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Abstract. Many emerging digital library applications rely on automated classi-

fiers that are trained using manually assigned labels. Accurately labeling train-

ing data for text classification requires either highly trained coders or multiple 

annotations, either of which can be costly. Previous studies have shown that 

there is a quality-quantity trade-off for this labeling process, and the optimal 

balance between quality and quantity varies depending on the annotation task. 

In this paper, we present a method that learns to choose between higher-quality 

annotation that results from dual annotation and higher-quantity annotation that 

results from the use of a single annotator per item. We demonstrate the effec-

tiveness of this approach through an experiment in which a binary classifier is 

constructed for assigning human value categories to sentences in newspaper ed-

itorials. 

Keywords: Text classification, Efficient annotation, Multi-armed bandits. 

1 Introduction 

As a result of open data promotion, various types of data have become available 

through data repositories and data archives. New types of research, for example, digi-

tal humanities or computational social science, are greatly benefiting from them. 

Many studies that use digital data and text have been conducted using machines. By 

contrast, qualitative research is still useful because it can provide deeper knowledges 

than the insights. However, qualitative research requires human effort; hence, the 

amount of text and data that can be analyzed is limited. We are interested in introduc-

ing machines to qualitative research methods while maintaining the quality of thought 

and improving efficiency. This would enable us to support digital humanities and 

computational social sciences. Moreover, it would increase the importance of digital 

archives and data repositories. 

Supervised machine learning is widely used for text classification in tasks that 

range from academic studies of collaboration behavior to commercial tracking of 

brand mentions on social media. To construct good classifiers, substantial quantities 

of annotated training data are typically required. Human coders are typically used to 

create such training data, but this choice results in limits to the amount of annotation 
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that can be performed for cost reasons. Therefore, we are interested in techniques to 

create the most useful annotated training data for a given annotation cost. 

For manual annotation, Ishita et al. explored two approaches, each assuming that 

two coders were available [11]. One approach had coders working alone to annotate 

the largest possible number of different texts for a given level of annotation effort, 

and the other had coders working together to create the best possible annotation for 

each text, albeit at a higher cost per annotation. Ishita et al. compared the classifiers 

trained using each approach by plotting learning curves to investigate how well the 

classifiers performed as the number of annotations increased for six annotation tasks, 

and found three broad categories of patterns: (1) rapidly generating large quantities of 

annotations was sometimes a good approach, particularly when positive examples 

were rare, (2) generating higher quality annotations by having two coders annotate 

each text independently and then discussing their disagreements was also sometimes a 

good approach, particularly when the task was difficult, and (3) starting out with sin-

gle annotation but switching to dual annotation at some point in the process was 

sometimes the best overall approach. Clearly, it may also be the case that one coder is 

better than another, and because of learning and fatigue effects, such differences may 

change over time. Therefore, in this paper, we regard the choice between a single 

annotator and dual annotation, and for single annotation the choice of the coder, as an 

optimization problem, and present a method that consistently makes near-optimal 

choices over a range of tasks. 

If the outcome of each choice could be known with certainty, it would be best to 

select the pair of a specific coder and a specific text that yields the greatest possible 

improvement in the performance of the classifier after the next annotation. Clearly, 

we do not know which label would actually be assigned in each case, but despite this, 

we can compute the expected score of this improvement using the results of past an-

notations. Two types of annotations are possible when two coders are available: label-

ing an unannotated text to increase the quantity of training data or improving an exist-

ing label as a result of adjudication (i.e., discussion and joint decision) between cod-

ers after obtaining a second annotation for a text that has already been annotated once. 

If the labeling of unannotated text by a coder improves the performance of the classi-

fier, then the expectation that this coding method will be further improved in terms of 

classifier performance in the next annotation will be higher. If, by contrast, the expec-

tation of a second annotation that results from adjudication improves the performance 

of the classifier as the annotation progresses and its expected score is higher than that 

of a new annotation action, a higher performance classifier will be constructed when 

an adjudication action is selected for the next annotation. 

The sequential choice of the coding method to obtain a higher-performance classi-

fier is modeled in the framework of a multi-armed bandit problem, which is a problem 

setting for reinforcement learning. Reinforcement learning is a learning approach that 

seeks to learn to act in a manner that maximizes a reward. In the multi-armed bandit 

problem, the actions are choices (called “arms”) whose past probability of success can 

be observed, and the goal is to develop a policy for sequentially selecting the best 
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choice at each point in time to maximize the total reward over a finite time.1 For our 

goal of affordably building the most useful training data, the size of the reward is the 

quality of the resulting classifier, and the choices are between single or dual annota-

tion. For comparability with prior results, we tested our approach using the datasets 

constructed by Ishita et al. [11], and found that our approach consistently made near-

optimal choices. From these results, we conclude that a similar multi-armed bandit 

approach to choosing between single or dual annotation could be useful for a broad 

range of applications in which text classifiers must be trained in a cost-effective man-

ner. 

2 Related Work 

In this section, we describe prior work on efficiently constructing training data and 

multi-armed bandits. 

 

2.1 Efficient Construction of Training Data 

Several information retrieval evaluation organizations (e.g., TREC and NTCIR) have 

created large-scale annotated datasets using pooling [12, 17]. In pooling, the 

annotation task is partitioned by topic, with a single coder judging all texts found 

above some rank cutoff for that topic using any system that contributed to the creation 

of the pool. This approach models a case in which the appropriate annotation is an 

individual opinion, as is typically the case for relevance judgements in a search task. 

Although this is an efficient approach, in contrast to personal opinions about search 

topics, our interest is in the annotation of phenomena on which people can agree. 

In pooling, machines work alone to select items for annotation. Other approaches 

are possible, including active learning in which humans and machines work together 

to determine which documents should be annotated. For example, Cai et al. [4] pro-

posed an active learning method to automatically select the text to be labeled next 

from an unlabeled dataset using the already annotated items. In this method, the non-

annotated text furthest from the already annotated items is chosen to be labeled next. 

Somewhat closer in spirit to our proposed approach, Culotta and McCallum [7] pro-

posed a method called expected model change maximization to determine the text to 

be labeled next, which is the text that is expected to most change the discriminative 

model after the new annotation is added to the labeled dataset, comparing the discrim-

inative model generated from the already-labeled dataset. The distinction between 

their study and our approach is that they proposed choosing the item to be annotated, 

whereas we propose choosing the coder who will perform the annotation. Both are 

important problems, and in future work, the two should be explored together. Howev-

er, for the initial study reported in this paper, considerable simplification results from 

our choice to focus simply on the coder selection problem. 

 
1 The name comes from a colloquial reference to slot machines used by gamblers called “one-

armed bandits.” In the imagined multi-armed bandit scenario, the gambler seeks to pull the 

arm that would yield the greatest profit. 
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All the aforementioned approaches focus on a single annotator. However, we are 

interested in annotation tasks in which the phenomenon to be annotated is defined by 

consensus rather than an individual opinion. To evaluate the quality of the annotations 

between two coders, κ [5, 6], S [3], and π [15] coefficients have been widely used. 

For example, Artstein and Poesio [1] and Fort et al. [8] verified the reliability of the 

agreement between two coders using various coefficients. When using coefficients to 

measure the reliability of annotations between coders, it is necessary to conduct the 

annotation on some fixed collection that both coders annotate. We use such a collec-

tion in our experiments, but our goal is to determine optimal choices that can limit 

dual annotation to those cases in which it is actually adding value. 

In recent years, the use of many annotators has been widely studied in the context 

of crowdsourcing [10], where it is possible to request annotations from a broad range 

of coders. A number of frameworks for obtaining useful results from crowdworkers 

who exhibit varying levels of expertise, ability, and diligence have been studied. For 

example, Nguyen et al. [13] proposed a method to measure the quality of annotations 

obtained from crowdworkers using a dataset labeled by domain experts using active 

learning. Welinder et al. [18] proposed a method for estimating true labels by model-

ing the worker’s answering process. Zhang et al. [19] proposed a framework to man-

age the quality of coders by clustering coders based on their annotation history. How-

ever, crowdworkers normally operate independently, whereas we are interested in 

settings in which disagreeing coders can meet to resolve their disagreements. 

 

2.2 Multi-Armed Bandit Problem 

Many algorithms have been proposed for the bandit problem: ε-greedy algorithm, 

UCB (Upper Confidence Bound) [2], and Thompson sampling [16] are typical algo-

rithms. The ε-greedy algorithm is a method in which an arm is randomly selected with 

a probability of ε ("exploration") and the arm with the highest expected score for the 

reward at that time is selected with a probability of 1 − 𝜀 ("exploitation"). By consid-

ering the balance between "exploration" and "exploitation" for the arm selection, the 

risk of continuing to select one arm can be mitigated. UCB is a method for calculating 

the score of each arm using the average of the observed reward and the value calcu-

lated based on the number of times the arm is selected. In this method, the lower the 

number of times the arm is selected, the higher the score. Thompson sampling is a 

method for selecting an arm based on the probability that the arm can obtain the max-

imum expected score. In the method, the posterior distribution of the expected score 

of the reward is modeled in the framework of Bayesian statistics. In a general bandit 

problem, rewards follow the Bernoulli distribution; that is rewards were obtained or 

not obtained. By contrast, in the construction of training data, elaborate rewards for 

the annotation action can be measured by calculating the differences of the perfor-

mance between the current classifier and previously constructed the classifier. We 

therefore apply the ε-greedy algorithm, which is the simplest of the bandit algorithms, 

which can flexibly incorporate the above element. 

The above bandit strategies assume that the reward acquisition probability of each 

arm does not change. However, in reality, the reward distribution of the arm can 
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change over time (e.g., changes in the click rate for the advertisements caused by 

changes in ad design and trends). The bandit problem corresponding to such a tem-

poral change of the reward distribution is called a non-stationary multi-armed bandit 

problem. Discounted UCB [9] and discounted Thompson sampling [14] are the algo-

rithms used to apply UCB and Thompson sampling to this problem, respectively, and 

they introduce the concept of the discount. In the annotation for the construction of 

the training data, past and present scenarios may have changed the nature of the la-

beled dataset and coders. Therefore, by introducing a decay function when evaluating 

the arm, we expect that an arm with a high expected score can be selected effectively 

while the influence of past observation results is diminished. 

3 Selection Algorithm 

3.1 Overview 

We are interested in binary annotation tasks in which some phenomenon (in our case, 

a consensus definition of topical relevance) is to be annotated as present or absent. 

Our goal is to maximize some single-valued measure of classification effectiveness, 

such as F1. Assuming, without loss of generality, that there are two coders, and as-

suming, as a computational simplification, that the order of texts to be annotated is 

fixed, there are four choices to be made about which coder annotates which text: 

 Arm 1: Select coder 1 and the first text in the unannotated set. 

 Arm 2: Select coder 2 and the first text in the unannotated set. 

 Arm 3: Select coder 2 and the first text in the labeled text set annotated by 

coder 1, and decide the final annotation after discussion. 

 Arm 4: Select coder 1 and the first text in the labeled text set annotated by 

coder 2, and decide the final annotation after discussion. 

For the first two arms, the selected unannotated text is annotated by coder 1 or 2. For 

the last two arms, coder 1 or 2 annotates the selected text; the two coders discuss 

which annotation is correct, if their annotations are different; and then the final anno-

tation is decided. 

For the calculation of the expected score for each arm, we approximate the average 

of the increase or decrease of the F1 value. Specifically, we calculate the difference 

between the F1 value of the classifier based on the labeled dataset constructed by a 

certain arm at time t and the F1 value of the classifier based on the dataset constructed 

at time 𝑡 − 1. Using the difference between the F1 values, we consider that a highly 

effective annotation action reflects the intuition that it will continue to improve the 

performance of the classifier. Additionally, when the improvement range of the arm 

that has been selected decreases or deteriorates as the annotation progresses, this may 

suggest that the nature of coders or labeled datasets is changing, and this leads to an 

opportunity to select another arm that matches the current annotation environment and 

improves the annotation. When reflecting the change of the nature of coders from the 

viewpoint of the time series, it can be helpful to use only the results in a certain sec-

tion from the present to the past n times or gradually reduce the influence of past re-

sults when calculating the expected score of each arm. If only the results of a certain 
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interval from the present are used, the expected score for the arm that was not selected 

even once during that period cannot be calculated. Therefore, we adopt a strategy to 

reduce the influence of past results and use a decay function. 

The formula for the expected score for each arm incorporating these elements is as 

follows: 

 𝑆𝑐𝑜𝑟𝑒_𝐴𝑟𝑚𝑖 =
∑ ∆𝐹𝑖(𝑡)×𝑒−𝛼(𝑇−𝑡)𝑇

𝑡=1

∑ 𝑐𝑖(𝑡)×𝑒−𝛼(𝑇−𝑡)𝑇
𝑡=1

 (1) 

 ∆𝐹𝑖(𝑡) = {
   𝐹𝑡 − 𝐹𝑡−1   (𝑖𝑓 𝐴𝑟𝑚𝑖  𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)

  0                                                     (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
 (2) 

𝑐𝑖(𝑡) = {
  1  (𝑖𝑓 𝐴𝑟𝑚𝑖  𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡)

  0                                      (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
, 

where T is the total number of annotation actions and 𝐹𝑡 is the F1 value of the classi-

fier constructed using the labeled dataset in time 𝑡. If all labels in the dataset are nega-

tive or the precision at time t cannot be computed, we set 𝐹𝑡 = 0. We use 𝑒−𝛼(𝑇−𝑡) as 

the decay function, where 𝛼 is the weighting parameter used for adjusting the damp-

ing speed. The weight for the 𝑅-th past result from the present is 𝑒−𝛼𝑅. If we set 𝛼 so 

that this weight becomes W, then 

 𝛼 = −
1

𝑅
log 𝑊.  

For example, if the weight for the past 100th result from the present is 0.1, then α is 

− 1 100⁄ × log 0.1. 

 

3.2 Algorithm 

In this section, we describe a method for sequentially selecting a coder and text based 

on the ε-greedy algorithm. Table 1 contains a summary of the notation used in our 

method. Note that our method needs to set C, D, Fth, N, R, W and ε in advance. Addi-

tionally, 𝐷1, 𝐷2, and A are initially set to the empty set ∅. In our method, if Arm 1 is 

operated, the algorithm removes the selected text from D and adds the text with the 

label annotated by coder 1 to 𝐷1. If Arm 2 is operated, the algorithm removes the 

selected text from D and adds the text with the label annotated by coder 2 to 𝐷2. If 

Arm 3 is operated, the algorithm removes the selected text from 𝐷1 and adds that text 

with the label by the adjudication to A. If Arm 4 is operated, the algorithm removes 

the selected text from 𝐷2 and adds that text with the label by the adjudication to A. 

Our method consists of three steps. We describe the details of each step below. 

(Step 1) Initial setting for the classifier 

As shown in Eq. (1), the expected score of each arm is calculated based on the F1 

value of the classifier constructed from the labeled dataset. Therefore, before execut-

ing the ε-greedy algorithm, it is necessary to construct a scenario in which the F1 

value can be calculated from the labeled dataset. Additionally, a classifier with an 

extremely low F1 value can be said to have poor dataset quality, which may adversely 

affect the calculation of the expected score. Furthermore, from the findings in [11], 
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Table 1. Notation. 

 Description 

D Ordered set of texts to be annotated. 

D1 Set of pairs of text and its annotation by coder 1. 

D2 Set of pairs of text and its annotation by coder 2. 

A Set of pairs of text and its annotation by the two coders’ adjudication. 

C Number of annotations that can be executed with the given budget. 

Fth Threshold for F1 value of classifier constructed by the labeled dataset. 

N Parameter for selecting each arm N / 4 times to evaluate evenly. 

ε Parameter for determining "exploitation" or "exploration". 

 

 

the F1 value tends to increase as the amount of data increases for the initial annotation 

cost. Therefore, in step 1, the following process is executed. 

First, Arm 1 and Arm 2 are selected alternately when D is not empty, and Arm 3 

and Arm 4 are selected alternately when D is empty. After the arm is operated, C is 

decremented by 1. If there is at least one positive example and negative example in 

the labeled dataset and the F1 value of the classifier constructed using the labeled 

dataset is greater than or equal to Fth, the algorithm proceeds through step 2 and sets 

F0 to the F1 value of the classifier constructed using the labeled dataset constructed. 

Note that this process is not regarded as an annotation action by the arm. If C is 0, our 

method is terminated. 

(Step 2) Initial setting of the expected score for each arm 

In this step, the initial score for 𝑆𝑐𝑜𝑟𝑒_𝐴𝑟𝑚𝑖   (1 ≤ 𝑖 ≤ 4) is obtained. Each arm is 

essentially selected in the order Arm 1, Arm 2, Arm 3, and Arm 4. If there is no text 

to execute for the selected arm, the operation on the arm is skipped and N is decre-

mented by 1, and then the next arm is selected (this process is repeated until a viable 

arm is selected). After the arm operation is complete, the F1 value of the classifier 

constructed using the labeled dataset is assigned to Ft, N is decremented by 1, and C is 

decremented by 1. If N is 0, the algorithm proceeds to step 3. If C is 0, our method is 

terminated. 

(Step 3) Arm selection based on the ε-greedy algorithm 

This step selects the arm based on the ε-greedy algorithm. First, r is randomly se-

lected from [0, 1). If r is less than ε, the algorithm switches to "exploration," and if r 

is greater than or equal to ε, the algorithm switches to "exploitation." In "exploration" 

and "exploitation," the following processes are conducted. 
 Exploration: The algorithm randomly selects one arm from the four types of 

arms with equal probability. If no text is available for annotation by the se-
lected arm, the other arm is randomly selected again. This process is per-
formed repeatedly until a viable arm is selected. 

 Exploitation: The algorithm calculates 𝑆𝑐𝑜𝑟𝑒_𝐴𝑟𝑚𝑖  (1 ≤ 𝑖 ≤ 4) using Eq. 
(1), and then selects the arm with the highest score for 𝑆𝑐𝑜𝑟𝑒_𝐴𝑟𝑚𝑖 . If no text 
is available for annotation by the selected arm, another arm with the next 
highest score for 𝑆𝑐𝑜𝑟𝑒_𝐴𝑟𝑚𝑖  is selected (this process is performed repeated-
ly until a viable arm is selected). 
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After "exploration" or "exploitation," 𝐹𝑡 is calculated. Then, C is decremented by 1, 

and the end condition in step 3 (whether C is 0) is confirmed. 

4 Experiment 

4.1 Experimental Settings 

Our method can be applied to any binary classification task, but for our experiments, 

we chose to use the annotation task in [11]. This task was set originally to support 

social science research on the role of human values in the nuclear power debate, and 

was part of a multistep process that was ultimately intended to provide automated 

assistance for topically focused investigations of the role of human values in public 

debates. In this study, 120 Japanese newspaper editorials from the Mainichi Shimbun 

newspaper that substantively addressed the nuclear power debate in Japan following 

the Fukushima Daiichi disaster were divided into six subsets of 20, and each sentence 

in each document was annotated independently by two coders (both of whom were 

native Japanese speakers) for its relevance to eight predefined human value catego-

ries. Table 2 shows the definitions of the human value categories. For example, if a 

sentence described a judgement or evaluation based on results that included future 

prospects or macro/long-term perspectives, the sentence was considered to be positive 

for the human value "Consequence." Note that this annotation process allows multiple 

human value categories to be assigned to a sentence because more than one human 

value may be expressed in a sentence. The coders then decided the adjudicated anno-

tation of a batch of 20 documents by discussion in one sitting. They repeated these 

processes six times because there were 120 documents. The resulting dataset that was 

created for each human value category by this annotation process contained three 

types of annotation for each sentence: coder A’s annotation labels, coder B’s annota-

tion labels, and the adjudicated annotation labels that were ultimately arrived at 

through discussion between the coders. 

In our experiment, annotated sentences in rounds 2 to 5 were used as training data 

and annotated sentences in round 6 were used as evaluation data. Sentences in round 1 

were not used to minimize annotator learning effects. Additionally, six types of cate-

gories with more than 50 positive examples in the adjudicated training data for eight 

types of human value categories were chosen. Table 3 shows the details of the dataset 

for each human value. Each training data cell shows the number of sentences annotat-

ed by coder A/coder B/adjudication. Each evaluation data cell shows the number of 

sentences annotated as a result of the adjudication; that is, we regarded the adjudica-

tion in the evaluation data as the gold standard. The sizes of training and evaluation 

data were 2,188 and 570, respectively. In our method, 2,188 ordered sentences were 

set in D, described in Table 1, and 540 sentences were reserved for the calculation of 

the actual F1 values of the classifier constructed from the labeled dataset. Additional-

ly, the annotation cost for annotating 2,188 sentences by adjudication was 4,376. To 

show the full range of results, we set C, described in Table 1, to 4,376. 

Because our task was order dependent, we repeated the entire process 1,000 times, 

with 1,000 random shuffles of the sentences in the training data document-by- 
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Table 2. Definitions of the human value categories. 

Human Value Definition 

Consequence Values on judgement or evaluation based on results including future 
prospects (e.g. outcomes, objectives) or macro/long-term perspectives. 

Safety Values of safety and security; the state of being free from danger, injury, 
threat or fear; measures to prevent accidents and hazards. 

Human Welfare Values on fulfilling benefits common to human beings and related to 
society as a whole; Clear benefits to the public. 

Intention Values on emotion or feelings including impression, attitude, empathy, 
prudence, and sincerity; The quality of being honest and integrity; ad-
herence to moral principles. 

Social Order Values on social structure, including rules, norms, common sense and 
expectations as well as social responsibility; Institutional, legal, and 
political decisions involving governments and states. 

Wealth Values on pursuing any economic goals, such as money, material pos-
sessions, resources, and profit including business activities. 

Freedom Value of individual freedom and choices; the state of being uncon-
strained; freedom from interference or influence by others; 

Personal Welfare Values on personal needs, growth, and self-actualization. 

Table 3. Distribution of the dataset for each human value category.  

 Training Data Evaluation Data 

Positive Negative Positive Negative 

Consequence 667/758/959 1521/1430/1229 270 270 

Safety 586/663/719 1602/1525/1469 249 291 

Human Welfare 196/196/224 1992/1992/1964 73 467 

Intention 167/152/205 2021/2036/1983 66 474 

Social Order 1445/1473/1570 743/715/618 431 109 

Wealth 263/251/289 1925/1937/1899 118 422 

 

 

document. Each time a sentence was annotated, we retrained a support vector ma-

chine (SVM), implemented in TinySVM2 using a linear kernel. We used Juman ver-

sion 7.013 to tokenize and perform morphological analysis for Japanese, and we used 

all the resulting words as features for the classifier after removing period and comma 

characters. We used whether the word appeared or not as each feature’s weight. 

We plotted learning curves for the evaluation data by placing the annotation cost 

on the horizontal axis and the F1 value on the vertical axis. Note that the horizontal 

axis represents the number of annotations, not the number of sentences, because one 

sentence may have two annotations. The learning curves were for the following: 
 Adjudicated (baseline): we used the adjudicated data for training, and count-

ed this as two annotations in each iteration. 
 Alternating (baseline): we alternated between using coder A’s and coder B’s 

individual annotations for training until all sentences were annotated, and then 
replaced single annotations with adjudicated annotations in the same order. 

 
2 http://chasen.org/~taku/software/TinySVM/ 
3 http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN 
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 Selection: we sequentially selected the next sentence and coder using the ε-
greedy algorithm. 

We plotted the above learning curves for each human value category in Table 3.4 

We determined the parameters Fth, N, R, W, and ε used in our method using the fol-

lowing approach. We used the datasets for Consequence, Safety, and Human Welfare 

as tuning data, and repeatedly performed the following: we observed the transition of 

F1 values in the three types of dataset and manually tuned each parameter based on 

the results. We fixed N at 40 because step 2 played a part in obtaining the initial value 

for each arm used in step 3, and it was not necessary to incur a large cost in step 2 

because the score of each arm was updated in step 3. Additionally, we fixed ε at 0.1, 

which has been commonly used in various tasks that used the ε-greedy algorithm. 

Finally, we manually determined the parameters with good F1 value transitions for 

the three types of dataset. The parameters we determined were (𝐹𝑡ℎ, 𝑁, 𝑅, 𝑊, ε) = 

(0.3, 40, 200, 0.1, 0.1). We applied this combination of parameters to the other three 

types of dataset (Intention, Social Order, and Wealth). 

 

4.2 Experimental Results 

Fig. 1 shows how F1 improved based on the macro average over 1,000 random simu-

lations as the number of annotations increased for each human value. First, we ob-

serve the results when the parameters described in Section 4.1 were tuned on the same 

categories (Consequence, Safety, Human Welfare). For Consequence (Fig. 1(a)), the 

Selection curve shows F1 values close to those of the Adjudicated curve, which 

achieved higher values than the Alternating curve for the early annotation cost. For 

Safety (Fig. 1(b)) and Human Welfare (Fig. 1(c)), the Selection curve shows F1 val-

ues close to those of the Alternating curve, which achieved higher values than the 

Adjudicated curve for the early annotation cost, and then later shows almost the same 

F1 values as the Adjudicated curve, which achieved higher values than the Alternat-

ing curve, because the annotation costs where the transitions of the F1 value occurred 

when using the Adjudicated and Alternating curves intersected. 

Next, we investigate the results when the optimum parameters determined using 

the above categories were applied to the other categories (Intention, Social Order, 

Wealth). For Intention (Fig. 1(d)), the Selection curve shows F1 values close to those 

of the Alternating curve, which achieved higher values than the Adjudicated curve for 

the early annotation cost. For Social Order (Fig. 1(e)), the Selection curve shows F1 

values close to those of the Adjudicated curve, which achieve higher values than the 

Alternating curve for the early annotation cost. For Wealth (Fig. 1(f)), the Selection 

curve shows almost the same F1 values as the Alternating curve, which achieved 

higher values than the Adjudicated curve for the early annotation cost (annotation cost 

interval 1–600), and then shows F1 values between the Adjudicated and Alternating 

curves. These results indicate that our method generally yielded good results that 

 
4 Note the difference in annotation strategy between constructing annotated data in [11] and 

applying the multi armed bandit (MAB)-problem method: in [11], coders assigned several 

labels to each sentence in one sitting; however for the MAB-problem method, one label is 

assigned or not for each sentence. 
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Fig. 1. Learning curves for each human value. 
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were between the Adjudicated and Alternating curves. Additionally, to further im-

prove the learning curves of Selection for categories such as Wealth, we would need 

to automatically estimate optimum parameters according to task and work scenario. 

 

4.3 Discussion 

In this section, we verify the effectiveness of Fth, 𝑒−𝛼(𝑇−𝑡), and difference between the 

F1 values (∆𝐹𝑖(𝑡)) in Eq. (2) in Selection to investigate how these elements added to 

or changed the conventional ε-greedy algorithm’s effect on the F1 value’s curve.  For 

these verifications, we used the datasets of Consequence and Human Welfare, which 

were used for parameter tuning. For Fth, we set Fth = 0 to verify whether it is better to 

move to step 2 with a value above a certain level for the F1 value of the classifier 

constructed from the training data created in step 1. Note that all parameters other 

than Fth used the values described in Section 4.1. For 𝑒−𝛼(𝑇−𝑡), we compared the cas-

es with and without this weight in Eq. (1). Note that all parameters other than R and W 

used the values described in Section 4.1. For ∆𝐹𝑖(𝑡), we compared the case where the 

score follows the difference between F1 values with the case where the score follows 

the Bernoulli distribution used in the conventional bandit algorithm. In this verifica-

tion, we set ∆𝐹𝑖(𝑡) to 1 if the F1 value improved from the previous classifier, and 0 

otherwise. For this case, we used the parameter values described in Section 4.1. 

Fig. 2 shows the transitions of the F1 values for the above cases. Selection (Fth = 

0) shows the curve when Fth is set to 0 in Selection. Selection (without weight) shows 

the curve when 𝑒−𝛼(𝑇−𝑡) is not used in Eq. (1) in Selection. Selection (binary) shows 

the curve when binary evaluation is used instead of the difference between the F1 

values (∆𝐹𝑖(𝑡)) in Eq. (2) in Selection. First, we compare the results for the settings of 

Fth. For Consequence (Fig. 2(a)), the transitions of the F1 values when Fth = 0 and Fth 

= 0.3 were almost the same. However, for Human Welfare (Fig. 2(b)), the results for 

Fth = 0.3 demonstrated higher performance than the results for Fth = 0. From these 

results, we conclude that to construct a high-performance classifier consistently in 

Selection, we need to construct a classifier that has a certain F1 value before moving 

to step 2 in Selection. Next, we compare the results with and without 𝑒−𝛼(𝑇−𝑡). In 

Human Welfare (Fig. 2 (b)), the effect of using weights was not confirmed; however, 

higher F1 values were confirmed when the weight was used for Consequence (Fig. 

2(a)). These results suggest that the probabilities of the improved performance of 

some arms may differ between past and current work, depending on the task. There-

fore, we can possibly calculate the expected score of each arm more precisely by re-

ducing the influence of past work. Finally, we compare the results when using the 

difference between F1 values and when using the binary values 1 (F1 value improved) 

or 0 (otherwise) in Eq. (2). For Human Welfare (Fig. 2(b)), the F1 value was relative-

ly good when the binary values were used; however, the F1 values were very low, 

close to those of Alternating, in Consequence (Fig. 2(a)). These results suggest that 

the binary indicator used in the conventional bandit algorithms to indicate whether the 

F1 value had improved did not accurately measure the expected score of the arm for 

some tasks, and it was better to use the elaborated score by evaluating how much the 

F1 value had improved or deteriorated. 
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(a) Consequence 

 
(b) Human Welfare 

Fig. 2. Learning curves for changes in various settings in the annotation cost interval 1–2,500. 

5 Conclusion 

We have demonstrated that a high-performance classifier can be consistently and 

affordably constructed for a range of annotation tasks using a multi-armed bandit 

algorithm to select the coder(s) when creating a labeled training set. The key idea 

behind our method is to automatically select the coder that the annotation history 

would lead us to expect would be the most likely to increase the classifier’s effective-

ness, measured in our experiments using F1. Over six annotation tasks, we showed 

that this approach tends to show the better of two reasonable baselines. In the future, 

we plan to apply this technique to other digital library applications, notably including 

topic classification, we plan to integrate active learning approaches so that we select 

not just the best choice of coder but also the best choice of document to be coded, we 

plan to explore approaches to further improve efficiency using asynchronous batch 

updates, and we plan to explore approaches to efficiently tune model parameters to 

specific application settings. 
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