Skip to main content

A Simulation Tool for Optimizing a 3D Spray Painting System

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1488))

Abstract

The lack of general robotics purposed, accurate open source simulators is a major setback that limits the optimized trajectory generation research and general evolution of the robotics field. Spray painting is a particular case that has multiple advantages in using a simulator for exploring new algorithms, mainly the waste of materials and the dangers associated with a robotic manipulator. This paper demonstrates an implementation of spray painting on a previously existing simulator, SimTwo. Several metrics for optimization that evaluate the painted result are also proposed. In order to validate the implementation, we conducted a real world experiment that serves both as proof that the chosen spray distribution model translates to reality and as a way to calibrate the model parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Automatic scanning and programming of robots. www.inropa.com/fileadmin/Arkiv/Dokumenter/Produktblade/OLP_automatic.pdf

  2. Delfoi PAINT - Software for painting and coating. https://www.delfoi.com/delfoi-robotics/delfoi-paint/

  3. Examples - RoboDK. https://robodk.com/examples#examples-painting

  4. Getting Started - RoboDK Documentation. https://robodk.com/doc/en/Getting-Started.html#Station

  5. GLScene. http://glscene.sourceforge.net/wikka/

  6. OpenGL. https://www.opengl.org/

  7. Robcad Robotics and automation workcell simulation, validation and off-line programming. www.siemens.com/tecnomatix

  8. Robust ROBOGUIDE Simulation Software. FANUC America. https://www.fanucamerica.com/products/robots/robot-simulation-software-FANUC-ROBOGUIDE

  9. Andulkar, M.V., Chiddarwar, S.S.: Incremental approach for trajectory generation of spray painting robot. Ind. Robot. (2015). https://doi.org/10.1108/IR-10-2014-0405

  10. Antonio, J.K.: Optimal trajectory planning for spray coating. In: Proceedings of the IEEE International Conference on Robotics and Automation (1994). https://doi.org/10.1109/robot.1994.351125

  11. Chen, Y., Chen, W., Li, B., Zhang, G., Zhang, W.: Paint thickness simulation for painting robot trajectory planning: a review (2017). https://doi.org/10.1108/IR-07-2016-0205

  12. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Scarano, V., Chiara, R.D., Erra, U. (eds.) Eurographics Italian Chapter Conference. The Eurographics Association (2008). https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

  13. Conner, D.C., Greenfield, A., Atkar, P.N., Rizzi, A.A., Choset, H.: Paint deposition modeling for trajectory planning on automotive surfaces. IEEE Trans. Autom. Sci. Eng. (2005). https://doi.org/10.1109/TASE.2005.851631

    Article  Google Scholar 

  14. Fleming, D.: Airless spray-practical technique for maintenance painting. Plant Eng. (Barrington, Illinois) 31(20), 83–86 (1977)

    Google Scholar 

  15. Fogliati, M., Fontana, D., Garbero, M., Vanni, M., Baldi, G., Dondè, R.: CFD simulation of paint deposition in an air spray process. J. Coat. Technol. Res. 3(2), 117–125 (2006)

    Article  Google Scholar 

  16. Hicks, P.G., Senser, D.W.: Simulation of paint transfer in an air spray process. J. Fluids Eng. Trans. ASME 117(4), 713–719 (1995). https://doi.org/10.1115/1.2817327

    Article  Google Scholar 

  17. Persoons, W., Van Brussel, H.: CAD-based robotic coating of highly curved surfaces. In: 24th International Symposium on Industrial Robots, Tokyo, pp. 611–618 (November 1993). https://doi.org/10.1109/robot.1994.351125

  18. Rupp, J., Guffey, E., Jacobsen, G.: Electrostatic spray processes. Met. Finish. 108(11–12), 150–163 (2010). https://doi.org/10.1016/S0026-0576(10)80225-9

  19. Whitehouse, N.R.: Paint application. In: Shreir’s Corrosion, pp. 2637–2642. Elsevier (January 2010). https://doi.org/10.1016/B978-044452787-5.00142-6

  20. Ye, Q.: Using dynamic mesh models to simulate electrostatic spray-painting. In: High Performance Computing in Science and Engineering 2005 - Transactions of the High Performance Computing Center Stuttgart, HLRS 2005 (2006). https://doi.org/10.1007/3-540-29064-8-13

  21. Ye, Q., Domnick, J., Khalifa, E.: Simulation of the spray coating process using a pneumatic atomizer. Institute for Liquid Atomization and Spray Systems (2002)

    Google Scholar 

  22. Ye, Q., Pulli, K.: Numerical and experimental investigation on the spray coating process using a pneumatic atomizer: influences of operating conditions and target geometries. Coatings (2017). https://doi.org/10.3390/coatings7010013

  23. Zhang, Y., Huang, Y., Gao, F., Wang, W.: New model for air spray gun of robotic spray-painting. Jixie Gongcheng Xuebao/Chin. J. Mech. Eng. (2006). https://doi.org/10.3901/JME.2006.11.226

    Article  Google Scholar 

  24. Zhou, B., Zhang, X., Meng, Z., Dai, X.: Off-line programming system of industrial robot for spraying manufacturing optimization. In: Proceedings of the 33rd Chinese Control Conference, CCC 2014 (2014). https://doi.org/10.1109/ChiCC.2014.6896426

Download references

Acknowledgements

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project UIDB/50014/2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to João Casanova , José Lima or Paulo Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casanova, J., Lima, J., Costa, P. (2021). A Simulation Tool for Optimizing a 3D Spray Painting System. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2021. Communications in Computer and Information Science, vol 1488. Springer, Cham. https://doi.org/10.1007/978-3-030-91885-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91885-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91884-2

  • Online ISBN: 978-3-030-91885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics