Skip to main content

Optimization of Wind Turbines Placement in Offshore Wind Farms: Wake Effects Concerns

  • Conference paper
  • First Online:
Book cover Optimization, Learning Algorithms and Applications (OL2A 2021)

Abstract

In the coming years, many countries are going to bet on the exploitation of offshore wind energy. This is the case of southern European countries, where there is great wind potential for offshore exploitation. Although the conditions for energy production are more advantageous, all the costs involved are substantially higher when compared to onshore. It is, therefore, crucial to maximize system efficiency. In this paper, an optimization model based on a Mixed-Integer Linear Programming model is proposed to find the best wind turbines location in offshore wind farms taking into account the wake effect. A case study, concerning the design of an offshore wind farm, were carried out and several performance indicators were calculated and compared. The results show that the placement of the wind turbines diagonally presents better results for all performance indicators and corresponds to a lower percentage of energy production losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Wind Atlas. https://globalwindatlas.info. Accessed May 2021

  2. Bergey, K.H.: The lanchester-betz limit. J. Energy 3, 382–384 (1979)

    Article  Google Scholar 

  3. Cerveira, A., Baptista, J., Pires, E.J.S.: Wind farm distribution network optimization. Integr. Comput.-Aided Eng. 23(1), 69–79 (2015)

    Article  Google Scholar 

  4. Cerveira, A., de Sousa, A., Solteiro Pires, E.J., Baptista, J.: Optimal cable design of wind farms: the infrastructure and losses cost minimization case. IEEE Trans. Power Syst. 31(6), 4319–4329 (2016)

    Article  Google Scholar 

  5. Cerveira, A., Baptista, J., Pires, E.J.S.: Optimization design in wind farm distribution network. In: Herrero, Á., et al. (eds.) International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. AISC, vol. 239, pp. 109–119. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01854-6_12

    Chapter  Google Scholar 

  6. E.Commission: An EU Strategy to harness the potential of offshore renewable energy for a climate neutral future. COM(2020) 741 final (2020)

    Google Scholar 

  7. Grady, S., Hussaini, M., Abdullah, M.M.: Placement of wind turbines using genetic algorithms. Renew. Energy 30(2), 259–270 (2005)

    Article  Google Scholar 

  8. Jensen, N.O.: A Note on Wind Generator Interaction, pp. 1–16. Riso National Laboratory, Roskilde (1983)

    Google Scholar 

  9. Katic, I., Hojstrup, J., Jensen, N.O.: A simple model for cluster efficiency. In: Wind Energy Association Conference EWEC 1986, vol. 1, pp.407–410 (1986)

    Google Scholar 

  10. Manzano-Agugliaro, F., Sánchez-Calero, M., Alcayde, A., San-Antonio-Gómez, C., Perea-Moreno, A., Salmeron-Manzano, E.: Wind turbines offshore foundations and connections to grid. Inventions 5, 1–24 (2020)

    Article  Google Scholar 

  11. Fischetti, M., Pisinger, D.: Optimizing wind farm cable routing considering power losses. Eur. J. Oper. Res. 270, 917–930 (2017). https://doi.org/10.1016/j.ejor.2017.07.061

    Article  MathSciNet  MATH  Google Scholar 

  12. Hou, P., Hu, W., Soltani, M., Chen, Z.: Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm. IEEE Trans. Sustain. Energy 6(4), 1272–1282 (2015)

    Article  Google Scholar 

  13. Pillai, A.C., Chick, J., Johanning, L., Khorasanchi, M., Barbouchi, S.: Optimisation of offshore wind farms using a genetic algorithm. Int. J. Offshore Polar Eng. 26(3), 1272–1282 (2016)

    Article  Google Scholar 

  14. Pérez, B., Mínguez, R., Guanche, R.: Offshore wind farm layout optimization using mathematical programming techniques. Renew. Energy 53, 389–399 (2013)

    Article  Google Scholar 

  15. Vestas: Wind-turbine-models. https://en.wind-turbine-models.com/turbines/318-vestas-v164-8.0. Accessed May 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baptista, J., Lima, F., Cerveira, A. (2021). Optimization of Wind Turbines Placement in Offshore Wind Farms: Wake Effects Concerns. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2021. Communications in Computer and Information Science, vol 1488. Springer, Cham. https://doi.org/10.1007/978-3-030-91885-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91885-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91884-2

  • Online ISBN: 978-3-030-91885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics