Skip to main content

On the Analysis of CGP Mutation Operators When Inferring Gene Regulatory Networks Using ScRNA-Seq Time Series Data

  • Conference paper
  • First Online:
  • 564 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13073))

Abstract

Gene Regulatory Networks (GRNs) inference from gene expression data is a hard task and a widely addressed challenge. GRNs can be represented as Boolean models similarly to digital circuits. Cartesian Genetic Programming (CGP), often used for designing circuits, can thus be adopted in the inference of GRNs. The main CGP operator for generating candidate designs is mutation, making its choice important for obtaining good results. Although there are many mutation operators for CGP, to the best of our knowledge, there is no analysis of them in the GRN inference problem. An evaluation of the Single Active Mutation (SAM) and the Semantically-Oriented Mutation Operator (SOMO) is performed here for GRNs inference. Also, a combination of both operators is proposed. We use a benchmark single-cell RNA-Sequencing time series data and its evaluation pipeline to measure the performance of the approaches. The experiments indicate that (i) combining SOMO and SAM provides the best results, and (ii) the results obtained by the proposal are competitive with those from state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://csaps.readthedocs.io/en/latest/index.html.

  2. 2.

    http://lidecc.cs.uns.edu.ar/files/gedprotools.zip.

  3. 3.

    https://github.com/ciml.

References

  1. Aalto, A., Viitasaari, L., Ilmonen, P., Mombaerts, L., Gonçalves, J.: Gene regulatory network inference from sparsely sampled noisy data. Nat. Commun. 11(1), 1–9 (2020)

    Google Scholar 

  2. Banf, M., Rhee, S.Y.: Computational inference of gene regulatory networks: approaches, limitations and opportunities. Biochimica et Biophysica Acta (BBA) Gene Regul. Mech. 1860(1), 41–52 (2017)

    Google Scholar 

  3. Chan, T.E., Stumpf, M.P., Babtie, A.C.: Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 5(3), 251–267 (2017)

    Google Scholar 

  4. Chen, S., Mar, J.C.: Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinf. 19(1), 1–21 (2018)

    Google Scholar 

  5. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Programm. 91(2), 201–213 (2002)

    Google Scholar 

  6. Draelos, R.: Measuring performance: Auprc and average precision (2019). glassboxmedicine.com/2019/03/02/measuring-performance-auprc/

  7. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Statist., pp. 1189–1232 (2001)

    Google Scholar 

  8. Gebert, J., Radde, N., Weber, G.W.: Modeling gene regulatory networks with piecewise linear differential equations. Eur. J. Oper. Res. 181(3), 1148–1165 (2007)

    Google Scholar 

  9. Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic programming. In: Krawiec, K., et al. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_6

  10. Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F., Theis, F.J.: Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13(10), 845 (2016)

    Google Scholar 

  11. Hodan, D., Mrazek, V., Vasicek, Z.: Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 940–948 (2020)

    Google Scholar 

  12. Irrthum, A., Wehenkel, L., Geurts, P., et al.: Inferring regulatory networks from expression data using tree-based methods. PloS One 5(9), e12776 (2010)

    Article  Google Scholar 

  13. Jackson, C.A., Castro, D.M., Saldi, G.A., Bonneau, R., Gresham, D.: Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments. Elife 9, e51254 (2020)

    Article  Google Scholar 

  14. Liu, S., Trapnell, C.: Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Research 5 (2016)

    Google Scholar 

  15. Ma, B., Jiao, X., Meng, F., Xu, F., Geng, Y., Gao, R., Wang, W., Sun, Y.: Identification of gene regulatory networks by integrating genetic programming with particle filtering. IEEE Access 7, 113760–113770 (2019)

    Article  Google Scholar 

  16. McCall, M.N.: Estimation of gene regulatory networks. Postdoc J. Postdoc. Res. Postdoc. Affairs, 1(1), 60 (2013)

    Google Scholar 

  17. Miller, J.F.: Cartesian genetic programming. CGP, pp. 17–34 (2011)

    Google Scholar 

  18. Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algorithms. arithmetic circuits: A case study (1997)

    Google Scholar 

  19. Moerman, T., et al.: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35(12), 2159–2161 (2019)

    Google Scholar 

  20. Pratapa, A., Jalihal, A.P., Law, J.N., Bharadwaj, A., Murali, T.: Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. methods 17(2), 147–154 (2020)

    Google Scholar 

  21. Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., Trapnell, C.: Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14(10), 979 (2017)

    Google Scholar 

  22. Huynh-Thu, V.A., Sanguinetti, G.: Gene regulatory network inference: an introductory survey. In: Sanguinetti, G., Huynh-Thu, V.A. (eds.) Gene Regulatory Networks. MMB, vol. 1883, pp. 1–23. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-8882-2_1

  23. Setty, M., et al.: Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotech. 34(6), 637–645 (2016)

    Google Scholar 

  24. da Silva, J.E.H., et al.: Inferring gene regulatory network models from time-series data using metaheuristics. In: IEEE Congress on Evolutionary Computer (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  25. da Silva, J.E.H., Bernardino, H.S., de Oliveira, I.L.: Inference of gene regulatory networks from single-cell RNA-sequencing data using cartesian genetic programming (under review). In: Bioinformatics, pp. 1–8. Oxford (2021)

    Google Scholar 

  26. Streichert, F., et al.: Comparing genetic programming and evolution strategies on inferring gene regulatory networks. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 471–480. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_47

  27. Trapnell, C., et al.: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32(4), 381 (2014)

    Google Scholar 

  28. Wang, R.S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5), 055001 (2012)

    Google Scholar 

Download references

Acknowledgements

We thank the support provided by FAPERJ, FAPESP, FAPEMIG, CAPES, CNPq, UFJF, and Amazon AWS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo H. da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, J.E.H.d., Bernardino, H.S., de Oliveira, I.L., Vieira, A.B., Barbosa, H.J.C. (2021). On the Analysis of CGP Mutation Operators When Inferring Gene Regulatory Networks Using ScRNA-Seq Time Series Data. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91702-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91701-2

  • Online ISBN: 978-3-030-91702-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics