized Inverses - Theory and Applications. CMS Books in Mathematics, 2nd edn. Springer, Heidelberg (2003). https://doi.org/10.1007/b97366

    Book  MATH  Google Scholar 

  5. Bolton, R.J., Hand, D.J.: Statistical fraud detection: a review. Stat. Sci. 17(3), 235–255 (2002)

    Article  MathSciNet  Google Scholar 

  6. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. Dover, Pitman, London (1979)

    Google Scholar 

  7. Can, B., Yavuz, A.G., Karsligil, E.M., Guvensan, M.A.: A closer look into the characteristics of fraudulent card transactions. IEEE Access 8, 166095–166109 (2020). https://doi.org/10.1109/ACCESS.2020.3022315

    Article  Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019)

    Article  Google Scholar 

  10. Deutsch, F.: Best Approximation in Inner-Product Spaces. Springer, Heidelberg (2001). https://doi.org/10.1007/978-1-4684-9298-9

    Book  MATH  Google Scholar 

  11. Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate non-interference. J. Comput. Secur. 12(1), 37–81 (2004)

    Article  Google Scholar 

  12. Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations. In: LOPSTR 2000. LNCS, vol. 2042, pp. 147–164. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45142-0_9

    Chapter  Google Scholar 

  13. Di Pierro, A., Wiklicky, H.: Semantic abstraction and quantum computation. In: 4th International Workshop on Quantum Programming Languages. Electronic Notes in Computer Science, vol. 210, pp. 49–63. Elsevier (2008)

    Google Scholar 

  14. Di Pierro, A., Wiklicky, H.: Probabilistic abstract interpretation: from trace semantics to DTMC’s and linear regression. In: Probst, C.W., Hankin, C., Hansen, R.R. (eds.) Semantics, Logics, and Calculi. LNCS, vol. 9560, pp. 111–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27810-0_6

    Chapter  MATH  Google Scholar 

  15. Di Pierro, A., Wiklicky, H.: Probabilistic analysis of programs: a weak limit approach. In: Dal Lago, U., Peña, R. (eds.) FOPARA 2013. LNCS, vol. 8552, pp. 58–76. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12466-7_4

    Chapter  MATH  Google Scholar 

  16. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008)

    Article  MathSciNet  Google Scholar 

  17. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15) (2009). https://doi.org/10.1103/physrevlett.103.150502

  18. Kübler, J.M., Buchholz, S., Schölkopf, B.: The inductive bias of quantum kernels (2021). arXiv preprint arXiv:2106.03747

  19. Mengoni, R., Di Pierro, A.: Kernel methods in quantum machine learning. Quant. Mach. Intell 1(3), 65–71 (2019)

    Article  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  21. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

  22. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  Google Scholar 

  23. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130501 (2014)

    Article  Google Scholar 

  24. Schuld, M.: Quantum machine learning models are kernels methods (2021). arXiv preprint arXiv:2101.11020v1

  25. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020)

    Article  MathSciNet  Google Scholar 

  26. Schuld, M., Petruccione, F.: Prospects for near-term quantum machine learning. In: Supervised Learning with Quantum Computers. QST, pp. 273–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96424-9_9

    Chapter  MATH  Google Scholar 

  27. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst 25(6), 1000–1010 (2006). https://doi.org/10.1109/TCAD.2005.855930

    Article  Google Scholar 

  28. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  29. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999). https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  30. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)

    Article  Google Scholar 

  31. Wittek, P. (ed.): Quantum Machine Learning. Academic Press, Boston (2014). https://doi.org/10.1016/B978-0-12-800953-6.00015-3, http://www.sciencedirect.com/science/article/pii/B9780128009536000153

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Di Pierro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Pierro, A., Incudini, M. (2021). Quantum Machine Learning and Fraud Detection. In: Dougherty, D., Meseguer, J., Mödersheim, S.A., Rowe, P. (eds) Protocols, Strands, and Logic. Lecture Notes in Computer Science(), vol 13066. Springer, Cham. https://doi.org/10.1007/978-3-030-91631-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91631-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91630-5

  • Online ISBN: 978-3-030-91631-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics