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Preface

The volume CCIS 1488 contains the refereed proceedings of the International
Conference on Optimization, Learning Algorithms and Applications (OL2A 2021), an
event that, due to the COVID-19 pandemic, was held online.

OL2A 2021 provided a space for the research community on optimization and
learning to get together and share the latest developments, trends, and techniques
as well as develop new paths and collaborations. OL2A 2021 had more than 400
participants in an online environment throughout the three days of the conference
(July 19–21, 2021), discussing topics associated to areas such as optimization
and learning and state-of-the-art applications related to multi-objective optimization,
optimization for machine learning, robotics, health informatics, data analysis,
optimization and learning under uncertainty, and the Fourth Industrial Revolution.

Four special sessions were organized under the following topics: Trends in
Engineering Education, Optimization in Control Systems Design, Data Visualization
and Virtual Reality, and Measurements with the Internet of Things. The event had 52
accepted papers, among which 39 were full papers. All papers were carefully reviewed
and selected from 134 submissions. All the reviews were carefully carried out by a
Scientific Committee of 61 PhD researchers from 18 countries.

July 2021 Ana I. Pereira
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Damir Vrančić Jozef Stefan Institute, Slovenia
Daiva Petkeviciute Kaunas University of Technology, Lithuania
Diamantino Silva Freitas University of Porto, Portugal
Esteban Clua Federal Fluminense University, Brazil
Eric Rogers University of Southampton, UK
Felipe Nascimento Martins Hanze University of Applied Sciences,

The Netherlands
Gaukhar Muratova Dulaty University, Kazakhstan
Gediminas Daukšys Kauno Technikos Kolegija, Lithuania
Glaucia Maria Bressan Federal University of Technology – Paraná, Brazil
Humberto Rocha University of Coimbra, Portugal
José Boaventura-Cunha University of Trás-os-Montes and Alto Douro, Portugal
José Lima Polytechnic Institute of Bragança, Portugal
Joseane Pontes Federal University of Technology – Ponta Grossa,

Brazil
Juani Lopéz Redondo University of Almeria, Spain



viii Organization

Jorge Ribeiro Polytechnic Institute of Viana do Castelo, Portugal
José Ramos NOVA University Lisbon, Portugal
Kristina Sutiene Kaunas University of Technology, Lithuania
Lidia Sánchez University of León, Spain
Lino Costa University of Minho, Portugal
Luís Coelho Polytecnhic Institute of Porto, Portugal
Luca Spalazzi Marche Polytechnic University, Italy
Manuel Castejón Limas University of León, Spain
Marc Jungers Université de Lorraine, France
Maria do Rosário de Pinho University of Porto, Portugal
Marco Aurélio Wehrmeister Federal University of Technology – Paraná, Brazil
Mikulas Huba Slovak University of Technology in Bratislava,

Slovakia
Michał Podpora Opole University of Technology, Poland
Miguel Ángel Prada University of León, Spain
Nicolae Cleju Technical University of Iasi, Romania
Paulo Lopes dos Santos University of Porto, Portugal
Paulo Moura Oliveira University of Trás-os-Montes and Alto Douro, Portugal
Pavel Pakshin Nizhny Novgorod State Technical University, Russia
Pedro Luiz de Paula Filho Federal University of Technology – Paraná, Brazil
Pedro Miguel Rodrigues Catholic University of Portugal, Portugal
Pedro Morais Polytechnic Institute of Cávado e Ave, Portugal
Pedro Pinto Polytechnic Institute of Viana do Castelo, Portugal
Rudolf Rabenstein Friedrich-Alexander-University of Erlangen-Nürnberg,

Germany
Sani Rutz da Silva Federal University of Technology – Paraná, Brazil
Sara Paiva Polytechnic Institute of Viana do Castelo, Portugal
Sofia Rodrigues Polytechnic Institute of Viana do Castelo, Portugal
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Abstract. The importance of energy storage continues to grow, whether
in power generation, consumer electronics, aviation, or other systems.
Therefore, energy management in batteries is becoming an increasingly
crucial aspect of optimizing the overall system and must be done prop-
erly. Very few works have been found in the literature proposing the
implementation of algorithms such as Extended Kalman Filter (EKF)
to predict the State of Charge (SOC) in small systems such as mobile
robots, where in some applications the computational power is severely
lacking. To this end, this work proposes an implementation of the two
algorithms mainly reported in the literature for SOC estimation, in an
ATMEGA328P microcontroller-based BMS. This embedded system is
designed taking into consideration the criteria already defined for such a
system and adding the aspect of flexibility and ease of implementation
with an average error of 5% and an energy efficiency of 94%. One of the
implemented algorithms performs the prediction while the other will be
responsible for the monitoring.

Keywords: Prediction algorithm · Battery management system ·
Extended kalman filter · Coulomb counting algorithm · Engineering
applications

1 Introduction

Embedded systems are ubiquitous today, but because these systems are barely
perceptible, their importance and impact are often underestimated. They are
used as sub-systems in a wide variety of applications for an ever-increasing

c Springer Nature Switzerland AG 2021
A. I. Pereira et al. (Eds.): OL2A 2021, CCIS 1488, pp. 219–234, 2021.
https://doi.org/10.1007/978-3-030-91885-9_16
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diversity of functions [1]. Whether it is a hybrid vehicle, a solar power plant,
or any other everyday electrical device (PC, smartphone, drone...), the key ele-
ment remains the ability to monitor, control and optimise the performance of
one or more modules of these batteries, this type of device is often referred to
as a Battery Management System (BMS). A BMS is one of the basic units of
electrical energy storage systems, a variety of already developed algorithms can
be applied to define the main states of the battery, among others: SOC, state of
health (SOH) and state of functions (SOF) that allow real-time management of
the batteries.

For the BMS to provide optimal monitoring, it must operate in a noisy envi-
ronment, it must be able to electrically disconnect the battery at any time, it
must be cell-based and perform uniform charging and discharging across all cells
in the battery [2], and the components used must be able to withstand at least
the total current drawn by the load [3]. In addition, it must continuously monitor
various parameters that can greatly influence the battery, such as cell tempera-
ture, cell terminal voltage and cell current. This embedded system must be able
to notify the robot using the battery to either stop drawing energy from it, or
to go to the nearest charging station.

However, in the field of mobile robotics and small consumer devices, such as
Smarthpones or Laptops, as there are no requirements regarding the accuracy to
which a BMS must be held, the standard approach such as Open Circuit Volt-
age (OCV) and Coulomb Counting (CC) methods are generally applied, this is
mainly due to the fact that the use of more complicated estimation algorithms
such as EKF, Sliding Mode and Machine Learning [4,5] requires higher compu-
tational power, thus, the most advanced battery management system algorithms
reported in the literature are developed and verified by laboratory experiments
using PC-based software such as MATLAB and controllers such as dSPACE.
As an additional information, the most widely used battery systems in robotics
today are based on electrochemical batteries, particularly lithium-ion technolo-
gies with polymer as an Electrolyte [6].

This document is devided into 5 sections, the rest of the paper is structured as
follow. Section 2 promotes the work already done in this field and highlights the
objectives intended throught this work. Section 3 offer a brief algorithm descrip-
tion implemented on the prototype. Section 4, describes the proposed solution
for the system, where a block diagram and several other diagrams defining the
operating principle are offered. Section 5 provides the results and offer some dis-
cussion. Finally, Sect. 5 draws together the main ideas described in this article
and outlines future prospects for the development of this prototype.

2 State of the Art Review

Several research teams around the world have proposed different solutions to
design an efficient BMS system for lithium-ion batteries. Taborelli et al. have
proposed in [7], a design of an EKF and Ascending Extended Kalman Filter
(AEKF) algorithms specifically developed for light vehicle categories, such as
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electric bicycles, in which a capacity prediction algorithm is also implemented
tackling SOH estimation. The design has been validated by using simulation
software and real data acquisition. In [8], Mouna et al. implemented two EKF
and sliding mode algorithms in an Arduino board for SOC estimation, using
an equivalent first-order battery as a model. Validation is performed by data
acquisition from Matlab/Simulink. Sanguino et al. proposed in [9] an alterna-
tive design for battery system, where two batteries works alternatively, one of
the batteries is charged through solar panels installed on the top of the VAN-
TER mobile robot, while the other one provides the energy to the device. The
battery SOC selection is performed following an OCV check only and the SOC
monitoring is done by a coulomb counting method.

In addition, several devices are massively marketed, these products are used
in different systems, from the smallest to the largest. The Battery Management
System 4–15S is a BMS marketed by REC, it has the usual battery protec-
tions (temperature, overcurrent, overvoltage) [10]. A cell internal DC resistance
measurement technique is applied, suggesting the application of a simple resis-
tor equivalent model and an open circuit voltage technique for SOC prediction,
and an Coulomb counting technique for SOC monitoring. The device can be
operated as a stand-alone unit and offers the possibility of being connected to
a computer with an RS-485 for data export. This device is intended for use in
solar system. Roboteq’s BMS10x0 is a BMS and protection system for robotic
devices developed by Roboteq, it uses a 32-bit ARM Cortex processor and offers
the typical features of a BMS, along with Bluetooth compatibility for wireless
states checking. It can monitor from 6 to 15 batteries at the same time. Voltage
and temperature thresholds are assigned based on the chemical composition of
the battery. The SOC is calculated based on an OCV and CC techniques [11].

To the best of the authors’ knowledge, all research in the field of EKF-
based BMS is based on bench-scale experiments using powerful softwares, such
as MATLAB, for data processing. So far, the constraint of computational power
limitation is not really addressed in the majority of scientific papers dealing with
this subject. This paper focus on the implementation of an Extended Kalman
Filter helped with a Coulomb Counting technique, called DCC-EKF, as a SOC
and SOH estimator in ATMEGA328P microcontrollers, the proposed system is
self powered, polyvalent to all types of Lithium cells, easy to plug with other
systems and take into consideration most of the BMS criteria reported in the
literature.

3 Algorithm Description

There are many methods reported in the literature that can give a represen-
tation of the actual battery charge [4,5,7,8]. However, these methods vary in
the complexity of the implementation and the accuracy of the predicted results
over long term use. There is a correlation between these two parameters, as the
complexity of an algorithm increases, so does the accuracy of the results.

Also, simulation is a very common technique for evaluating and validating
approaches and allows for rapid prototyping [1]; these simulations are based on
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models that are approximations of reality. MATLAB is a modeling and sim-
ulation tool based on mathematical models, provided with various tools and
libraries. In this section, the two algorithms applied in the development of this
prototype will be described and the results of the simulation performed for the
extended Kalman filter algorithm will be given.

3.1 Coulomb Counting Method

The Coulomb counting method consist of a current measurement and integration
in a specific period of time. The evolution of the state of charge for this method,
can be described by the following expression:

SOC(tn) = SOC(tn−1) +
nf

Cactual

 tn−1

tn

I · dt (1)

where, I is the current flowing by the battery, Cactual is the actual total storable
energy in the battery and nf represents the faradic efficiency.

Although this method is one of the most widely used methods for monitor-
ing the condition of batteries and offers the most accurate results if properly
initialized, it has several drawbacks that lead to errors. The coulomb counting
method is an open-loop method and its accuracy is therefore strongly influenced
by accumulated errors, which are produced by the incorrect initial determina-
tion of the faradic efficiency, the battery capacity and the SOC estimation error
[12], making it very rarely applied on its own. In addition, the sampling time
is critical and should be kept as low as possible, making applications where the
current varies rapidly unadvisable with this method.

3.2 Extended Kalman Filter Method

Since 1960, Kalman Filter (KF) has been the subject of extensive research and
applications, the KF Algorithm estimates the states of the system from indirect
and uncertain measurements of the system’s input and output. The general
discrete time representation of it, is represented as follow:

 
xk = Ak−1 · xk−1 + Bk−1 · uk−1 + ωk
yk = Ck · xk + Dk · uk + υk

(2)

Where, xk ∈ R
n×1 is the state vector, Ak ∈ R

nxn is the system matrix in
discrete time, yk ∈ Rm× 1 is the output, uk ∈ R

m×1 is the input, Bk ∈ R
nxm

is the input matrix in discrete time, and Ck ∈ R
m×n is the output matrix in

discrete time. ω and υ represents the Gaussian distributed noise of the process
and measurement.

However, Eq. 2 is only valid for linear systems, in the case of nonlinear systems
such as batteries, the EKF is applied to include the non-linear behaviour and
to determine the states of the system [14]. The EKF equation has the following
form:  

xk+1 = f(xk, uk) + ωk
yk = h(xk, uk) + υk

(3)
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Where,

Ak =
∂f(xk, uk)

∂xk
, Ck =

∂h(xk, uk)

∂xk
(4)

After initialization, the EKF Algorithm always goes through two steps, predic-
tion and correction. The KF is extensively detailed in many references [13–15], we
will therefore not focus on its detailed description. The Algorithm 1 summarize
the EKF function implemented in each Slave ATMEGA328P microcontroller,
the matrices Ak, Bk, Ck,Dk, xk are discussed in Sect. 3.3.

Algorithm 1: Extended Kalman Filter Function

initialise A0, B0, C0, D0, P0, I0, x0, Q and R ;
while EKF Called do

Ik measurements; Vtk measurements;
x̂k = Ak−1 . xk−1 +Bk−1 . Ik−1 ;

P̂k = Ak−1 . Pk−1 . A
t
k−1 +Q ;

P̂k not diagonal = 0;

if ˆSOCk ∈[SOC interval] then
Rt, Rp and Cp updated;

end

Ck = V oc( ˆSOCk) + V̂Pk ;
Dk = Rt;

V̂tk = Ck +Dk · Ik;

L = (Ck · P̂k · C
t
k + R);

if L  = 0 then

Kk = P̂k · C
t
k / L;

end

xk = x̂k + Kk · (Vtk − V̂tk );

Pk = (I − Kk · Ck) · P̂k;
Pk not diagonal = 0;
k = k + 1;
Result: Send xk

end

The overall performance of the filters is set by the covariance matrix P,
the process noise matrix Q and the measurement noise R. The choice of these
parameters were defined throught experience and empirical experiment and are
given by:

Q =

 
0.25 0
0 0

 
, P =

 
1 0
0 1

 
and R = 0.00001

Data obtained from discharge tests of different cells simulations were applied to
verify the accuracy of this estimator with known parameters and are reported
in Sect. 3.4. The EKF Algorithm implemented in the ATMEGA328P microcon-
trollers has a sampling time of 0.04 s.
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3.3 Battery Modelling

Two battery models are most often applied, the Electrochemistry model, which
gives a good representation of the internal dynamics of the batteries, and the
Electrical circuit model, which allows the behaviour of the batteries to be trans-
lated into an electrical model and can be easily formulated into mathematical
formula. For this study, the second model, considered more suitable for use with
a microcontroller, is chosen. The most commonly applied electrical model uses
a simple RC equivalent battery circuit model, with two resistors (Rp and Rt),
a capacitor (Cp), a voltage source (Voc) and a current flowing through it (I), as
shown in Fig. 1. It represents the best trade-off between accuracy and complexity.

Fig. 1. First order equivalent battery model

The terminal voltage denoted as Vt, represents the output voltage of the cell,
and is given by Eq. 5.

Vt = Voc(SOC) + I ·Rt + Vp (5)

A non-linear relationship exist between SOC and Voc, a representation employ-
ing the seventh-order polynomial to fit the overall curve can be expressed and
is described with the following relation:

Voc(SOC) = 3.4624e
−12

· SOC
7
− 1.3014e−9 · SOC6 + 1.9811e−7 · SOC5 (6)

−1.5726e−5 · SOC4 + 6.9733e−4 · SOC3 − 0.017 · SOC2 + 0.21 · SOC + 2.7066

The time derivative of Eq. 1 can be formulated as given in Eq. 7,

.

SOC =
I

Cactual
(7)

The polarization voltage is given as,

.

Vp = −
1

RpCp
Vp +

1

Cp
I (8)
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From the Eqs. 5, 7 and 8, it is possible to deduce the equation characterising
the behaviour of the battery, which is expressed as the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 .

SOC
.

Vp

 

=

 
0 0
0 −1

RpCp

 
·

 
SOC

Vp

 
+

 
1

Cactual
1
Cp

 

· I

Vt =
 
poly 1

 
·

 
SOC

Vp

 
+ Rt · I

(9)

Where, poly is the polynomial formula described in Eq. 6. Since the microcon-
troller processes actions in discrete events, the previous system must be tran-
scribed into its discrete form, which is written as follows,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 .

SOC
.

Vp

 

=

 
1 0
0 exp −Δt

RpCp

 
·

 
SOC

Vp

 

k−1

+

 
1

Cactual
1
Cp

 

· Ik−1

Vt =
 
poly 1

 
·

 
SOC

Vp

 

k

+ Rt · Ik

(10)

From both Eqs. 2 and 10, it is deduced that the current I is the input of the
system, the voltage Vt is the output and the matrices Ak, Bk, Ck and Dk
matrices are given by:

Ak =

 
1 0
0 exp −Δt

RpCp

 
, Bk =

 
1

Cactual
1
Cp

 

, xk =

 
SOCk
VPk

 
, Ctk =

 
poly

1

 
, Dk = Rt

3.4 Simulation Results

Given the large number of articles dealing with the validation of these algorithms
[13,16,17], it is however not necessary to dwell on this subject. Nevertheless, a
simulation of the algorithm is proposed in this section, in order to confirm the
good follow-up of the algorithm according to the chosen parameters.

Fig. 2. (a) overall Simulink model highlighting the Input/Output of the simulation (b)
Battery sub-system model
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The graphical representation of MATLAB/Simulink using graphical blocks
to represent mathematical and logical constructs and process flow is intuitive and
provides a clear focus on control and observation functions. Although Simulink
has been the tool of choice for much of the control industry for many years [18],
it is best to use Simulink only for modelling battery behaviour and not for the
prediction algorithm. The battery model presented before is applied as a base
model, the more complex model will not be able to simulate all possible cases
and will therefore increase the time needed for development. Figure 2 represents
the battery simulation used in MATLAB/Simulink.

Figure 3 shows a comparison of the state of charge of the battery with simu-
lation for the Extended Kalman filter, and a plot of the error with the real and
the predicted one. The test consists of a 180 s discharge period followed by a
one hour rest period, the cell starts fully charged and the EKF state of charge
indicator is set at 50% SOC.

Fig. 3. Estimated and reference SOC comparison with the absolute error of the SOC
for Extended Kalman Filter with a constant discharge test and a rest period.

The continuous updating of the correction gain (K), which is due to the
continuous re-transcription of the error covariance matrices, limits the divergence
as long as the SOC remains within the predefined operating range (80%-40%).
The response of the observer to the determination of the SOC can be very fast,
on the order of a few seconds. Also, from the previous figure it is clear that,
for known parameters, the SOC can be tracked accurately with less than 5% of
error, and record a perfect prediction for when the battery is at rest. Figure 4
shows the simulation results of a constant current discharge test.

Although a good SOC monitoring by the EKF, it still requires a good deter-
mination of the battery parameter. Some reported works [19,20], have proposed
the use simple algebraic method or a Dual Extended Kalman Filter (DEKF) as
an online parameter estimator, to estimate them on the fly. Unfortunately, these
methods require a lot of computational power, to achieve a low sampling time
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Fig. 4. Estimated and reference SOC comparison with the absolute error of the SOC
for Extended Kalman Filter with a constant discharge test.

and reach convergence, which is difficult to achieve with a simple ATMEGA328P.
For this reason, and given the speed at which the EKF is able to determine the
battery SOC at rest, the EKF algorithm is applied to determine the battery SOC
at start-up and then the CC algorithm is applied to carry on the estimation.

4 Proposed Solution

The system is designed to be “Plug and Play”, with two energy input and output
located on one side only, future users of the product can quickly install and ini-
tialize the BMS, which works for all types of Lithium Model 18650 batteries, the
initialization part is described in more depth in the next section. The connecting
principle of the electronic components is illustrated in Fig. 5.

4.1 Module Connection

The Master microcontroller is the central element of the system, the ATMEL’s
ATMEGA328P was chosen for its operational character and low purchase cost,
it collect the State of Charge predicted by each ATMEGA328P slave micro-
controller and control the energy flow according to the data collected. This
microcontroller is connected to push buttons and an OLED screen to facili-
tate communication with the user. Power is supplied directly from the batteries,
the voltage is stabilised and regulated for the BMS electronics by an step down
voltage regulator.

The Inter-Integrated Circuit (I2C) is a bus interface connection using only
2 pins for data transfer, it is incorporated into many devices and is ideal for
attaching low-speed peripherals to a motherboard or embedded system over a
short distance, it provides a connection-oriented communication with acknowl-
edge [21]. Figure 6 represent the electronic circuit schematic diagram.
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Fig. 5. Block diagram of the system

The 18650 Lithium cells are placed in the two cell holder (1BH, 2BH). The
Oled display (OLED1) is connected via I2C by the Serial Clock and Serial
DATA line, called SCL and SDA respectively, the ATMEGA328P microcon-
troller (MASTER, SLAVE1, SLAVE2) are connected to the I2C wire through
pins PC5 and PD4. The current is measured from the ACS712 (U1) and gath-
ered by the slave microcontrollers (SLAVE1, SLAVE2) from the analog pin PC0.
A quadruple precision amplifier LM324 (U5) is used to measure the voltage at
each cell terminal, with the use of a simple voltage divider. The push buttons are
linked to the master microcontroller via the digital pins (PD2, PD3, PB4, PB5),
an IRF1405 N-Channel Mosfet is used as a power switch to the load (mobile
robot) while an IRF9610 P-Channel Mosfet is used as a power switch from the
power supply, they are controlled from master ATMEGA328P pins PB3 and
PB2 respectively. A step down voltage regulator is applied to regulate the volt-
age supplied to the electronics to 5V, this power is either gathered from the
battery pack or the power supply.

4.2 Operating Principle

This system is mainly characterised by two modes, the initialisation mode and
the on-mode, these two modes are very dependent on each other and it is possible
to switch from one mode to the other at any time using a single button. Figure 7
briefly summarizes the operation principale for both modes.



DCC-EKF Battery SOC Determination 229

Fig. 6. Schematic diagram of the electronic circuit

Because the characteristics between the batteries are not uniform, and can
vary greatly, and in order to achieve high accuracy of SOC prediction, the initial-
ization mode is introduced into the system, it is possible to skip this mode and
ignore it, but at the cost of reduced accuracy. Through this mode it is possible
to enter the capacity of the batteries installed, the actual SOC to ensure a more
accurate result, as well as to activate an additional protection to limit further
the discharges and the use or not of the EKF algorithm.

As for the on mode, according to what was initialize, the BMS begins by
carrying out the assigned tasks for each battery cell in parallel.

– If the EKF prediction was set on during the initialization mode, the device
shall begin the prediction of the actual SOC value for each cell, and prohibits
the passage of current other than that which powers the BMS for a period of
approximately 3min (Fig. 7).

– If the EKF prediction was set off during the initialization mode, and an SOC
Value was introduced, the device allows the current to flow directly, and start
the SOC monitoring according to the chosen value.

– If the Protection was set off, the battery will be discharged and charged even
deeper, taking the risk of shorten the life span of the batteries.
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Fig. 7. Flow chart of the system algorithm. (a) Initialisation mode flow chart. (b)
On-mode flow chart with EKF algorithm activated.

The battery states are determined for each cell independently of the others
by a specific microcontroller assigned to it, and works with the principle of
Master/Slave communication. In order to keep a low sampling time, one slave
microcontroller is assigned to two batteries, reaching a sampling time of 0.085 s.

5 Results and Discussions

The result is the design of a BMS that takes into account the already established
requirements for this type of system and defines new ones, such as flexibility
and size, that must be met for mobile robots. A breadboard conception was first
carried out to perform the first tests. After power up, the initialisation mode is
first started as expected. After that, while the on-mode is running, the voltage,
current and SOC data are displayed on the screen, an accuracy of 100 mV and
40 mA is achieved. When the cell is at rest and for a SOC ∈ [80%−−40%], the
EKF prediction reaches an error of 5% in the worst case, for SOC cells above
80% the accuracy drops to 8%, while for SOC below 30% the algorithm diverges
completely (Fig. 10). These results are quite understandable, as the linearization
of these curves is done in only 10 points. A cell protection is performed by an
external circuit based on a S-8254A, it includes a high accuracy voltage detection
for lithium battery, avoiding over voltage while charging the batteries, they are
widely applied in rechargeable battery pack, due to their low costs and good
caracteristics [22].
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The total storable power offered by this model varies according to the capac-
ity of the installed cells. It is clear that the use of 4 lithium cells of 2200 mAh,
gives the system a battery capacity of 8800 mAh which is sufficient in the major-
ity of small robots application, it should be noted that it is also possible to
implement the 5500 mAh cell, giving the product developed great flexibility by
offering the possibility of choosing the battery capacity to users. The maximum
current that can be delivered is 2A, and therefore allows to offer a power up to
32W, which is sufficient to power the electronics of the robot, beyond this value
and in order to offer an optimal safety to the battery, a shutdown protocol will
stop the discharge of the battery. As for the charging process, the maximum
current supplied by an external source is currently 0.5A, in order to have a good
protection when charging the batteries. With such a current, the charging pro-
cess is slow, in fact it will take 8 h and a half to reach the 80% SOC advised for
4 × 2200 mAh cells. Figure 8 shows the breadboard circuit.

Fig. 8. Breadboard circuit

The BMS electronics consume in average 1.15W, giving the product an effi-
ciency of 96.15%. While charging the battery, and because a constant charging
power is set, the IRF9610 Mosfet leads to a constant loss of power of 0.52W, the
efficiency then reaches 90.38%. For discharging the battery, as the regulation of
the voltage supplied to the robot is left to the user and is done with a variable
current, it is difficult to define with precision the efficiency of this device, it can
however reach 2.5%, which makes the total efficiency to be 93.60%. Thus, in
general the average efficiency of this product is 94.37%. Figure 9 shows a printed
circuit representation of the proposed prototype.
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Fig. 9. Printed Cirduit Board of the prototype. (a) componants view. (b) top view.

Fig. 10. On-mode display of cells 1, 2 and 3 with a SOC value of 9.51%, 77.25% and
71.10% respectively. (a) Average SOC of the first 50 iteration. (b) Few seconds after.
(c) approximately 1min after. For cell 1, the algorithm diverges for the SOC estimate.
For cell 2, the estimate has reached the SOC value with an error of 1.75%. For cell 3,
after 1min, the prediction has not yet reached the estimated value with an error of
6.90%.
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The SOC values, voltage and current are displayed directly on the Oled screen
as shown in Fig. 10. It is possible to display the overall battery status, or cell by
cell for a more detailed view. Taking into account that this approach and the
algorithm are constantly being improved, not all features such as the SOH and
temperature are fully integrated.

6 Conclusion and Future Work

This paper proposes the DCC-EKF approach where the state of charge is first
predicted using an EKF algorithm, after which the SOC is given to the Colum-
bus measurement algorithm to monitor this quantity. Most commercial products
only use the OCV to initially predict the SOC, a technique that is widely imple-
mented, but is severely inaccurate, especially when the BMS is powered directly
from the batteries, so the batteries never reach a resting state. The balancing
and overvoltage protection of the BMS is provided by an external circuit based
on the S-8245A module. The proposed BMS is small (10 cm × 15 cm), easy
to use and has shown accurate SOC prediction with an error of 5% and good
performance in noisy operation. The prototype also offers a good efficiency of
about 93%.

Future developments will focus on implementing a more accurate state of
charge prediction algorithm, such as DEKF and AEKF, as well as a more accu-
rate health prediction algorithm, while aiming to make it more user-friendly and
improve the user experience. The temperature effect will also be addressed in
future versions, as it is actually neglected, as well as the increase of the product
efficiency. In addition, it is considered to Implement a Learning Algorithm, to
further enhance the prediction accuracy, with a fast charging feature.
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