Skip to main content

Inverse Optimization for Warehouse Management

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1488))

Abstract

Day-to-day operations in industry are often planned in an ad-hoc manner by managers, instead of being automated with the aid of mathematical optimization. To develop operational optimization tools, it would be useful to automatically learn management policies from data about the actual decisions made in production. The goal of this study was to investigate the suitability of inverse optimization for automating warehouse management on the basis of demonstration data. The management decisions concerned the location assignment of incoming packages, considering transport mode, classification of goods, and congestion in warehouse stocking and picking activities. A mixed-integer optimization model and a column generation procedure were formulated, and an inverse optimization method was applied to estimate an objective function from demonstration data. The estimated objective function was used in a practical rolling horizon procedure. The method was implemented and tested on real-world data from an export goods warehouse of a container port. The computational experiments indicated that the inverse optimization method, combined with the rolling horizon procedure, was able to mimic the demonstrated policy at a coarse level on the training data set and on a separate test data set, but there were substantial differences in the details of the location assignment decisions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahuja, R.K., Orlin, J.B.: Inverse optimization. Oper. Res. 49(5), 771–783 (2001)

    Article  MathSciNet  Google Scholar 

  2. Arora, S., Doshi, P.: A survey of inverse reinforcement learning: challenges, methods and progress (2020). arXiv:1806.06877

  3. Aswani, A., Shen, Z.J., Siddiq, A.: Inverse optimization with noisy data. Oper. Res. 66(3), 870–892 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

    Google Scholar 

  5. Chen, L., Riopel, D., Langevin, A.: Minimising the peak load in a shared storage system based on the duration-of-stay of unit loads. Int. J. Shipp. Transp. Logist. 1(1), 20–36 (2009)

    Article  Google Scholar 

  6. De Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007)

    Article  Google Scholar 

  7. Goetschalckx, M., Ratliff, H.D.: Shared storage policies based on the duration stay of unit loads. Manage. Sci. 36(9), 1120–1132 (1990)

    Article  Google Scholar 

  8. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: a comprehensive review. Eur. J. Oper. Res. 177, 1–21 (2007). https://doi.org/10.1016/j.ejor.2006.02.025

    Article  MATH  Google Scholar 

  9. Han, Y., Lee, L.H., Chew, E.P., Tan, K.C.: A yard storage strategy for minimizing traffic congestion in a marine container transshipment hub. OR Spectr. 30, 697–720 (2008). https://doi.org/10.1007/s00291-008-0127-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Hausman, W.H., Schwarz, L.B., Graves, S.C.: Optimal storage assignment in automatic warehousing systems. Manage. Sci. 22(6), 629–638 (1976)

    Article  Google Scholar 

  11. Kamiyama, N.: A note on submodular function minimization with covering type linear constraints. Algorithmica 80, 2957–2971 (2018)

    Article  MathSciNet  Google Scholar 

  12. Karásek, J.: An overview of warehouse optimization. Int. J. Adv. Telecommun. Electrotech. Sig. Syst. 2(3), 111–117 (2013)

    Google Scholar 

  13. Kim, K.H., Park, K.T.: Dynamic space allocation for temporary storage. Int. J. Syst. Sci. 34(1), 11–20 (2003)

    Article  Google Scholar 

  14. Kofler, M., Beham, A., Wagner, S., Affenzeller, M.: Robust storage assignment in warehouses with correlated demand. In: Borowik, G., Chaczko, Z., Jacak, W., Łuba, T. (eds.) Computational Intelligence and Efficiency in Engineering Systems. SCI, vol. 595, pp. 415–428. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15720-7_29

    Chapter  Google Scholar 

  15. Lee, L.H., Chew, E.P., Tan, K.C., Han, Y.: An optimization model for storage yard management in transshipment hubs. OR Spectr. 28, 539–561 (2006)

    Article  Google Scholar 

  16. Moccia, L., Cordeau, J.F., Monaco, M.F., Sammarra, M.: A column generation heuristic for dynamic generalized assignment problem. Comput. Oper. Res. 36(9), 2670–2681 (2009). https://doi.org/10.1016/j.cor.2008.11.022

    Article  MATH  Google Scholar 

  17. Monaco, M.F., Sammarra, M., Sorrentino, G.: The terminal-oriented ship stowage planning problem. Eur. J. Oper. Res. 239, 256–265 (2014)

    Article  Google Scholar 

  18. Muppani, V.R., Adil, G.K.: Efficient formation of storage classes for warehouse storage location assignment: a simulated annealing approach. Omega 36, 609–618 (2008)

    Article  Google Scholar 

  19. Pang, K.W., Chan, H.L.: Data mining-based algorithm for storage location assignment in a randomised warehouse. Int. J. Prod. Res. 55(14), 4035–4052 (2017). https://doi.org/10.1080/00207543.2016.1244615

    Article  Google Scholar 

  20. Pierre, B., Vannieuwenhuyse, B., Domnianta, D., Dessel, H.V.: Dynamic ABC storage policy in erratic demand environments. Jurnal Teknik Industri 5(1), 1–12 (2003)

    Google Scholar 

  21. Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G.J., Mantel, R.J., Zijm, W.H.M.: Warehouse design and control: framework and literature review. Eur. J. Oper. Res. 122, 515–533 (2000)

    Article  Google Scholar 

  22. Schaefer, A.J.: Inverse integer programming. Optim. Lett. 3, 483–489 (2009)

    Article  MathSciNet  Google Scholar 

  23. Troutt, M.D., Pang, W.K., Hou, S.H.: Behavioral estimation of mathematical programming objective function coefficients. Manage. Sci. 52(3), 422–434 (2006)

    Article  Google Scholar 

  24. Zhen, L., Xu, Z., Wang, K., Ding, Y.: Multi-period yard template planning in container terminals. Transp. Res. Part B 93, 700–719 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannu Rummukainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rummukainen, H. (2021). Inverse Optimization for Warehouse Management. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2021. Communications in Computer and Information Science, vol 1488. Springer, Cham. https://doi.org/10.1007/978-3-030-91885-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91885-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91884-2

  • Online ISBN: 978-3-030-91885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics