Skip to main content

Long-Term Map Maintenance in Complex Environments

  • Conference paper
  • First Online:
  • 1042 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13074))

Abstract

As changes in external environments are inevitable, a lifelong mapping system is desirable for autonomous robots that aim at long-term operation. Capturing external environment changes into internal representations (for example, maps) is crucial for proper behavior and safety, especially in the case of autonomous vehicles. In this work, we propose a new large-scale mapping system for our autonomous vehicle or any other. The new mapping system is based on the Graph SLAM algorithm, with extensions to deal with the calibration of odometry directly in the optimization of the graph and to address map merging for long-term map maintenance. The mapping system can use sensor data from one or more robots to build and merge different types of occupancy grid maps. The system’s performance is evaluated in a series of experiments carried out with data captured in complex real-world scenarios. The experimental results indicate that the new large-scale mapping system can provide high-quality occupancy grid maps for later navigation and localization of autonomous vehicles that use occupancy grid maps.

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001; Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq); and Fundação de Amparo à Pesquisa do Espírito Santo - Brasil (FAPES) – grants 75537958 and 84412844.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Badue, C., et al.: Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2020)

    Article  Google Scholar 

  2. Bergman, W.: The basic nature of vehicle understeer-oversteer. SAE Trans. 74, 387–422 (1966)

    Google Scholar 

  3. Bonanni, T.M., Corte, B.D., Grisetti, G.: 3-D map merging on pose graphs. IEEE Robot. Autom. Lett. 2(2), 1031–1038 (2017)

    Article  Google Scholar 

  4. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  5. Cardoso, V., et al.: A model-predictive motion planner for the iara autonomous car. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 225–230 (2017)

    Google Scholar 

  6. De Paula Veronese, L., et al.: A light-weight yet accurate localization system for autonomous cars in large-scale and complex environments. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 520–525 (2016)

    Google Scholar 

  7. Deutsch, I., Liu, M., Siegwart, R.: A framework for multi-robot pose graph SLAM. In: 2016 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2016, pp. 567–572 (2016)

    Google Scholar 

  8. Ding, X., Wang, Y., Yin, H., Tang, L., Xiong, R.: Multi-session map construction in outdoor dynamic environment. In: 2018 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2018, pp. 384–389 (2019)

    Google Scholar 

  9. Einhorn, E., Gross, H.M.: Generic NDT mapping in dynamic environments and its application for lifelong SLAM. Robot. Auton. Syst. 69, 28–39 (2015)

    Article  Google Scholar 

  10. Guidolini, R., Badue, C., Berger, M., de Paula Veronese, L., De Souza, A.F.: A simple yet effective obstacle avoider for the iara autonomous car. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1914–1919 (2016)

    Google Scholar 

  11. Guidolini, R., De Souza, A.F., Mutz, F., Badue, C.: Neural-based model predictive control for tackling steering delays of autonomous cars. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4324–4331 (2017)

    Google Scholar 

  12. Kümmerle, R., Grisetti, G., Burgard, W.: Simultaneous parameter calibration, localization, and mapping. Adv. Robot. 26(17), 2021–2041 (2012)

    Article  Google Scholar 

  13. Mutz, F., Veronese, L., Oliveira-Santos, T., Aguiar, E., Cheein, F.A., De Souza, A.: Large-scale mapping in complex field scenarios using an autonomous car. Expert Syst. Appl. 46, 439–462 (2016)

    Google Scholar 

  14. Possatti, L., et al.: Traffic light recognition using deep learning and prior maps for autonomous cars, pp. 1–8 (July 2019)

    Google Scholar 

  15. Sarcinelli, R., et al.: Handling pedestrians in self-driving cars using image tracking and alternative path generation with frenét frames. Comput. Graph. 84, 173–184 (2019)

    Article  Google Scholar 

  16. Segal, A., Hähnel, D., Thrun, S.: Generalized-icp (June 2009)

    Google Scholar 

  17. Serafin, J., Grisetti, G.: Nicp: dense normal based point cloud registration. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 742–749 (2015)

    Google Scholar 

  18. Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: Cox I.J., Wilfong G.T. (eds.) Autonomous Robot Vehicles, vol. 1, pp. 167–193. Springer, New York (July 1990)

    Google Scholar 

  19. Sun, Y., Sun, R., Yu, S., Peng, Y.: A grid map fusion algorithm based on maximum common subgraph. In: 2018 13th World Congress on Intelligent Control and Automation (WCICA), vol. 2018-July, pp. 58–63. IEEE (July 2018)

    Google Scholar 

  20. Tabelini Torres, L., et al.: Effortless deep training for traffic sign detection using templates and arbitrary natural images. 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (July 2019)

    Google Scholar 

  21. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, Cambridge (2005)

    Google Scholar 

  22. Uhlman, J.: Dynamic map building and localization for autonomous vehicles. Ph.D. thesis, University of Oxford (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josias Oliveira , Alberto F. De Souza or Claudine Badue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, J. et al. (2021). Long-Term Map Maintenance in Complex Environments. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics