Skip to main content

Analysis of the Middle and Long Latency ERP Components in Schizophrenia

  • Conference paper
  • First Online:
  • 1247 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1488))

Abstract

Schizophrenia is a complex and disabling mental disorder estimated to affect 21 million people worldwide. Electroencephalography (EEG) has proven to be an excellent tool to improve and aid the current diagnosis of mental disorders such as schizophrenia. The illness is comprised of various disabilities associated with sensory processing and perception. In this work, the first 10−200 ms of brain activity after the self-generation via button presses (condition 1) and passive presentation (condition 2) of auditory stimuli was addressed. A time-domain analysis of the event-related potentials (ERPs), specifically the MLAEP, N1, and P2 components, was conducted on 49 schizophrenic patients (SZ) and 32 healthy controls (HC), provided by a public dataset. The amplitudes, latencies, and scalp distribution of the peaks were used to compare groups. Suppression, measured as the difference between both conditions’ neural activity, was also evaluated. With the exception of the N1 peak during condition (1), patients exhibited significantly reduced amplitudes in all waveforms analyzed in both conditions. The SZ group also demonstrated a peak delay in the MLAEP during condition (2) and a modestly earlier P2 peak during condition (1). Furthermore, patients exhibited less and more N1 and P2 suppression, respectively. Finally, the spatial distribution of activity in the scalp during the MLAEP peak in both conditions, N1 peak in condition (1) and N1 suppression differed considerably between groups. These findings and measurements will be used with the finality of developing an intelligent system capable of accurately diagnosing schizophrenia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Charlson, F.J., et al.: Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016. Schizophr. Bull. 44, 1195–1203 (2018). https://doi.org/10.1093/schbul/sby058

    Article  Google Scholar 

  2. American Psychiatric Association: Schizophrenia spectrum and other psychotic disorders. In: Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association (2013)

    Google Scholar 

  3. Schimmelmann, B.G., Mehler-Wex, C., Wewetzer, C.: Schizophrenia. In: Gerlach, M., Warnke, A., Greenhill, L. (eds.) Psychiatric Drugs in Children and Adolescents, pp. 499–506. Springer, Vienna (2014). https://doi.org/10.1007/978-3-7091-1501-5_25

    Chapter  Google Scholar 

  4. Weickert, C.S., Weickert, T.W., Pillai, A., Buckley, P.F.: Biomarkers in schizophrenia: a brief conceptual consideration. Dis. Markers. 35, 3–9 (2013). https://doi.org/10.1155/2013/510402

    Article  Google Scholar 

  5. Shiina, A., et al.: A randomised, double-blind, placebo-controlled trial of tropisetron in patients with schizophrenia. Ann. Gen. Psychiatry. 9 (2010). https://doi.org/10.1186/1744-859X-9-27

  6. Randeniya, R., Oestreich, L.K.L., Garrido, M.I.: Sensory prediction errors in the continuum of psychosis. Schizophr. Res. 191, 109–122 (2018). https://doi.org/10.1016/j.schres.2017.04.019

    Article  Google Scholar 

  7. Parlikar, R., Bose, A., Venkatasubramanian, G.: Schizophrenia and corollary discharge: a neuroscientific overview and translational implications. Clin. Psychopharmacol. Neurosci. 17, 170–182 (2019). https://doi.org/10.9758/cpn.2019.17.2.170

    Article  Google Scholar 

  8. Shen, C.L., et al.: P50, N100, and P200 auditory sensory gating deficits in schizophrenia patients. Front. Psychiatry. 11, 868 (2020). https://doi.org/10.3389/fpsyt.2020.00868

    Article  Google Scholar 

  9. Van Der Stelt, O., Frye, J., Lieberman, J.A., Belger, A.: Impaired P3 generation reflects high-level and progressive neurocognitive dysfunction in schizophrenia. Arch. Gen. Psychiatry. 61, 237–248 (2004). https://doi.org/10.1001/archpsyc.61.3.237

    Article  Google Scholar 

  10. Ford, J.M., Roach, B.J., Faustman, W.O., Mathalon, D.H.: Out-of-synch and out-of-sorts: dysfunction of motor-sensory communication in schizophrenia. Biol. Psychiatry. 63, 736–743 (2008). https://doi.org/10.1016/j.biopsych.2007.09.013

    Article  Google Scholar 

  11. Kayser, J., et al.: Neuronal generator patterns of olfactory event-related brain potentials in schizophrenia. Psychophysiology 47, 1075–1086 (2010). https://doi.org/10.1111/j.1469-8986.2010.01013.x

    Article  Google Scholar 

  12. Lalor, E.C., De Sanctis, P., Krakowski, M.I., Foxe, J.J.: Visual sensory processing deficits in schizophrenia: Is there anything to the magnocellular account? Schizophr. Res. 139, 246–252 (2012). https://doi.org/10.1016/j.schres.2012.05.022

    Article  Google Scholar 

  13. Sur, S., Sinha, V.: Event-related potential: an overview. Ind. Psychiatry J. 18, 70 (2009). https://doi.org/10.4103/0972-6748.57865

    Article  Google Scholar 

  14. Kappenman, E.S., Luck, S.J.: The Oxford Handbook of Event-Related Potential Components. Oxford University Press, Oxford (2012)

    Google Scholar 

  15. Winkler, I., Denham, S., Escera, C.: Auditory event-related potentials. In: Encyclopedia of Computational Neuroscience, pp. 1–29. Springer, New York (2013)

    Google Scholar 

  16. Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R.M., Frangou, S.: Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr. Res. 70, 315–329 (2004). https://doi.org/10.1016/j.schres.2004.01.004

    Article  Google Scholar 

  17. Moran, Z.D., Williams, T.J., Bachman, P., Nuechterlein, K.H., Subotnik, K.L., Yee, C.M.: Spectral decomposition of P50 suppression in schizophrenia during concurrent visual processing. Schizophr. Res. 140, 237–242 (2012). https://doi.org/10.1016/j.schres.2012.07.002

    Article  Google Scholar 

  18. Leavitt, V.M., Molholm, S., Ritter, W., Shpaner, M., Foxe, J.J.: Auditory processing in schizophrenia during the middle latency period (10–50 ms): high-density electrical mapping and source analysis reveal subcortical antecedents to early cortical deficits. J. Psychiatry Neurosci. 32, 339–353 (2007)

    Google Scholar 

  19. Onitsuka, T., Oribe, N., Nakamura, I., Kanba, S.: Review of neurophysiological findings in patients with schizophrenia. Psychiatry Clin. Neurosci. 67, 461–470 (2013). https://doi.org/10.1111/pcn.12090

    Article  Google Scholar 

  20. Ford, J.M., Mathalon, D.H., Kalba, S., Whitfield, S., Faustman, W.O., Roth, W.T.: Cortical responsiveness during talking and listening in schizophrenia: an event-related brain potential study. Biol. Psychiatry. 50, 540–549 (2001). https://doi.org/10.1016/S0006-3223(01)01166-0

    Article  Google Scholar 

  21. Ford, J.M., Gray, M., Faustman, W.O., Roach, B.J., Mathalon, D.H.: Dissecting corollary discharge dysfunction in schizophrenia. Psychophysiology 44, 522–529 (2007). https://doi.org/10.1111/j.1469-8986.2007.00533.x

    Article  Google Scholar 

  22. Mathalon, D.H., Ford, J.M.: Corollary discharge dysfunction in schizophrenia: Evidence for an elemental deficit (2008). https://pubmed.ncbi.nlm.nih.gov/18450174/

  23. Ford, J.M., Mathalon, D.H., Heinks, T., Kalba, S., Faustman, W.O., Roth, W.T.: Neurophysiological evidence of corollary discharge dysfunction in schizophrenia. Am. J. Psychiatry. 158, 2069–2071 (2001). https://doi.org/10.1176/appi.ajp.158.12.2069

    Article  Google Scholar 

  24. Ford, J.M., Mathalon, D.H., Kalba, S., Whitfield, S., Faustman, W.O., Roth, W.T.: Cortical responsiveness during inner speech in schizophrenia: an event-related potential study. Am. J. Psychiatry. 158, 1914–1916 (2001). https://doi.org/10.1176/appi.ajp.158.11.1914

    Article  Google Scholar 

  25. Heinks-Maldonado, T.H., Mathalon, D.H., Houde, J.F., Gray, M., Faustman, W.O., Ford, J.M.: Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations. Arch. Gen. Psychiatry. 64, 286–296 (2007). https://doi.org/10.1001/archpsyc.64.3.286

    Article  Google Scholar 

  26. Ford, J.M., Palzes, V.A., Roach, B.J., Mathalon, D.H.: Did i do that? Abnormal predictive processes in schizophrenia when button pressing to deliver a tone. Schizophr. Bull. 40, 804–812 (2014). https://doi.org/10.1093/schbul/sbt072

    Article  Google Scholar 

  27. Perez, V.B., et al.: Auditory cortex responsiveness during talking and listening: early illness schizophrenia and patients at clinical high-risk for psychosis. Schizophr. Bull. 38, 1216–1224 (2012). https://doi.org/10.1093/schbul/sbr124

    Article  Google Scholar 

  28. Cannon, T.D., et al.: Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch. Gen. Psychiatry. 65, 28–37 (2008). https://doi.org/10.1001/archgenpsychiatry.2007.3

    Article  Google Scholar 

  29. Turetsky, B.I., et al.: Abnormal auditory N100 amplitude: a heritable endophenotype in first-degree relatives of schizophrenia probands. Biol. Psychiatry. 64, 1051–1059 (2008). https://doi.org/10.1016/j.biopsych.2008.06.018

    Article  Google Scholar 

  30. Erickson, M.A., Ruffle, A., Gold, J.M.: A meta-analysis of mismatch negativity in schizophrenia: from clinical risk to disease specificity and progression. Biol. Psychiatry 79, 980–987 (2016). https://doi.org/10.1016/j.biopsych.2015.08.025

    Article  Google Scholar 

  31. Tremblay, K.L., Ross, B., Inoue, K., McClannahan, K., Collet, G.: Is the auditory evoked P2 response a biomarker of learning? Front. Syst. Neurosci. 8 (2014). https://doi.org/10.3389/fnsys.2014.00028

  32. Crowley, K.E., Colrain, I.M.: A Review of the Evidence for P2 Being an Independent Component Process: Age, Sleep and Modality (2004)

    Google Scholar 

  33. Salisbury, D.F., Collins, K.C., McCarley, R.W.: Reductions in the N1 and P2 auditory event-related potentials in first-hospitalized and chronic schizophrenia. Schizophr. Bull. 36, 991–1000 (2010). https://doi.org/10.1093/schbul/sbp003

    Article  Google Scholar 

  34. Bell, R., et al.: Abnormal habituation of the auditory event-related potential P2 component in patients with schizophrenia. Front. Psychiatry 1, 630406 (2021). www.frontiersin.org. https://doi.org/10.3389/fpsyt.2021.630406

  35. Brian Roach: EEG data from basic sensory task in Schizophrenia. https://www.kaggle.com/broach/button-tone-sz

  36. Nolan, H., Whelan, R., Reilly, R.B.: FASTER: fully automated statistical thresholding for eeg artifact rejection. J. Neurosci. Methods. 192, 152–162 (2010). https://doi.org/10.1016/j.jneumeth.2010.07.015

    Article  Google Scholar 

  37. Knolle, F., Schröger, E., Kotz, S.A.: Prediction errors in self- and externally-generated deviants. Biol. Psychol. 92, 410–416 (2013). https://doi.org/10.1016/j.biopsycho.2012.11.017

    Article  Google Scholar 

  38. Clayson, P.E., Baldwin, S.A., Larson, M.J.: How does noise affect amplitude and latency measurement of event-related potentials (ERPs)? A methodological critique and simulation study. Psychophysiology 50, 174–186 (2013). https://doi.org/10.1111/psyp.12001

    Article  Google Scholar 

  39. Knolle, F., Schröger, E., Kotz, S.A.: Cerebellar contribution to the prediction of self-initiated sounds. Cortex 49, 2449–2461 (2013). https://doi.org/10.1016/j.cortex.2012.12.012

    Article  Google Scholar 

  40. Pinheiro, A.P., Schwartze, M., Kotz, S.A.: Voice-selective prediction alterations in nonclinical voice hearers. Sci. Rep. 8, 1 (2018). https://doi.org/10.1038/s41598-018-32614-9

    Article  Google Scholar 

  41. Roth, W.T., Pfefferbaum, A., Kelly, A.F., Berger, P.A., Kopell, B.S.: Auditory event-related potentials in schizophrenia and depression. Psychiatry Res. 4, 199–212 (1981). https://doi.org/10.1016/0165-1781(81)90023-8

    Article  Google Scholar 

  42. Catts, S.V., Armstrong, M.S., Ward, P.B., McConaghy, N.: Reduced p200 latency and allusive thinking: an auditory evoked potential index of a cognitive predisposition to schizophrenia? Int. J. Neurosci. 30, 173–179 (1986). https://doi.org/10.3109/00207458608985668

    Article  Google Scholar 

  43. Uhlhaas, P.J., Singer, W.: Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11, 100–113 (2010). https://doi.org/10.1038/nrn2774

    Article  Google Scholar 

  44. Ford, J.M., Mathalon, D.H., Whitfield, S., Faustman, W.O., Roth, W.T.: Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol. Psychiatry. 51, 485–492 (2002). https://doi.org/10.1016/S0006-3223(01)01335-X

    Article  Google Scholar 

  45. John, J.P.: Fronto-Temporal Dysfunction in Schizophrenia: A Selective Review (2009). https://pubmed.ncbi.nlm.nih.gov/19881045/

  46. Van Den Heuvel, M.P., Mandl, R.C.W., Stam, C.J., Kahn, R.S., Hulshoff Pol, H.E.: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J. Neurosci. 30, 15915–15926 (2010). https://doi.org/10.1523/JNEUROSCI.2874-10.2010

Download references

Acknowledgements

This article is a result of the project “GreenHealth - Digital strategies in biological assets to improve well-being and promote green health” (Norte-01-0145-FEDER-000042), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, M.R.e., Teixeira, F., Teixeira, J.P. (2021). Analysis of the Middle and Long Latency ERP Components in Schizophrenia. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2021. Communications in Computer and Information Science, vol 1488. Springer, Cham. https://doi.org/10.1007/978-3-030-91885-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91885-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91884-2

  • Online ISBN: 978-3-030-91885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics