JYVASKYLAN YLIOPISTO
H UNIVERSITY OF JYVASKYLA

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s): Setald, Manu; Abrahamsson, Pekka; Mikkonen, Tommi

Title: Elements of Sustainability for Public Sector Software : Mosaic Enterprise Architecture,
) Macroservices, and Low-Code

Year: 2021

Version: Accepted version (Final draft)

Copyright: © 2021 Springer Nature Switzerland AG

Rights: |, Copyright

Rights url: http://rightsstatements.org/page/InC/1.0/?language=en

Please cite the original version:

Setdld, M., Abrahamsson, P., & Mikkonen, T. (2021). Elements of Sustainability for Public Sector
Software : Mosaic Enterprise Architecture, Macroservices, and Low-Code. In X. Wang, A.
Martini, A. Nguyen-Duc, & V. Stray (Eds.), Software Business : 12th International Conference,
ICSOB 2021, Drammen, Norway, December 2—3, 2021, Proceedings (pp. 3-9). Springer. Lecture
Notes in Business Information Processing, 434. https://doi.org/10.1007/978-3-030-91983-2_1



Elements of Sustainability for Public Sector
Software — Mosaic Enterprise Architecture,
Macroservices, and Low-Code

Manu Setilid!, Pekka Abrahamsson?, and Tommi Mikkonen?3

! Solita, Tampere, Finland
manu.setala@solita.fi
2 University of Jyviskyld, Jyviskyld, Finland
pekka.abrahamsson@jyu.fi, tommi.j.mikkonen@jyu.fi
3 University of Helsinki, Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract. Public sector is a large consumer for software. In countries
such as Finland, many of the systems are made to order by consultancy
companies that participate in public tenders. These tenders initiated
by the state, cities, and other public sector organizations. Furthermore,
as public sector tasks are often decomposed to various actors, each and
every one of them makes their purchase based on their own needs. In this
paper, we argue that to maintain software sustainability in this context,
there is a need for three key elements. Firstly, there is a need for an
enterprise architecture where independent services from various vendors
are can be easily deployed and integrated. Secondly, these services are
build in a such manner that they can interact via well-defined APIs, but
need no direct access to other services. Finally, techniques that support
systematic, rapid development and deployment are needed.

Keywords: Public sector software - mosaic architecture - macroservices
- software sustainability.

1 Introduction

Public sector is a large consumer for software that public sector has multiple,
conflicting, and often intangible goals [2]. In countries such as Finland, many
of these systems are made to order by consultancy companies that participate
in public tenders, initiated by the state, cities, and other public sector orga-
nizations. Furthermore, as public sector tasks are often decomposed to various
actors, each and every one makes their purchase based on their own needs.
This approach has led to surplus of information systems. For instance, a
recent study on information systems at a city of Kerava, Finland, with 35.000
inhabitants found out that here were 93 information systems that interacted in
one way or another [13]. Extrapolating from this, as there are over one hundred
cities in Finland, one can conclude that there are thousands of information sys-
tems, many of which made to order. Furthermore, while designing systems to



2 M. Setala et al.

order based on a public tender arguably fosters competition, the model has also
been considered time consuming and error-prone [7].

While software is (almost) free to copy, there is no point in copying a piece
of software that is specifically crafted for single client, solving a single problem
that no-one else has. Since all software needs maintenance, this model leads to
overly expensive use of software, and replacing it is next to impossible, because
the replacement should be done following the same model — public tender and
bidding for contracts. In other words, vendor lock-in forces municipalities to use
a certain product or service, regardless of its quality, because switching away
from it can be challenging, and the switching costs may be substantial [14].

To understand the scale of the public sector software we are talking about, let
us consider software company Gofore* as a representative consultancy company
operating with public sector based on public information®. It is pointed out that
year 2019, 70% of the revenues of the company, totalling 64Me, resulted from
public sector. In addition, it is pointed out that during years 2017-2019, public
sector has increased on average 45%, whereas private sector only reached 24%
at the same time. With several other companies similar to Gofore in the Finnish
ICT ecosystem, public sector software has huge potential for exports as well. In
total, the state of Finland only made a procurement worth over 1000Me [8] in
the field of ICT. Much of the associated software is made to order, and focuses
on problems of a single organization only.

In this paper, we argue that to maintain software sustainability in this con-
text, three core elements must be considered:

— mosaic-like enterprise architecture — Mosaic EA for short — for public sector
that allows integrating services from various vendors;

— ability to deploy subsystems in a fashion where they can liberally interact,
but need no direct access; and

— systematic, affordable way to build subsystems that meet stakeholders’ re-
quirements.

The paper is based on observing public sector projects and related tenders as
well as on bidding for such projects. The three authors have jointly more than
75 years of experience in practice and in academia. The experiences are drawn
mostly from Finland. However, Finland is a good representative of a Northern
European highly digitalized welfare state inside the European Union. Impor-
tantly, we consider the export possibility as a mechanism to foster sustainability.

2 Background and Motivation

While in many businesses, IT forms the core of all operations, the public sector
often needs to outsource the whole solution. For instance, resources are often
allocated such that the organization can run its operations but not design and

* https://gofore.com/en/
® https:/ /gofore.com /vuosi-2020-julkisen-sektorin-kumppanina/



Elements of Sustainability for Public Sector Software 3

implement new solutions. To foster competition, public sector information sys-
tem projects are often based on public tenders. Typically, these are formal,
structured procedures for generating competing offers from different potential
suppliers or contractors, who seek to win a service contracts. The contract can
involve several phases of software development and operations. For instance,
specification phase can be a separate contract, separated from implementation.
Similarly, the contract can also include running daily operations [6].

Upon placing an open tender for the development, organisations often seek
to avoid vendor lock-in. However, this is not always successful. Since tendering
is only the beginning of the implementation process, chances are that it takes a
considerable amount of time before the new system is operational, and during
this time, the situation might change. Furthermore, those that loose in the ten-
dering process can slow this even more with claims of unfair tendering. Hence,
public sector actors by necessity must provide their services with various sys-
tems, some of which are new and some of which may have a long history. This,
with the growing tendency to build systems that rely on other systems — for in-
stance using AWS for certain routines via a well-defined API — adds complexity
to managing public sector software.

Oftentimes, these tenders are based on a organization-centric view, simply be-
cause the acquiring organization focuses the tendering process to its own needs.
For an end user citizen that needs such service, the result is that she needs to ac-
cess the particular information system, and the service cannot be easily linked to
other, related services. Hence, the end user needs to access the different systems
independently, and ensure that her data in the different systems are in sync.

Based on the above, we argue that to manage its information systems a
transition is needed from organization-centric to a citizen-centric model. To im-
plement such, public sector organizations need an enterprise architecture (EA)
that fosters open competition for tenders as well as supports multi-vendor op-
erations. Furthermore, this EA must be defined and under the control of the
organization in question, as otherwise it no longer can operate independently.
We call such model Mosaic EA, since each party can provide individual pieces
to the mosaic, whereas the public sector actor(s) fundamentally control and
maintain the system as a whole.

3 Proposed Architecture and Approach

Today, there is a common tendency to acquire information systems such that
one vendor delivers the whole solution. That way, the development is under the
control of the single vendor, who can decide on many of the technical details.
However, these systems do not constitute a coherent enterprise for public sector,
but each one of them is a separate entity, with minimal interaction with other
systems. To improve, we propose that systems are acquired in a fashion where
their interfaces enables interaction across the different systems. Based on our
view, this calls for reconsidering the role of each vendor and the public stake-



4 M. Setala et al.

J “U°U ‘wa)sAs uonew.oyu| '

JUBWIAZRUBW pUE]
‘wa)sAs uonew.oyu|

E}
5}
3
3
)
=1
o
=]
o
<
Pl
)
o
E]
I
©
[
=
o

JUBWAZRUBW PUE]
‘wa)sAs uonew.Ioyu|

=1
o
S
3
5]
=p
1)
=
2
g
3
=
S
E3
o
-

Y3eaH ‘waisAs uopew.olu|

7y U0 ‘waisAs uonewoyu|
J

=1
g
3
=
<)
=
2
g
3
=
B
=
[}
S

services ~ services
DB services “. _bB " services
B D

Fig. 1. Mosaic EA illustrated. Left: traditional software subcontracting model: each
domain has own solutions, and nothing is shared. Center: Situation in Finland today:
mix of shared and private databases, applications made to order. Right: true Mosaic
EA, where databases and services are shared, based on open APIs.

holders, so that data and services can be shared across different applications.
This is illustrated in Figure 1.

Mosaic Enterprise Architecture. Echoing the findings of [14], the development
of a unified enterprise architecture is critical to the success of public sector
software systems. The fashion we propose implementing this uses a mosaic as a
metaphor. In a true Mosaic EA, the system consists of independent services that
can originate from various vendors. A Mosaic EA defines common guidelines that
are needed for monitoring and updating the services. Furthermore, openness,
transparency and the ability to connect to other systems are at the core of
Mosaic EA. In addition, Mosaic EA is used to define APIs for different services.
These APIs are the only way to interact with other services, and each API can be
implemented by several vendors. Therefore, services can be replaced with new,
updated ones, given that the APIs remain unchanged.

Macro-Service Decomposition. The services defined by Mosaic EA have been
inspired by micro-services and micro-service architecture [10], but they are of
coarser granularity. Hence we call them macro-services. While a micro-service
is something that a team of developers can single-handedly design and deploy,
macro-services are of size and complexity that can be easily covered by a single
public tender. Furthermore, a common requirement is that the macro-service API
remains well-defined and maintained, so that it can evolve over time, and they
can be replaced without major complications. Furthermore, with well-defined
and maintained API, also reusing testware is possible. Hence, macro-services
are a tool for the public sector when considering acquiring new information
systems. While not an advocated practice in general, real-life examples of such
systems are numerous, already when considering only Finland. These include
regulatory and legal principles — such as registry legislation or taxation and anti-
corruption regulation, as well as national registries, digital health care services,
and digital authorization and mandates. In more detail, the Digital Fact Sheet



Elements of Sustainability for Public Sector Software 5

2019 Finland [3] lists the following services we characterise as macro-services: (i)
the eAuthorisations service verifies a person’s or organisation’s authorisation to
use digital services; (ii) a semantic interoperability workbench was implemented;
(iii) Two new important registers have been created, incomes register and register
of housing company shares. In general, the report presents a number of potential
macro-services that seem like ready-made components for Mosaic EA. Obviously,
these are just the tip of the iceberg, and there are several candidates when digging
deeper in the existing services.

Low-Code Development. The final piece in the proposal is relying on low-code
development model, where tools enable rapid development of new systems. The
model has been found helpful in automating processes in e.g. manufacturing [16,
12]. A recent Gartner report [15] proposes certain essential use cases for the
technology, where productivity gains are identified for professional and citizen
development. In addition, considerable benefits are also seen in as speed of deliv-
ery. At present, tools for low-code development are plentiful. Often, they support
rapid application development, one-step deployment and execution, and man-
agement using declarative, high-level programming abstractions. Model-driven
development and metadata often play an important role. In parallel, also new
development practices, such as opportunistic reuse [4], is opening doors to faster
development and deployment, although arguably with a higher risk rate [9]. Both
approaches offer faster development and deployment as ever before, to the extent
that the whole public sector is at a brink of a potential disruption. At the core of
this disruption is true openness at interface level, which combines macro-services
and low-code development in the proposed model.

4 Discussion

Our key assumption is that no organization is interested in purchasing and man-
aging small subsystems. Hence, to avoid large, vendor specific subsystems, a
supporting enterprise architecture is needed, which we call Mosaic EA. This
EA enables managing and operating the system, so that several vendors can
participate in the development. In addition, since the organization operating the
system needs assume its control, this liberates public organizations from vendors
that aim at taking control over the systems. However, the public sector players
have to have their own technical expertise to define and maintain the Mosaic
EA. Currently, they continue relying on vendor’s technical expertise [14], which
needs to be changed for the new approach to work.

With this approach, if and when the public sector wants to buy complete
systems, any vendor can be the lead in the process, as long as there is a healthy
ecosystem producing and operating subsystems for the MEA. This consists of
API economy based on clouds [11], reliance on open source [5], and strategic
decision for a public actor to avoid vendor lock-in. The main foreseen negative
consequence concerns large companies as this lowers the barrier of entry to the
field. Indeed, one does not need to be a Global giant to serve governments.



6 M. Setala et al.

The new model can also catalyst new income in terms of exports, which can
be based on the same model. So far, the most focused approach is EU’s Gaia-X
initiative [1]. At present, the initiative is not yet at the level of Mosaic EA, but
it is under active development, aiming to shape the whole EU software industry.
We expect that this will inspire new types of software ecosystems, where smaller
actors can participate in projects in a key role.

Supporting the proposed more generic approach requires a change in busi-
ness processes as well. Current business models favor the large vendors and
the large subsystems. Moreover, interoperability issues with completely closed,
single-vendor systems traditionally introduce problems related to reuse or re-
placing the system, which the proposed model is trying to eliminate. Similarly,
parallel use of several systems, which address the same issue but are designed
by different vendors, is often complicated.

Finally, from the technical perspective, it is important to notice that macro-
services represent a level of abstraction that can be conveniently specified at
a contractual level, not necessarily something that is convenient to implement
as such. Instead, macro-services’ practical implementation requires their decom-
position into smaller entities. Some of these can be new, but interfacing with
existing macro-services is also possible. Furthermore, many of the existing im-
plementations rely on open source components, which can be implemented by
some other actors than the company that delivers the service to the public sec-
tor. In addition, in certain cases relying on Al requires a related approach, where
Al related features are separated from the rest of the system, to avoid potential
problems related to confidentiality, for instance.

5 Conclusions

In conclusion, when public sector acquires software systems, the requirements
are often based on the intermediate needs at hand. This leads to an architecture
model, where each system is tailored for a particular actor, and offers little op-
portunities for reuse. In this paper, we clam that this model is not sustainable
for public sector in the long run, but a more ecosystem centric view is needed.
As the technical solution that is inline with such ecosystems, we propose follow-
ing a mosaic-like approach called Mosaic EA as the starting point of both the
development and tendering process to initiate it.

With this framework in place, the development of functions can advance from
one tendering process at a time. However, tendering and development needs
to follow the ideology defined by the Mosaic EA, with guidelines how to deal
with open APIs in the technical sense and ecosystem formation guidelines and
operations in the process and organizational view. Moreover, since there are
several open source projects as well as new methodologies such as low-code
development, we expect that the new model will decrease I'T costs, due to the
increased competition and the ability to select the services in smaller, more
understandable, upgradeable pieces, instead of acquiring a single system that
must also be upgraded as such.



Elements of Sustainability for Public Sector Software 7

Achieving this, however, requires a new mindset, where public sector orga-

nizations assume responsibility over their information systems. This calls for
increased IT and EA competence in the public organizations.

References

10.

11.

12.

13.

14.

15.

16.

Braud, A., Fromentoux, G., Radier, B., Le Grand, O.: The road to european digital
sovereignty with gaia-x and idsa. IEEE Network 35(2), 4-5 (2021)

Caudle, S.L., Gorr, W.L., Newcomer, K.E.: Key information systems management
issues for the public sector. MIS quarterly pp. 171-188 (1991)

European Commission: Digital Government Factsheet 2019: Finland (2019)
Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, mashing, gluing: Understand-
ing opportunistic design. IEEE Pervasive Computing 7(3), 46-54 (2008)

Jokonya, O.: Investigating open source software benefits in public sector. In: 2015
48th Hawaii International Conference on System Sciences. pp. 2242-2251. IEEE
(2015)

Koski, A., Mikkonen, T.: On the windy road to become a service provider: Reflec-
tions from designing a mission critical information system provided as a service.
In: 2016 International Conference on Information Systems Engineering (ICISE).
pp. 51-56. IEEE (2016)

Koski, A., Mikkonen, T.: What we say we want and what we really need: Experi-
ences on the barriers to communicate information system needs. In: Requirements
Engineering for Service and Cloud Computing, pp. 3-21. Springer (2017)
Kahkonen, H.: Growth in government ICT procurement slowed — We
list the top 20 suppliers. TIVI, March 12, 2021 (in Finnish). (2021),
https://www.tivi.fi/uutiset /valtion-ict-hankintojen-kasvu-hidastui-listasimme-
top-20-toimittajat/0b7d7b29-6250-4c8d-aaa3-b21da75{785

Maékitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., Capilla, R.: On oppor-
tunistic software reuse. Computing 102(11), 2385-2408 (2020)

Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice architecture:
aligning principles, practices, and culture. 7 O’Reilly Media, Inc.” (2016)
Sallehudin, H., Razak, R.C., Ismail, M.: Factors influencing cloud computing adop-
tion in the public sector: an empirical analysis. Journal of Entrepreneurship and
Business (JEB) 3(2), 30-45 (2015)

Sanchis, R., Garcia-Perales, 0., Fraile, F., Poler, R.: Low-code as enabler of digital
transformation in manufacturing industry. Applied Sciences 10(1), 12 (2020)
Vilpponen, H., Grundstréom, M., Abrahamsson, P.: Combining social service and
healthcare as the first country in the world : Exploring the impacts on information
systems. Journal of Advances in Information Technology 9(4), 84-88 (2018)
Vilpponen, H., Grundstrém, M., Abrahamsson, P.: Exploring the critical success
factors in social and health care information systems project procurement. In: Goel,
A K. (ed.) Recent Developments in Engineering Research Vol. 8. Book Publisher
International (2020)

Vincent, P., lijima, K., Driver, M., Wong, J., Natis, Y.: Magic quadrant for enter-
prise low-code application platforms. Gartner report (2019)

Waszkowski, R.: Low-code platform for automating business processes in manu-
facturing. IFAC-PapersOnLine 52(10), 376-381 (2019)



