Skip to main content

Transfer Learning of Shapelets for Time Series Classification Using Convolutional Neural Network

  • Conference paper
  • First Online:
  • 1048 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13074))

Abstract

Time series classification has a wide variety of possible applications, like outlines of figure types, signs of movement and sensor signals. This diversity may present different results with the application of machine learning techniques. Among the different ways to classify time series, two, in particular, are explored in this paper: the shapelet primitive and the neural network classification. A shapelet is a sub-sequence of the time series symbolic, like a high-level descriptor, that are representative for the class to which they belong. These features act as common knowledge used by domain experts. This paper proposes a CNN training protocol to achieve better results in the classification of time series. The idea consists of decomposing the original time series into shapelets and noise. Then, the shapelets are used to train a classifier while the no-shapelets (“signal noise”) is used to train another classifier. The original time series is then used to train two final classifiers starting with the weights of shapelet and no-shapelet classifiers. This previous extraction of this representation can improve classification ability in a convolutional neural network using transfer learning. The experimental evaluation shows that the pre-selection of shapelets before the network training changes the classifier results for several databases and, consequently, improves classification accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/alexandrefelipemuller/timeseries_shapelet_transferlearning, last accessed 16 Aug 2021.

References

  1. Bagnall, A., Lines, J., Hills, J., Bostrom, A.: Time-series classification with cote: the collective of transformation-based ensembles. IEEE Trans. Knowl. Data Eng. 27(9), 2522–2535 (2015)

    Article  Google Scholar 

  2. Cui, Z., Chen, W., Chen, Y.: Multi-scale convolutional neural networks for time series classification. CoRR abs/1603.06995 (2016). http://arxiv.org/abs/1603.06995

  3. Dau, H.A., et al.: The UCR time series classification archive (October 2018). https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

  4. Fang, Z., Wang, P., Wang, W.: Efficient learning interpretable shapelets for accurate time series classification. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 497–508 (April 2018). https://doi.org/10.1109/ICDE.2018.00052

  5. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.: Transfer learning for time series classification. CoRR abs/1811.01533 (2018). http://arxiv.org/abs/1811.01533

  6. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Gamboa, J.C.B.: Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887 (2017)

  8. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 14, pp. 392–401. ACM (2014). https://doi.org/10.1145/2623330.2623613, http://doi.acm.org/10.1145/2623330.2623613

  9. Guijo-Rubio, D., Gutiérrez, P.A., Tavenard, R., Bagnall, A.: A hybrid approach to time series classification with shapelets. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A.J., Menezes, R., Allmendinger, R. (eds.) IDEAL 2019. LNCS, vol. 11871, pp. 137–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33607-3_16

    Chapter  Google Scholar 

  10. Längkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn. Lett. 42, 11–24 (2014)

    Article  Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  12. Li, G., Choi, B., Bhowmick, S.S., Wong, G.L.H., Chun, K.P., Li, S.: Visualet: visualizing shapelets for time series classification. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3429–3432 (2020)

    Google Scholar 

  13. Li, G., Choi, B.K.K., Xu, J., Bhowmick, S.S., Chun, K.P., Wong, G.L.: Efficient shapelet discovery for time series classification. IEEE Trans. Knowl. Eng. (2020)

    Google Scholar 

  14. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  15. Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Disc. 29(3), 565–592 (2014). https://doi.org/10.1007/s10618-014-0361-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Lines, J., Taylor, S., Bagnall, A.: Time series classification with hive-cote: The hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl. Discov. Data 12(5), 52:1–52:35 (July 2018). https://doi.org/10.1145/3182382, http://doi.acm.org/10.1145/3182382

  17. Schäfer, P.: The boss is concerned with time series classification in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505–1530 (2015)

    Article  MathSciNet  Google Scholar 

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: A strong baseline. CoRR abs/1611.06455 (2016). http://arxiv.org/abs/1611.06455

  20. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 947–956. ACM, New York (2009). https://doi.org/10.1145/1557019.1557122, http://doi.acm.org/10.1145/1557019.1557122

  21. Zhang, H., Wang, P., Fang, Z., Wang, Z., Wang, W.: Elis++: a shapelet learning approach for accurate and efficient time series classification. World Wide Web 24(2), 511–539 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Felipe Muller de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Souza, A.F.M., Cassenote, M.R.S., Silva, F. (2021). Transfer Learning of Shapelets for Time Series Classification Using Convolutional Neural Network. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13074. Springer, Cham. https://doi.org/10.1007/978-3-030-91699-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91699-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91698-5

  • Online ISBN: 978-3-030-91699-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics