
HAL Id: hal-03529507
https://inria.hal.science/hal-03529507

Submitted on 17 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering Effect in Simon and Simeck
Gaëtan Leurent, Clara Pernot, André Schrottenloher

To cite this version:
Gaëtan Leurent, Clara Pernot, André Schrottenloher. Clustering Effect in Simon and Simeck. ASI-
ACRYPT 2021 - 27th International Conference on the Theory and Application of Cryptology and
Information Security, Dec 2021, Virtual, Singapore. pp.272-302, �10.1007/978-3-030-92062-3_10�.
�hal-03529507�

https://inria.hal.science/hal-03529507
https://hal.archives-ouvertes.fr

Clustering Effect in Simon and Simeck?

Gaëtan Leurent1, Clara Pernot1, and André Schrottenloher2

1 Inria, France firstname.lastname@inria.fr
2 Cryptology Group, CWI, Amsterdam, The Netherlands

firstname.lastname@m4x.org

Abstract. Simon and Simeck are two lightweight block ciphers with
a simple round function using only word rotations and a bit-wise AND
operation. Previous work has shown a strong clustering effect for differ-
ential and linear cryptanalysis, due to the existence of many trails with
the same inputs and outputs.
In this paper, we explore this clustering effect by exhibiting a class of
high probability differential and linear trails where the active bits stay
in a fixed window of w bits. Instead of enumerating a set of good trails
contributing to a differential or a linear approximation, we compute the
probability distribution over this space, including all trails in the class.
This results in stronger distinguishers than previously proposed, and we
describe key recovery attacks against Simon and Simeck improving the
previous results by up to 7 rounds. In particular, we obtain an attack
against 42-round Simeck64, leaving only two rounds of security margin,
and an attack against 45-round Simon96/144, reducing the security
margin from 16 rounds to 9 rounds.

Keywords: Lightweight cipher · Simon· Simeck· differential cryptanal-
ysis · linear cryptanalysis · clustering effect

1 Introduction

Simon and Simeck are two lightweight block ciphers with a simple round function
and very good hardware and software performances. Simon [5] was designed
by Beaulieu, Shors, Smith, Treatman-Clark, Weeks and Wingers and published
without a rationale, but has been considered for ISO standardisation. It follows
a Feistel structure with a very simple round function:

f(x) = ((x≪ 8) ∧ (x≪ 1))⊕ (x≪ 2).

Simeck is an academic variant of Simon designed by Yang, Zhu, Suder, Aagaard
and Gong, and published at CHES 2015 [29]. It has the same number of rounds,
and the same round function as Simon, but with different rotation amounts:

f(x) = ((x≪ 5) ∧ x)⊕ (x≪ 1).

The key schedule of Simeck is also modified to reuse the function f .
? c©IACR 2021. This article is the final version submitted by the authors to the IACR
and to Springer on 2021-09-20, with supplementary material. The version published
by Springer is available at https://doi.org/10.1007/978-3-030-92062-3_10.

https://doi.org/10.1007/978-3-030-92062-3_10

Previous work has shown that the best attacks against these ciphers use
differential cryptanalysis or linear cryptanalysis [1,9,12,18,24], and has provided a
detailed analysis of differential paths and linear trails using various techniques and
tools [6,17,21,28]. Moreover they show a strong clustering effect for differential
characteristics and linear trails. There exist many trails with the same input
and output, and the probability of a differential (respectively the potential
of a linear approximation) is significantly higher than the probability of the
best characteristic (respectively the best linear trail). In order to estimate the
probability of a differential or the potential of a linear approximation, we have
to combine the effect of as many trails as possible with the corresponding
input/output. This generates a lower bound on the quality of the differential or
linear approximation. For instance, the best differential characteristic for 27-round
Simeck64 has probability 2−70 [18], but a 27-round differential (0, 11)→ (5, 2)
with probability 2−60.75 was given in [16].

Our Contribution. In this work, we explore this clustering effect in a more
systematic way. Instead of building a list of trails with a given input/output, we
consider a class of high probability trails where the active bits stay in a fixed
window of w bits. In particular, we observe that the differentials and linear hulls
used in most previous attacks fit in this framework.

Using properties of the round function, we compute efficiently the probability
distribution over this space by multiplication of the differential transition matrix,
or the linear correlation matrix. This provides a tighter lower bound on the
probability of the differential (or the potential of the linear approximation) than
used in previous works, because we implicitly consider all trails with intermediate
states fitting in the window. Concretely, the 27-round differential (0, 11)→ (5, 2)
has probability at least 2−56.06 for Simeck64. In general, we obtain a good
understanding of the propagation of differences and linear masks in this class:
there is a high probability to stay in the class because of the slow diffusion of
Simon and Simeck.

We observe that this class includes many high quality distinguishers with
input/output that are independent of the number of rounds targeted by the
attacks. In particular, we use distinguishers with a single active bit in the input
and output, because we can add more rounds of key-recovery than when using
distinguishers with multiple active bits. Concretely, for Simeck64, the differential
(0, 1)→ (1, 0) has probability at least 2−54.72 over 27 rounds, and 2−60.41 over
30 rounds.

Finally, we use the distinguishers to build key-recovery attacks, using dy-
namic key-guessing [24,27] for differential attacks, and the Fast Walsh Transform
approach of [15] for linear cryptanalysis. We observe that Simon and Simeck
are rotation-invariant, so that any differential or linear attack can be repeated
several times using rotations of the original distinguisher. In particular, we can
exploit attack parameters with low success rates, and repeat them several times to
increase the success rate. We compare our results with the best previous analysis
in Table 1. A more detailed comparison is also given as Table 15 in Appendix.

2

Table 1. Summary of previous and new attacks against Simon and Simeck. Attacks
marked with † recover information about subkey bits, but the advantage is too low to
attack the cipher. Attacks marked with ‡ use the duality between linear and differential
distinguishers, which is not exact.

Cipher Rounds Attacked Data Time Ref Note

Simeck48/96 36 30 247.66 288.04 [25] Linear † ‡
32 247 290.9 New Linear

Simeck64/128 44 37 263.09 2121.25 [25] Linear † ‡
42 263.5 2123.9 New Linear

Simon96/96 52 37 295 287.2 [27] Differential
43 294 289.6 New Linear

Simon96/144 54 38 295.2 2136 [12] Linear
45 295 2136.5 New Linear

Simon128/128 68 50 2127 2119.2 [27] Differential
53 2127 2121 New Linear

Simon128/192 69 51 2127 2183.2 [27] Differential
55 2127 2185.2 New Linear

Simon128/256 72 53 2127.6 2249 [12] Linear
56 2126 2249 New Linear

Outline. We begin with preliminaries about differential and linear cryptanalysis
in general in Section 2. Then we apply them to Simon-like ciphers in Section 3,
starting with previous results and explaining our main contribution. We explain
in detail how to apply these ideas to Simeck with differential cryptanalysis
(Section 4) and linear cryptanalysis (Section 5). We apply the same techniques
to Simon in Section 6, and conclude in Section 7.

The code used to compute the probabilities of differentials and linear approxi-
mations (Table 4), as well as the success probability of linear attacks (Section 5),
is available at https://github.com/Clustering-Simon.

1.1 Notations

The following notations are used in this paper:
n/κ block size and key size
x(i) left part of the input of round i
xj j-th bit of x
r number of rounds
P/C plaintext and ciphertext
P̃ /C̃ plaintext after the first round the ciphertext before the last round
D data complexity
C1 time complexity to run an attack a single time
FW /FR probability distribution function for a wrong/right key guess
PS success probability of an attack
a, b, c rotation constants: f(x) = ((x≪ a) ∧ (x≪ b))⊕ (x≪ c)

3

https://github.com/Clustering-Simon

1.2 Description of Simon and Simeck

Simonn/κ and Simeckn/κ are Feistel block ciphers with block size n ∈ {32, 48,
64, 96, 128} and key size κ ∈ {n, 1.5n, 2n}. There are 10 versions of Simon, with
the following parameters:

n 32 48 64 96 128

κ 64 72 96 96 128 96 144 128 192 256
r 32∗ 36 36∗ 42 44∗ 52 54 68 69 72

There are 3 versions of Simeck, using a subset of the Simon parameters marked
with ∗; in particular, Simeck has κ = 2n, and we often omit the κ parameter.
The plaintext P is divided in two parts of n/2 bits named x(0) and x(−1), which
correspond to the initialization of the left and the right parts of our Feistel
network. For the round i, we denote by x(i) and x(i−1) the left and the right part
of the input of this round. The round function is:

x(i+1) = x(i−1) ⊕ f(x(i))⊕ k(i), with
f(x) = ((x≪ a) ∧ (x≪ b))⊕ (x≪ c).

We denote by x≪ d the cyclic rotation of d bits by left, ∧ the bitwise AND, and
⊕ the bitwise exclusive or (XOR). The j-th bit of x is noted xj where the index
j is taken modulo n/2. The rotations of Simon are defined as (a, b, c) = (1, 8, 2),
while those of Simeck are defined as (a, b, c) = (0, 5, 1) (the rotation amounts
are independent of the block size).

Since there is no whitening key, the first and last round functions do not
depend on the key. We define P̃ as the plaintext after the first round, C̃ as the
ciphertext before the last round, and we use them as input for our analysis:

P = (x(0), x(−1)) P̃ = (x(−1) ⊕ f(x(0)), x(0))
C = (x(r), x(r−1)) C̃ = (x(r−1), x(r) ⊕ f(x(r−1)))

The input of round 1 corresponds to P̃ ⊕ (k(0)‖0n/2) (see Figure 5).
The key schedule allows to derive the subkeys k(i) for 0 ≤ i < r from the master

key k. First, the master key is divided into 2κ/n words (k(2κ/n−1), . . . , k(1), k(0)).
Then, the subkeys k(i) for i ≥ 2κ/n are obtained using a recursion formula. For
Simeck, the recursion is defined as

k(i+4) = k(i) ⊕ f(k(i+1))⊕ C ⊕ z(i),

with C and z(i) constants depending on the block size and f is the same function
as used in the data path. Simon uses a different key schedule, that is linear. We
omit further details because our analysis does not exploit them.

2 Differential and Linear Cryptanalysis

We begin with some preliminaries on differential and linear cryptanalysis.

4

x(i) x(i−1)

f ⊕
⊕

x(i+1) x(i)

k(i)

Fig. 1. Round function of
Simon and Simeck.

x(i) x(i−1)

f ⊕
⊕

x(i+1) x(i)

k(i)

δ(i) δ(i−1)

δ(i+1) δ(i)

Fig. 2. Differential char-
acteristic with probability
Prx[δ

(i) f→ δ(i−1) ⊕ δ(i+1)]

x(i) x(i−1)

f ⊕
⊕

x(i+1) x(i)

k(i)

α(i−1) α(i)

α(i) α(i+1)

Fig. 3. Linear trail with
correlation
c(α(i−1) ⊕ α(i+1) f→ α(i))

C̃

⊕

E2

Distinguisher

E1

⊕

P̃

K
ey

sc
he

du
le

kc

kb

kt

kp

k

Fig. 4. General description of a cipher.

x(0) x(−1) P
f ⊕

x̃(1) x(0) P̃

f

⊕
⊕
⊕k(0) k(1) kp

x(2) x(1)

...
... kt, kb

x(r−2) x(r−3)

f ⊕
⊕⊕k(r−1) k(r−2) kc

x(r−1) x̃(r−2) C̃
f ⊕

x(r) x(r−1) C

Fig. 5. Simon/Simeck with our nota-
tions: x̃(1) and x̃(r−2) respectively stand
for x(−1) ⊕ f(x(0)) and x(r) ⊕ f(x(r−1)).

2.1 Differential cryptanalysis

Differential cryptanalysis is a technique introduced by Biham and Shamir [7,8],
exploiting the propagation of differences in (reduced versions of) a cipher. Starting
from a well-chosen difference δ, the distribution of Ek(x) ⊕ Ek(x ⊕ δ) is non-
uniform, and there exist differences δ′ such that Prk,x[Ek(x)⊕Ek(x⊕ δ) = δ′] is
high (significantly higher than 2−n). Such a pair (δ, δ′) is called a differential.

5

In practice, we use the notion of differential characteristic (or trail) to estimate
the probability of a differential. A differential characteristic (δ0, δ1, . . . , δr) speci-
fies the intermediate state difference after each round of the function. Therefore,
we can easily compute the probability that each round follows the characteristic,
and we estimate the probability of the differential as the product of the probability
of each round, assuming that they are independent.

More formally, we use the following notations for the probability of the round
function, the probability of a characteristic, and the probability of a differential,
where R denotes the round function of a cipher, and E(r)

k is a reduced version of
the cipher with r rounds:

Pr[δ → δ′] = Pr
x
[R(x)⊕R(x⊕ δ) = δ′]

Pr[δ0 → δ1 → . . .→ δr] = Pr
k,x

[E
(i)
k (x)⊕ E(i)

k (x⊕ δ0) = δi,∀i ≤ r]

Pr[δ
r
 δ′] = Pr

k,x
[E

(r)
k (x)⊕ E(r)

k (x⊕ δ) = δ′]

Lai, Massey and Murphy have defined the notion of a Markov cipher (Simon
and Simeck with independent round keys are Markov ciphers), where the proba-
bility of a characteristic is the product of the probabilities of the round function
transitions [19]:

Pr[δ0 → δ1 → . . .→ δr] =

r∏
i=1

Pr[δi−1 → δi] .

When there is a dominant characteristic, it can be used as an approximation of
the probability of the differential. In general, the probability of a differential is
the sum over all compatible characteristics:

Pr[δ0
r
 δr] =

∑
δ1,δ2,...δr−1

r∏
i=1

Pr[δi−1 → δi] .

If we write all the transition probabilities Pr[δ → δ′] in a differential transition
matrix A, the probabilities of all r-round differentials are given by Ar, as shown
by [19]. Computing Ar is infeasible for practical ciphers, but this approach
can be applied to a set of predetermined characteristics, and provide a good
approximation of the probability of a differential.

Differential distinguisher. In order to distinguish a cipher with a high prob-
ability differential (δ, δ′) from a random permutation, we collect D ciphertexts
corresponding to pairs of plaintexts (P, P ⊕ δ), and we compute the number of
pairs following the differential:

Q = #{P : E(P)⊕ E(P ⊕ δ) = δ′} .

The expected value of Q is D × Pr[δ δ′] for the cipher, and D × 2−n for a
random permutation; therefore the distinguisher succeeds with high probability
when D = O(1/Pr[δ δ′]).

6

2.2 Linear cryptanalysis

Linear cryptanalysis was introduced by Matsui [22]; it uses linear approximations
of the round function in order to obtain a biased approximation of the (reduced)
cipher. A linear approximation is a pair of masks (α, α′) such that the distribution
of x · α⊕ Ek(x) · α′ is biased (|Prx[x · α = Ek(x) · α′]− 1/2| � 2−n/2 for most
keys k), where x · y =

⊕
i xiyi denotes the dot product. Since the correlation is

expected to be zero when averaged over all keys, we define the key-dependent
correlation as follows:

ck(α
r
 α′) = 2Pr

x
[x · α = E

(r)
k (x) · α′]− 1 .

In practice, we use linear trails where a mask is specified for each intermediate
state. For an iterative cipher Ek = R

(r)
k ◦ · · · ◦ R

(2)
k ◦ R

(1)
k , we can express the

correlation ck(α0
r
 αr) as the sum of the correlation over all corresponding

linear trails by defining the correlation of the keyed round function R(i)
k [14]:

ck(α0
r
 αr) =

∑
α1,α2,...αr−1

r∏
i=1

c
(i)
k (αi−1 → αi)

c
(i)
k (αi−1 → αi) = 2Pr

x
[x · α = R

(i)
k (x) · α′]− 1 .

If the cipher is a key-alternating cipher with independent round keys, the corre-
lation of the keyed round function can be expressed in terms of the correlation of
the unkeyed round function:

ck(α0
r
 αr) =

∑
α1,α2,...αr−1

(−1)
⊕
i ki·αi

r∏
i=1

c(αi−1 → αi)

c(α→ α′) = 2Pr
x
[x · α = R(x) · α′]− 1 .

Therefore, the correlation of a linear approximation is the sum of the cor-
relations over all linear trails, with signs that depend on the key. When there
is a single dominant trail, we can approximate the correlation of the linear ap-
proximation as the correlation of the trail, up to a change of sign. However when
there are several dominant trails, they can interact constructively or destructively
depending on the key.

Nyberg [23] defined the expected linear potential as the expected value of the
square correlation for a random key, and showed that it is equal to the sum of
the squared correlation over all linear trails (assuming a key-alternating cipher
with independent keys):

ELP(α0
r
 αr) = Expk(c

2
k(α0

r
 αr))

=
∑

α1,α2,...αr−1

r∏
i=1

c2(αi−1 → αi) .

Similarly to the differential case, we can compute the expected linear potential
for all linear approximations by computing the powers of a correlation matrix C
with coefficients c2(α→ α′).

7

Linear distinguisher. In order to distinguish a cipher with a biased linear
approximation (α, α′) from a random permutation, we collect D known plain-
texts/ciphertexts, and we evaluate the experimental correlation

Q = (#{P,C : P · α⊕ C · α′ = 0} −#{P,C : P · α⊕ C · α′ = 1})/D

The expected value of Q is larger (in absolute value) for the cipher than for
a random permutation, and this can be detected with high probability when
D = O(ELP[α α′]−1) (see Section 5.2 for more details).

2.3 Last-round Key Recovery

In order to turn a statistical distinguisher (differential or linear) into a key
recovery attack, we add a few rounds at the top and/or bottom, and partially
encrypt/decrypt the available data to evaluate the statistical property. We denote
the statistic used by the distinguisher asQ, and we assume that it can be evaluated
by guessing only a subset of the key, shown as (kp, kt, kb, kc) in Figure 4. We let
κg = κp + κt + κb + κc denote the corresponding number of key bits. We denote
the value obtained for key candidate k as Q(k), and consider it as a random
variable (depending on the choice of the encryption key, and the data set). We
evaluate Q(k) for all key candidates; in a naive approach, this requires D × 2κg

operations. However, this can often be reduced to roughly D + 2κg operations
using algorithmic tricks (details are given in the next sections).

By analysing the theoretical behaviour of the distinguisher, we can predict
the distribution of the random variables. We denote the probability distribution
function of the statistic for the right key as FR, and for wrong keys as FW . We
rank the key candidates according to Q(k), and expect that the correct key will
be in the top candidates if the distinguisher is strong enough (w.l.o.g., we assume
that the statistic used gives a higher value for the right key).

More precisely, we aim to have the correct key among the top 2κg−a candidates,
where a is called the advantage (in bits). If the key schedule of the cipher is
simple enough, the attacker can reconstruct the 2κ−a master keys corresponding
to these candidates and exhaustively test them. In particular, the key schedule
of Simon is linear, so that master key candidates can be constructed from any
subkey bits using linear algebra. The complexity of this type of attack is roughly:

T = D + 2κg + 2κ−a .

In order to keep a fraction 2−a of the key candidates, we set a threshold
of s = F−1W (1 − 2−a) and keep all keys with Q(k) ≥ s. The attack succeeds if
the value of Q corresponding to the right key is higher than the threshold, this
happens with probability:

PS = 1− FR(s) = 1− FR(F−1W (1− 2−a)) . (1)

As a first condition, the parameters must satisfy:

D ≤ 2n D � 2κ 2κg � 2κ 2a � 1 PS � 0 (2)

8

Complex key schedules. When the key schedule is complex and non-linear,
reconstructing the master key candidates corresponding to the κg recovered
bits can be an issue. In particular when adding rounds on both sides of the
distinguisher, the attacker recovers candidates for keys bits in the first and last
rounds, but it is not possible to efficiently build the corresponding candidates
for the master key. In particular, some previous attacks on Simeck [16,24,25]
use a small advantage a and compute the time complexity as 2κ−a, but the key
recovery would actually have a complexity higher than 2κ with the parameters
used. Instead the attacker can focus on the recovered bits on a single side
of the distinguisher, and exhaustively search the missing bits, with a cost of
2κ−a+min{κp+κt,κb+κc}.

3 Analysis of Simon-like ciphers

Since the round function of Simon-like ciphers is quadratic, we can efficiently
compute the exact probability of a differential or linear transition through the
function f . This was explored in details by Kölbl, Leander and Tiessen [17]:

– For a given α, there is an affine space Uα such that

Pr
x
[f(α⊕ x)⊕ f(x) = β] =

{
2− dim(Uα) if β ∈ Uα
0 otherwise

Uα is a coset of the image of a linear function:

Uα = Img
(
x 7→ f(x)⊕ f(x⊕ α)⊕ f(α)

)
⊕ f(α)

Given the Feistel structure of the round function, we deduce

Pr[(δL, δR)→ (δ′L, δ
′
R)] =

{
2− dim(UδL) if δL = δ′R and δR ⊕ δ′L ∈ UδL
0 otherwise

– For a given β, there is an affine space Vβ such that

c(x · α, f(x) · β)2 =

{
2− dim(Vβ) if α ∈ Vβ
0 otherwise

Vβ is a coset of the image of a linear function:

Vβ = Img
(
x 7→

(
(β ∧ (x≪ a− b))⊕ ((β ∧ x)≫ a− b)

)
≫ b

)
⊕ (β≫ c)

For the Feistel-based round function, this implies

c((αL, αR)→ (α′L, α
′
R))

2 =

{
2− dim(VαR) if αR = α′L and αL ⊕ α′R ∈ VαR
0 otherwise

This provides an efficient representation of the differential transition matrix A
and of the squared correlation matrix C. However, computing the transitions
over the full space is still infeasible for n > 32, because we need at least to store
a vector with 2n elements.

9

Table 2. An example of 12-round iterative trail (differential and linear) for Simeck.
We show a list of active bits.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

δi ∅ 0 1 0,2 3 0,2,3,4 1,2 0,2,4 3 0,2 1 0 ∅ 0
αi ∅ 4 3 4,2 1 4,2,1,0 3,2 4,2,0 1 4,2 3 4 ∅ 4

3.1 A class of high probability trails

In this work we consider a class of trails that are only active in a window of w
bits of each word (e.g., the w least significant bits). Several previous works have
already shown that there exist iterative trails in this class for Simeck [3,24,25]
and Simon [21]; we give an example in Table 2. More generally, Simon and
Simeck have a relatively slow diffusion. If a difference is restricted to the w least
significant bits, it will stay on the w+ 5 (for Simeck) or w+ 8 (for Simon) least
significant bits after one round. Moreover, the diffusion to bit w+ 5 (respectively
w+8) is non-linear; if it is absorbed then the difference stays on w+1 (respectively
w+2) bits only. Therefore, we expect many high probability trails in this class. We
detail our results on Simeck in this section, and we discuss Simon in Section 6.

Let w ≤ n/2 and ∆w be the vector space of differences active only in the
w least significant bits (LSBs) of a word. Let ∆2

w be the product ∆w × ∆w

where the two words are considered. For a given δ0, δr ∈ ∆w, we can compute a
lower bound of the probability of the differential δ0 → δr by summing over all
characteristics with intermediate differences in ∆2

w:

Pr[δ0
r

w
δr] =

∑
δ1,δ2,...δr−1∈∆2

w

r∏
i=1

Pr[δi−1 → δi] ≤ Pr[δ0
r
 δr]

As mentioned in Section 2.1, we can compute these values by evaluating Arw where
the coefficients of the matrix Aw are the probabilities of transition Pr[δ → δ′] for
all δ, δ′ ∈ ∆2

w. In order to reduce the memory requirement, we do not explicitly
build the matrix Aw but we use the properties of the previous section to compute
it on the fly. Moreover, we focus on the probabilities Pr[δ0

r

w
δ′] for a fixed δ0,

i.e., a single line of Arw. Indeed, we can evaluate Arw × eδ0 (where eδ0 is the basis
vector corresponding to δ0) using iterated matrix-vector products.

This is shown as Algorithm 1: we use a vector X to represent the probability
distribution of the differences, and we update it iteratively. The complexity of
the algorithm is bounded by r × 22w ×maxα∈∆w |Uα| elementary operations. By
increasing w, the lower bound is refined but the complexity increases, as seen
in Figure 6. Our results show that the lower bounds grows very slowly after
w = 16, therefore we expect to have a rather tight approximation. Moreover, we
have performed experiments on 20-round distinguishers that closely match the
prediction (Figure 7 and Figure 8). In practice, it takes about a week to run the
algorithm with w = 18 and r = 30 using 1TB of RAM on a 48-core machine.

10

We have used this approach to evaluate the probability of differentials used in
previous attacks against Simeck, and we find that the probability is significantly
better than estimated in previous works (See Table 3). In particular, our approach
covers a huge number of trails than cannot be listed individually (See Table 4).

For large numbers of rounds, the best characteristics we have identified with
this search are a set of 64 characteristics with essentially the same probability, of
the form (using a hexadecimal notation to represent the value in ∆w)

{(1, 2), (1, 3), (1, 22), (1, 23), (2, 5), (2, 7), (2, 45), (2, 47)}
→

{(2, 1), (3, 1), (22, 1), (23, 1), (5, 2), (7, 2), (45, 2), (47, 2)}

However, we note that the characteristic (0, 1)→ (1, 0) is almost as good and will
lead to a more efficient key-recovery (because it has fewer active bits). Therefore,
we focus on this characteristic in the following. The corresponding probabilities
are given in Table 4.

3.2 Links between Linear and Differential trails

Alizadeh et al. have shown a duality between differential and linear trails in
Simon [2], that also applies to Simeck. Given a differential trail with probability p:

(α0, β0)→ (α1, β1)→ . . .→ (αr, βr)

we can convert it into a linear trail:

(
←−
β 0,
←−α 0)→ (

←−
β 1,
←−α 1)→ . . .→ (

←−
β r,
←−α r)

where ←−x denotes bit-reversed x. If all the non-linear gates are independent, the
linear trail has squared correlation p. This explains that linear distinguishers
and differential distinguishers of Simon-like ciphers are very similar. However
they are not equivalent: when trails are more dense, there are dependencies when
two different AND gates share an input, and the probabilities of the linear and
differential trail are not the same.

Since our approach applies almost identically to differential cryptanalysis and
linear cryptanalysis, we have also applied it to linear cryptanalysis. We consider
masks in the set Λ2

w active only in the w least significant bits, and we compute
a lower bound on the ELP by summing over trails with intermediate masks
in the set Λ2

w. Since the diffusion of linear masks goes from most significant
bits to least significant bits, the highest-bias trail with a single active bit is
(2w−1, 0)→ (0, 2w−1). For simplicity, we rotate the trail by w−1 bits and display
it as (1, 0)→ (0, 1). We obtain a set of 64 (almost) optimal trails, corresponding
to the bit-reversed versions of the optimal differential characteristics. We represent
them after a rotation of w − 7 bits for simplicity:

{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)}
→

{(40, 20), (40, 22), (40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)}

11

Table 3. Comparison of our lower bound on the differential probability for Simeck
(with w = 18), and estimates used in previous attacks.

Rounds Differential Proba (previous) Ref Proba (new)

26 (0, 11)→ (22, 1) 2−60.02 [18] 2−54.16

26 (0, 11)→ (2, 1) 2−60.09 [25] 2−54.16

27 (0, 11)→ (5, 2) 2−61.49 [21] 2−56.06

27 (0, 11)→ (5, 2) 2−60.75 [16] "
28 (0, 11)→ (A8, 5) 2−63.91 [16] 2−59.16

Algorithm 1. Computation of Pr[(δL, δR)
r

w

(δ′L, δ
′
R)]

X ← [0 for i ∈ ∆2
w]

X[δL, δR]← 1
for 0 ≤ i < r do

Y ← [0 for i ∈ ∆2
w]

for α ∈ ∆w do
for β ∈ ∆w do

for γ ∈ Uα do
Y [β ⊕ γ, α] = Y [β ⊕ γ, α] + 2− dim(Uα)X[α, β]

X ← Y
return X[δ′L, δ

′
R]

Our results are given in Table 4 (where the trail (1, 2)→ (2, 1) corresponds to
(20, 40)→ (40, 20)), and show that the results obtained for linear cryptanalysis
and differential cryptanalysis are very close, but not identical.

3.3 Key Bits for Last-round Key Recovery

When a differential or linear distinguisher is extended into a key recovery attack,
we have to study what are the key bits necessary to evaluate the statistical
property after a few rounds. We denote the required key as kp, kt on the plaintext
side, and kb, kc on the ciphertext side (see Figure 4), and the corresponding
number of bits as κp, κt (respectively κb, κc). The total number of required key
bits is denoted as κg = κp+κt+κb+κc. For simplicity, we focus on distinguishers
with a single active bit, as used in this work.

Linear cryptanalysis. For linear cryptanalysis, we have to compute an internal
bit x(i)j from the plaintext (or from the ciphertext). We compute recursively the
necessary key bits following the expression of the round function. In the case of
Simeck (see Algorithm 3 in Appendix A), the formula is:

x
(i)
j = (x

(i−1)
j ∧ x(i−1)j+5)⊕ x(i−1)j+1 ⊕ x

(i−2)
j ⊕ k(i−1)j . (3)

12

6 8 10 12 14 16 18

−44
−48
−52
−56
−60
−64
−68
−72

w

lo
g
2
(P

r[
(0
,1
)
r w
(1
,0
)]
)

r = 20
r = 25
r = 30

Fig. 6. Effect of w on the probability of Simeck differentials.

0 5 10 15 20 25 30 35 40

Experimental
Theoretical

Fig. 7. Experimental verification of the 20-round differential distinguisher (0, 1)→ (1, 0)
for Simeck64. We take 336 random keys with 246 random plaintext pairs each, and we
count the number of pairs following the differential. The theoretical curve is a Poisson
distribution with parameter λ = 246 × 2−41.75. We have 6408 good pairs in total, which
gives an experimental probability of 2−41.75, matching our analysis.

−4σ −3σ −2σ −σ 0 σ 2σ 3σ 4σ

Experimental
Theoretical

Fig. 8. Experimental verification of the 20-round linear distinguisher (1, 0)→ (0, 1) for
Simeck64. We take 336 random keys with 248 random plaintexts each, and we measure
the experimental correlation over the available plaintexts. The theoretical curve is a
normal distribution with parameter σ2 = ELP+B/N ≈ 2−41.74 + 2−48 ≈ 2−41.72. The
average square correlation observed is 2−41.7, matching the analysis.

13

Table 4. Comparison of the probability of differentials and the linear potential of
linear approximations for Simeck (log2, computed with w = 18). We also give the total
number of trails included in the bound in parenthesis (log2)

Differential Linear

Rounds (0, 1)→ (1, 0) (1, 2)→ (2, 1) (1, 0)→ (0, 1) (1, 2)→ (2, 1)

1 0 (0) −∞ 0 (0) −∞
2 −∞ −4.00 −∞ −4.000
3 −∞ −4.00 −∞ −4.000
4 −∞ −∞ −∞ −∞
5 −∞ −∞ −∞ −∞
6 −∞ −∞ −∞ −∞
7 −∞ −∞ −∞ −∞
8 −∞ −∞ −∞ −∞
9 −∞ −∞ −∞ −∞
10 −∞ −∞ −∞ −∞
11 −23.25 (28.0) −27.25 −23.81 (23.9) −27.81
12 −26.40 (36.2) −26.17 −26.39 (31.7) −26.68
13 −28.02 (47.2) −26.90 −27.98 (42.0) −27.31
14 −30.06 (58.2) −29.59 −29.95 (52.5) −29.56
15 −31.93 (70.8) −31.37 −31.86 (64.9) −31.29
16 −33.96 (83.0) −33.35 −33.76 (77.0) −33.24
17 −35.48 (95.2) −35.25 −35.09 (88.8) −35.12
18 −37.95 (107.5) −37.12 −37.94 (100.7) −36.85
19 −39.92 (119.7) −38.97 −39.93 (112.6) −38.67
20 −41.75 (131.9) −41.26 −41.74 (124.5) −41.25
21 −43.47 (144.1) −43.17 −43.56 (136.4) −43.17
22 −45.42 (156.3) −44.97 −45.45 (148.4) −44.99
23 −47.27 (168.5) −46.77 −47.30 (160.3) −46.83
24 −49.14 (180.7) −48.68 −49.14 (172.2) −48.71
25 −51.01 (192.9) −50.54 −51.00 (184.1) −50.56
26 −52.88 (205.2) −52.41 −52.86 (196.0) −52.40
27 −54.72 (217.4) −54.28 −54.68 (207.9) −54.26
28 −56.64 (229.6) −56.15 −56.59 (219.8) −56.11
29 −58.53 (241.8) −58.02 −58.47 (231.7) −57.96
30 −60.41 (254.0) −59.92 −60.36 (243.6) −59.86
31 −62.29 (266.2) −61.81 −62.24 (255.5) −61.75
32 −64.17 (278.4) −63.69 −64.12 (267.4) −63.63
33 −66.05 (290.6) −65.57 −66.00 (279.3) −65.51
34 −67.93 (302.9) −67.45 −67.90 (291.2) −67.40
35 −69.81 (315.1) −69.33 −69.78 (303.1) −69.28
36 −71.69 (327.3) −71.21 −71.65 (315.0) −71.17
37 −73.57 (339.5) −73.09 −73.53 (326.9) −73.05
38 −75.45 (351.7) −74.97 −75.40 (338.8) −74.92

14

The algorithm returns the key bits that x(i)j depends on: a list of (linear combi-
nations of) key bits with a linear effect on x(i)j , and a list of (linear combinations
of) key bits with non-linear effect.

Differential cryptanalysis. For differential cryptanalysis, we have to determine
whether a pair of plaintexts (or ciphertexts) P, P ′ reaches a specific internal state
difference ∆x(i) = x(i) ⊕ x′(i) after a few rounds. However, the plaintexts are not
chosen randomly. Instead they have a specific pattern of differences that is fixed
in advance, and known to potentially reach the target difference.

More precisely, we follow the approach of [24,27] to track the propagation of
differences in the additional rounds, assuming that a pair follows the differential.
We use the rule that the output difference of an AND operator is 0 if and only if
its input differences are (0, 0) and we identify bits with a fixed difference (0 or 1)
and those with an unknown difference (∗), as shown in Table 6. The number of
bits with a fixed difference for round i is denoted `i.

Next, we determine sufficient bit conditions for pairs following the input and
output constraints of the extended path: a small set of bit conditions that ensure
that we get the desired difference at the input and output of our differential
when they are satisfied. The other differences are automatically satisfied if the
bit conditions of the external rounds have already been checked. To determine
the sufficient bit conditions, we proceed round by round, from the outer to the
inner rounds. For each bit with a fixed output difference (0 or 1, not ∗), we look
at the input of the associated AND operator, and if they are different from (0, 0),
then we add the condition corresponding to this output difference to the set of
sufficient bit conditions.

Finally, for each sufficient bit condition, we compute the set of subkey bits
required to check the condition. The goal is to determine which subkey bits are
needed to compute a difference ∆x(i)j . For Simeck, we use the following relation:

∆x
(i)
j = (∆x

(i−1)
j ∧ x(i−1)j+5)⊕ (∆x

(i−1)
j+5 ∧ x

(i−1)
j)⊕ (∆x

(i−1)
j ∧∆x(i−1)j+5)

⊕∆x(i−1)j+1 ⊕∆x
(i−2)
j . (4)

The resulting algorithm for the upper part is given as Algorithm 2 in Appendix A.

Comparison. Table 5 shows the number of key bits to guess for a linear or
differential attack on Simeck with a single active bit, depending on the number
of rounds. (Similar tables for Simon are given as Table 13 and Table 14 in
Appendix A). The list of bits returned by the previous algorithms is simplified
in order to keep only linearly independent combinations of bits. Moreover, we
report the number of independent bits after removing bits that can be computed
using the key schedule. We see that linear cryptanalysis requires a lower number
of key bits to guess.

We now explain in detail key-recovery attacks against Simeck based on those
distinguishers. We consider differential attacks in Section 4, and linear attacks in
Section 5.

15

Table 5. Comparison of key recovery rounds for differential and linear attacks against
Simeck64/128.

Key bits Differential Linear

Rounds total independent total independent

1 0 0 0 0
2 2 2 2 2
3 9 9 7 7
4 27 27 16 16
5 56 56 30 30
6 88 88 50 48
7 120 114 75 68
8 104 88

4 Key-recovery attacks using Differential Cryptanalysis

In this section, we detail differential key-recovery attacks on Simeck. We explain
the dynamic key-guessing technique [24,27] in Section 4.1 and we give our results
in Section 4.2.

4.1 The dynamic key-guessing technique

Offline phase. Starting from a differential ∆i → ∆o covering R rounds, we
append r0 rounds before and r1 rounds after and we build the extended differential
as explained in Section 3.3. Then we identify sufficient bit conditions as shown
in Table 6, and we identify the key bits required to check whether a pair reaches
the difference specified by the distinguisher.

Online phase. Here we describe how the attack takes place from the construction
of the pairs to the recovery of the possible master keys. First, we build structures
of plaintexts such that the bits with a fixed difference in round 1 are identical
for all the plaintexts in each structure. Each structure is composed of 2n−`1
plaintexts and if D denotes the data complexity, there are D × 2`1−n structures.
The structures are associated in pairs such that the differences between the two
structures for bits with a fixed difference in round 1 correspond to the desired
difference in the extended path. For each structure, the corresponding ciphertexts
are saved in a table according to their value in the bits with fixed difference in C̃.
This allows to filter the pairs at the output and 22(n−`1)−`r−1 pairs remains in
each pair of structures.

Our goal is to associate partial key guesses to each of these pairs, such that
they validate the internal differential. We proceed in a dynamic way. Round
by round and for each sufficient bit condition, we associate to each pair the
possible combinations of key bits that lead to the desired difference in the input
and output of the distinguisher, according to the extended path. Some pairs

16

and/or combinations of key guesses are progressively eliminated when they create
an incompatibility with the required differential path. For each pair, when a
combination of key bits that leads to ∆i and ∆o is found, we increment the
counter corresponding to this combination of key bits. In total, at the end of
the procedure we have incremented λW × 2κg counters on average, with λW
the average value of a counter for a wrong key guess. This process is partially
compatible with the use of key schedule relations on one side of the distinguisher.
Indeed, we guess key bits independently, and filter the combinations of bits which
do not verify the relations given by the key schedule afterwards. The details of
the attack (round by round) must be considered to calculate the time complexity
of the attack.

When all pairs have been processed, we set a threshold s, and for each counter
greater than s, we have to find the corresponding master keys. The information
given by the κg key bits is separated into 2 parts: we have bits of information
on the first subkeys, and others on the last subkeys. Due to the non-linear
key-schedule of Simeck, we cannot directly combine this information and do an
exhaustive search on the κ− κg missing bits. Instead, we use only the side for
which we have the most information bits, and then we do an exhaustive search
on the missing bits.

Complexity and success probability. In order to compute the complexity
and the success probability of this attack, we need to estimate the average value
of the counters for the right key and for wrong key guesses: we denote those
values λR and λW .

As explained before, structures are associated in pairs. Let S1 and S2 denote
two structures that form a pair. For each plaintext P̃1 in S1 and for each
key guess, we compute P̃2 = E−11 (E1(P̃1)⊕∆i) such that we have the relation
E1(P̃1)⊕E1(P̃2) = ∆i. P̃2 necessarily belongs to S2, due to structures construction.
So, if D denotes the data complexity of the attack, for each key guess we have
D/2 pairs with the desired difference at the input of our distinguisher.

For the right key guess, if our differential occurs with probability p, we have
λR = p×D/2 pairs that satisfy ∆o. By construction, all these pairs belong to
the structures and pass the filters. On the other hand, for wrong key guesses, P̃1

and P̃2 don’t actually have a difference ∆i at the input of the distinguisher with
the real encryption key, so the probability that they have a fixed difference ∆o at
the output is 1/2n. The value of the counter for wrong key guesses is expected
to be λW = D/2n+1 on average1.

We model the counter associated to the right key guess and a wrong key guess
as a Poisson distribution with parameters λR and λW . We denote the cumulative
distributive function as FR and FW . The probability that a counter associated to
a wrong key guess is greater than a threshold s is 1− FW (s), and the expected
number of counters greater than s is 2κg · (1− FW (s)).

1 The same result can be obtained using the formulas in [24] and the code provided by
the authors of this paper.

17

Let κmin and κmax be the minimum and the maximum of κp+κt and κb+κc.
The cost of reconstructing the master keys from the remaining combinations
is 2κg · (1− FW (s))× 2κ−κmax = 2κ+κmin · (1− FW (s)). The time complexity is
therefore determined by this term, but also by the data and the time required to
scan all the counters at the end of the key-recovery: 2κg . Knowing that most of
the counters are at 0, this term could be reduced to the number of remaining
pairs: 2κg · λW . The time complexity and success probability are:

C1 = D + 2κg · λW + 2κ+κmin · (1− FW (s))

PS = 1− FR(s)

4.2 40-round Key-recovery on Simeck64/128

We apply the methods described in the previous subsection with the differential
(0, 1) to (1, 0) covering 30 rounds with probability p = 2−60.41. We append 3
rounds before and 7 rounds after. The extended path is given in Table 6 and the
details of the bits to guess round by round are given in Table 12 (Appendix A).
Round by round, we use the sufficient bit conditions from Table 6 to guess
the key bits that lead to the desired differences. When possible, we filter using
the relations of the key schedule. In the rightmost column, we detail the time
complexity of each step starting from 2t pairs. To compute this complexity more
precisely, we split the round 33 in two parts corresponding to the two sufficient
bit conditions. In total, the complexity of guessing the key bits leading to ∆i

and ∆o, and incrementing the corresponding counters is 2t+71. During this step,
κmin = 9 bits from the first subkeys and κmax = 114 from the last subkeys are
guessed.

Attack parameters. If all the codebook (D = 264) is taken, knowing that
`1 = 57 and `39 = 19, we split the data into 257 structures of 27 plaintexts and
after constructing our pairs of structures and filtering the ciphertexts C̃, there
remain 257−1 × 27×2/219 = 251 pairs. So t = 51 and the time complexity for the
counter incrementing part is 2t+71 = 2122. The average value for the counter
of the right key guess is λR = p × D/2 = 22.59. And for a bad key guess, we
expect the counter to be close to λW = D/264−1 = 2−1. So, if we choose to set
the threshold s at 5, the complexity is 2120.89 + 2122 = 2122.54 with a success
probability of 55%.

We show parameters with different time/data trade-offs, as well as parameters
for other variants of Simeck in Table 7.

5 Key-recovery attacks using Linear Cryptanalysis

The first description of a last-round key recovery attack using linear cryptanalysis
was given by Matsui’s Algorithm 2 [22]. We consider a biased linear approxi-
mation P ′ · α⊕ C ′ · β with P ′ and C ′ intermediate values after a few rounds of

18

Table 6. Extended path for 40 rounds of Simeck64/128. Red bold bits represent the
sufficient bit conditions.

r Differential path `i
0 000000000000000000000∗000∗∗001∗∗ 0000000000000000∗000∗∗00∗∗∗01∗∗∗ 50
1 00000000000000000000000000∗0001∗ 000000000000000000000∗000∗∗001∗∗ 57
2 00000000000000000000000000000001 00000000000000000000000000∗0001∗ 62
3 00000000000000000000000000000000 00000000000000000000000000000001 64

30-round differential (3 → 33)
33 00000000000000000000000000000001 00000000000000000000000000000000 64
34 00000000000000000000000000∗0001∗ 00000000000000000000000000000001 62
35 000000000000000000000∗000∗∗001∗∗ 00000000000000000000000000∗0001∗ 57
36 0000000000000000∗000∗∗00∗∗∗01∗∗∗ 000000000000000000000∗000∗∗001∗∗ 50
37 00000000000∗000∗∗00∗∗∗0∗∗∗∗1∗∗∗∗ 0000000000000000∗000∗∗00∗∗∗01∗∗∗ 41
38 000000∗000∗∗00∗∗∗0∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 00000000000∗000∗∗00∗∗∗0∗∗∗∗1∗∗∗∗ 30
39 0∗000∗∗00∗∗∗0∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 000000∗000∗∗00∗∗∗0∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 19
40 ∗∗00∗∗∗0∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 0∗000∗∗00∗∗∗0∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 10

Table 7. Attack parameters for differential attacks on Simeck. C1 is the time complexity
to run the attack a single time, and the corresponding success probability is PS . The
average time is obtained as C1/PS , by assuming that the attack is repeated until it
succeeds, using rotations of the initial differential.

Cipher Rounds κmin κmax D λR λW s C1 PS Time

Simeck64/128 40 = 3 + 30 + 7 9 114 264 22.59 2−1 6 2122 + 2117.07 0.40 2123.4

Simeck64/128 40 = 3 + 30 + 7 9 114 264 22.59 2−1 5 2122 + 2120.89 0.55 2123.4

Simeck64/128 40 = 3 + 30 + 7 9 114 263 21.59 2−2 4 2121 + 2119.79 0.19 2123.9

Simeck48/96 30 = 2 + 22 + 6 2 74 248 21.58 2−1 5 275 + 281.9 0.08 285.5

Simeck48/96 30 = 2 + 22 + 6 2 74 247 20.58 2−2 3 274 + 285.1 0.06 289.1

Simeck32/64 22 = 3 + 13 + 6 8 51 232 22.98 2−1 5 258 + 255.9 0.80 258.6

Simeck32/64 22 = 3 + 13 + 6 8 51 231 21.98 2−2 4 257 + 254.8 0.36 258.8

encryption/decryption. Given a set of D known plaintexts/ciphertexts pair (P,C),
we can compute the intermediate values P ′ and C ′ for each partial key guess
kg = (kp, kt, kc, kb) for the first and/or last rounds, and compute the experimental
correlation of the linear approximation:

q(kp, kt, kc, kb) =
1

D

(
#{P,C : P ′ · α = C ′ · β} −#{P,C : P ′ · α 6= C ′ · β}

)
=

1

D

∑
P,C

(−1)P
′·α⊕C′·β

P ′ · α and C ′ · β are computed as a function of the partial key and some bits of
the plaintexts/ciphertexts denoted as χc(C) and χp(P) respectively (we assume
that the bit positions correspond to the key bits in kp and kc):

P ′ · α = f(kt, kp ⊕ χp(P))
C ′ · β = g(kb, kc ⊕ χc(C))

19

5.1 The FWT Approach of [13,15]

The time complexity of the attack is dominated by the time necessary to compute
the statistic for all key candidates. Several tricks have been introduced to make
this step more efficient. Since the values of P ′ · α and C ′ · β do not depend on
the full plaintext/ciphertext, we can “compress” the dataset using a distillation
phase where we only count how many plaintext/ciphertext pairs reach each value
of those bits [22]:

q(kp, kt, kc, kb)

=
1

D

∑
P,C

(−1)f(kt,kp⊕χp(P))⊕g(kb,kc⊕χc(C))

=
1

D

∑
i∈Fκp2

∑
j∈Fκc2

#{P,C : χp(P) = i, χc(C) = j} × (−1)f(kt,kp⊕i)⊕g(kb,kc⊕j)

We remark that the previous expression is actually a convolution:

=
1

D

∑
i,j

φ(i, j)× ψkt,kb(kp ⊕ i, kc ⊕ j) =
1

D
(φ ∗ ψkt,kb)(kp, kc),

with
φ(x, y) = #{P,C : χp(P) = x, χc(C) = y}

ψkt,kb(x, y) = (−1)f(kt,x)⊕g(kb,y)

Therefore, for a given kt, kb, we can evaluate q(kp, kt, kc, kb) for all kp, kc with
complexity Õ(2κp+κc) using a Fast Walsh Transform. This was first observed
in [13] (with additional rounds on one side only), and then generalized in [15].
The time complexity of the analysis is reduced to Õ(D + 2κg).

5.2 Statistical Models to Estimate the Success Probability

We follow the analysis of Blondeau and Nyberg [10,11], taking into account the
impact of the variance of the correlation due to the random key, and the sampling
model with a factor B depending on the type of attack: B = 1 if the plaintexts
are randomly chosen with repetition, and B = (2n − D)/(2n − 1) if they are
distinct (in the following, we assume distinct plaintexts).

Single dominant characteristic. When there is a single dominant character-
istic with absolute bias ε, the correlation of the approximation is either ε or −ε
depending of the key. The empirical correlation for the right key follows one of
two possible normal distributions, with parameters

µR = ±ε σ2
R = B/D + 2−n.

20

When the key guess is wrong, we assume that the computed statistic follows
the correlation of a random permutation; it follows a normal distribution with
parameters

µW = 0 σ2
W = B/D + 2−n.

Since there are two possible distributions for the right key, we have to slightly
modify the analysis of (1). For an attack with gain a, we set a threshold s =
F−1W (1− 2−a−1) = σWΦ

−1(1− 2−a−1) and keep key candidates with |q| ≥ s. The
attack succeeds with probability PS = 1−FR(s) when µR > 0, and PS = FR(−s)
otherwise:

PS = Φ

(
|ε| − σWΦ−1(1− 2−a−1)

σR

)
,

where Φ is the cumulative distribution function of the standard normal distribu-
tion.

Single approximation with many trails. When using a single linear hull
with many high correlation trails (rather than a dominant trail), the correlations
for the right and wrong keys follow normal distributions with parameters:

µR = 0 σ2
R = B/D + ELP

µW = 0 σ2
W = B/D + 2−n,

Following [10], we estimate the expected linear potential ELP using the correla-
tions ετ for characteristics τ in a set S of dominating characteristics:

ELP ≈ 2−n +
∑
τ∈S

ε2τ ,

using the results of Section 3.1 to compute
∑
τ∈S ε

2
τ with S the set of character-

istics with masks in Λw.
The distributions are both centered on zero, but since the variance is larger

for the right key, we can sort the keys according to the absolute value of the
measured correlation, and we expect a larger value for the right key than for
wrong keys. More precisely, using a threshold s = σWΦ

−1(1 − 2−a−1) on the
absolute value of the correlation, the success rate is given by [10, Theorem 2]:

PS = 2− 2Φ

(
σW
σR

Φ−1(1− 2−a−1)

)
.

Equivalently, we can consider the squared correlation, which follows a χ2

distribution with one degree of freedom, and use the generic formula (1) with
the following distributions:

FR/σR ∼ χ2
1 FW /σW ∼ χ2

1

21

Multiple approximations. When using M linear approximations, there are
different ways to exploit the information to rank the keys. Again, we follow the
analysis of [10], and we rank the keys according to

Q(k) =
∑

qi(k)
2

According to [10], we can model the statistics for the right key as a Gaussian
distribution with parameters

σ2
R = 2B2M + 4BD

∑
i

ELPi+2D2
∑
i

ELP2
i

µR = BM +D
∑
i

ELPi

On the other hand the statistic for the wrong key is proportional to a χ2

distribution with M degrees of freedom:
FW /(B +D2−n) ∼ χ2

M

In our analysis, we consider either a single approximation (1, 0)→ (0, 1), or
the approximation (1, 0)→ (0, 1) combined with lower quality approximations
that can be used with the same key bits.

5.3 12-round Key-recovery

We apply the previous techniques to Simeck64, starting from the linear ap-
proximation (0, 1) → (0, 1), and adding 8 rounds on the plaintext side and 4
rounds on the ciphertext side. Following Algorithm 3, x(8)0 can be computed from
κp = 54 bits of P̃ , κp = 54 bits of the whitening key kp = k(0)‖k(1), and κt = 50

additional key bits. Similarly, x(r−5)0 can be computed from κc = 14 bits of C̃,
κc = 14 bits of the whitening key k(r−1)‖k(r−2), and κb = 2 additional key bits:

kp = k
(0)
[0,−1,...,−23,−25,−26,−27,−30,−31], k

(1)
[0,−1,...,−18,−20,−21,−22,−25,−26,−30]

kt = k
(2)
[0,−1,...,−13,−15,−16,−17,−20,−21,−25],

k
(3)
[0,−1,−2,−3,−5,−6,−7,−8,−10,−11,−12,−15,−16,−20],

k
(4)
[0,−1,−2,−5,−6,−7,−10,−11,−15], k

(5)
[0,−1,−5,−6,−10], k

(6)
[0,−5]

kb = k
(r−3)
[0,−5]

kc = k
(r−1)
[0,−1,−2,−5,−6,−7,−10,−11,−15], k

(r−2)
[0,−1,−5,−6,−10]

We ignore bits that have a linear effect because they only flip the sign of the
imbalance. Moreover, we can use key schedule relations to reduce κt by 2:

k
(6)
0 = k

(2)
0 ⊕ k

(3)
−1 ⊕ k

(3)
0 ∧ k

(3)
−5 ⊕ c

(6)
0

k
(6)
−5 = k

(2)
−5 ⊕ k

(3)
−6 ⊕ k

(3)
−5 ∧ k

(3)
−10 ⊕ c

(6)
−5

There are 14 additional relations between bits of κt and κp.

22

The attack is decomposed in three phases:

Distillation phase. Compute φ(x, y) = #{P,C : χp(P) = x, χc(C) = y} for
0 ≤ x < 2κp , 0 ≤ y < 2κc .
This only requires to set up 2κp+κc counters, and to iterate over the D
available plaintext/ciphertext pairs.

Analysis phase. For each guess of kt, kb, for all 0 ≤ x < 2κp , 0 ≤ y < 2κc ,
compute ψkt,kb(x, y) = (−1)f(kt,x)⊕g(kb,y), then evaluate the convolution
φ ∗ ψkt,kb using the Fast Walsh Transform.
For each kt, kb, this requires 2κp+κc evaluations of f and g to generate ψkt,kb ,
and 3(κp + κc)2

κp+κc additions and 2κp+κc multiplications to evaluate the
convolution. Assuming that the cost of κp + κc additions and the cost of a
multiplication are comparable to the cost of an encryption call, the total
complexity of the analysis phase is O(2κg) using a memory of size 2κp+κc .

Search phase. For all keys with q(kp, kt, kc, kb) ≥ s, exhaustively try all master
keys corresponding to kp, kt, kc, kb.
With a threshold s = F−1W (1− 2−a) we expect a fraction 2−a of the keys to
remain. We iterate over 288+16 candidates kp, kt, kc, kb that satisfy the 14 key
schedule equations between kt and kp, keep only the 88 independent bits of
kp, kt for keys meeting the threshold, and exhaustively search the remaining
40 bits, with a complexity of 288+16−a × 240 = 2144−a.

With our parameters, we have κg = 118 (after removing the two relations
between bits of kt). Using the Walsh transform pruning technique of [15] (and
partially precomputing the Walsh transform of ψ), the complexity of the analysis
phase is reduced to2:

68ρA2
68 + 2ρM2118 + ρA2

64(254 + 39× 240) + ρA2
90(214 + 13× 214) ≈ 2ρM2118

with ρA the cost of an addition, and ρM the cost of a multiplication. Assuming that
2 multiplications correspond to roughly one evaluation of the cipher, we end up
with a complexity of 2κg . This variant uses a memory of 2κp+κc+2κp+κt+2κc+κb =
268 + 2102 + 216 ≈ 2102 elements.

5.4 Attack Parameters

We use this attack to target 41 or 42 rounds of Simeck64, and smaller variants
of Simeck, with various time/data trade-offs summarized in Table 8. We explain
two attacks in detail here and defer some others to Appendix B.

42-round Simeck64 with 263.5 plaintexts. The ELP of the linear approxi-
mation (1, 0)→ (0, 1) over 30 rounds is 2−64+2−60.36 = 2−60.25. The complexity
of the analysis phase is 2118. With an advantage of a = 24, the complexity of the
search phase is 2120 and the success probability is PS = 8.3%.
2 With their notations, we have k0 = 54, k1 = 50, k2 = 2, k3 = 14, l12 = 2, l0 = 14,
l3 = 0

23

Table 8. Attack parameters for linear attacks on Simeck. C1 is the time complexity
to run the attack a single time, and the corresponding success probability is PS . The
average time is obtained as C1/PS .

Cipher Rounds #app. Capacity D Adv. C1 PS Time

Simeck64 41 = 7+29+5 5 2−57.34 263 52 5× 2105 + 2106 0.23 2110

41 = 8+29+4 1 2−58.44 262 26 2118 + 2118 0.11 2122.2

42 = 8+30+4 1 2−60.25 263.5 24 2118 + 2120 0.08 2123.9

42 = 8+30+4 1 2−60.25 264 29 2118 + 2115 0.10 2121.5

Simeck48 32 = 7+21+4 1 2−43.50 247 26 287 + 286 0.10 290.9

Simeck32 23 = 5+13+5 1 2−27.68 231.5 37 258 + 256 0.07 262.2

Since Simeck is rotation-invariant, we can repeat the attack 32 times by
rotating the linear approximation used. On average we expect the attack to
succeed after 1/PS = 12 attempts, leading to an average complexity of 2123.9.
If we fix this as the maximum complexity, we expect a success rate of roughly
1− 1/e ≈ 63%.

41-round Simeck64 with 263 plaintexts. Alternatively, we can use multiple
linear approximations to reduce the time complexity of a 41-round attack. We
use the following 29-round linear approximations:

(1, 0)→ (0, 1) : ELP = 2−64 + 2−58.47

(1, 0)→ (1, 0) : ELP = 2−64 + 2−60.36

(1, 0)→ (1, 1) : ELP = 2−64 + 2−60.36

(0, 1)→ (0, 1) : ELP = 2−64 + 2−60.36

(1, 1)→ (0, 1) : ELP = 2−64 + 2−60.36

The extra approximations have been chosen because the corresponding masks can
be computed from the same keys bits as the main approximation (1, 0)→ (0, 1);
they have a combined capacity of 2−57.39. Thanks to the higher capacity, we
can aim for a higher advantage a = 52, and obtain a success rate of 23% with
263 plaintexts. Therefore, we split the key recovery rounds as 7 rounds on the
plaintext side and 5 on the ciphertext side (rather than 8 and 4), leading to
parameters κp = 45, κt = 30, κc = 23, κb = 7; this reduces the complexity
of the analysis phase to 5 × 2105, while the search phase has a complexity of
2128+23+7−52 = 2106.

5.5 Experimentations

We have performed experimentations to verify the theory leading to the proba-
bilities of success PS . To do this, we take a set of D plaintext/ciphertext pairs
and we compute the experimental correlation Q(k) for the right key and for
a random sample of wrong keys. We choose an advantage a and we consider

24

Table 9. Comparison of the theoretical (PS) and experimental success probability for
linear attacks. We perform 1000 experiments, taking D pairs of plaintext/ciphertext
and testing whether the correlation associated to the right key is among the 2−a highest
correlations with a sample of random wrong keys.

Cipher Rounds D # app. capacity # wrong keys Adv. Success PS

Simeck32/64 15 231 1 2−30.73 28 5 7.4% 9.9%
Simeck32/64 15 231 5 2−29.05 28 5 9% 7.4%
Simeck32/64 16 231 1 2−31.59 28 5 4.9% 4.5%
Simeck32/64 16 231 5 2−29.44 28 5 3.6% 2.3%
Simeck64/128 12 228 1 2−26.39 212 10 9.9% 10.1%
Simeck64/128 12 228 5 2−25.17 212 10 14.8% 14.8%

that a success is obtained when the correlation of the right key is among the
2−a highest correlations. This experiment was repeated 1000 times with random
keys to compute an experimental success probability. Our results are presented
in Table 9. We compare attacks with a single approximation (1, 0)→ (0, 1) and
attacks with five approximations (1, 0)→ (0, 1), (1, 0)→ (0, 1), (1, 0)→ (0, 1),
(1, 0)→ (0, 1), (1, 0)→ (0, 1), as used in the 41-round attack with 263 plaintexts.
The experimental probability of success is close to the prediction, confirming that
both the model for the success probability, and our estimation of the ELP are
accurate.

For Simeck32, we compute the exact ELP of the linear approximation using
our algorithm with w = 16; we obtain an ELP of 2−30.73 over 15 rounds for
(1, 0)→ (0, 1) and 2−31.59 for the four other approximations.

6 Application to Simon

Similarly to Simeck, previous results [21] have shown the existence of iterative
trails for Simon with a single active bit in the input and output, where all
intermediate states fit in a small window of active bits. This makes Simon an
interesting target for our analysis, just like Simeck. In this section we focus
on linear cryptanalysis, and we obtain improved attack against Simon96 and
Simon128, gaining between 3 and 7 rounds compared to previous attacks.

Previous works have shown that Simon offers a higher security against
differential and linear cryptanalysis than Simeck. In particular, iterative trails
have a higher weight, and require a larger window of active bits. Moreover, we
notice that the trail (1, 0) → (0, 1) is only possible for round numbers of the
form 4r + 1, because some bits have a linear update when the trail is limited to
a window smaller than the word size. More precisely, for linear trails, the high
order bits follow a pattern

(10*..., 0*0...)→ (0*0..., 10*...)→ (10*..., 0*1...)→ (0*1..., 10*...)→ (10*..., 0*0...)

Since the transition matrix is sparser than for Simeck we can run our analysis
with larger values of w. The lower bound on the ELP that we obtain for the trail

25

Table 10. Attack parameters for linear cryptanalysis of Simon.

Cipher Rounds κp, κt, κc, κb D a C1 PS Time Approx

S128/256 56 = 8+41+7 80, 65, 64, 37 2126 10 2246 + 2246 0.26 2249 (1, 0)→ (0, 1)
S128/192 55 = 7+42+6 64, 37, 56, 23 2127 10 2180 + 2182 0.13 2185.2 (4, 0)→ (4, 1)
S128/128 53 = 6+42+5 47, 18, 38, 9 2127 10 2112 + 2118 0.13 2121 (4, 0)→ (4, 1)
S96/144 45 = 6+33+6 47, 18, 47, 18 295 10 2130 + 2134 0.19 2136.5 (1, 0)→ (0, 1)
S96/96 43 = 5+33+5 30, 7, 30, 7 294 10 274 + 286 0.08 289.6 (1, 0)→ (0, 1)

Table 11. ELP of the linear approximation (1, 0) → (0, 1) and probability of the
differential (0, 1)→ (1, 0) for Simon (log2, computed with w = 19)

r 13 17 21 25 29 33 37 41 45
ELP −41.99 −46.30 −67.87 −77.90 −87.25 −92.60 −113.06 −123.07 −132.95
Pr −40.68 −47.31 −67.56 −78.08 −86.96 −94.62 −113.67 −124.22 −133.66

(1, 0)→ (0, 1) is given in Table 11. The bounds show a smaller linear potential
(and differential probability) for Simon than for Simeck. However, we see in
Figure 9 that the linear potential still increases significantly with the window
size w; this indicates that our bound is not as tight as on Simeck. Further work
is needed to capture the full clustering effect on Simon, and this could further
reduce the security margin of the cipher.

The approximations (1, 0)→ (0, 1) can be extended by one round on either
side with correlation 2−2, leading to two active bits. After rotating the approxi-
mation by two bits to (4, 0)

r→ (0, 4) with ELP c, the extended approximations
are (4, 0)

r+1→ (4, 1) and (1, 4)
r+1→ (0, 4) with ELP 2−2c, and (1, 4)

r+2→ (4, 1) with
ELP 2−4c.

We summarize the parameters of the best attacks we have identified against
Simon96 and Simon128 in Table 10; our analysis does not seem to improve
previous results on Simon32, Simon48 and Simon64. As shown in Table 13 and
Table 14, we don’t have any key-schedule relation between bits of kt or kb, but
we have relations between kt and kp or between kb and kc. Therefore we can use
the Walsh transform pruning technique of [15], as in the Simeck attacks. We
explain two attacks in detail below.

56-rounds Simon128/256. We use the 41-round linear approximation (1, 0)→
(0, 1) with ELP lower bound of 2−123.07+2−128. We add 8 rounds on the plaintext
side, and 7 rounds on the ciphertext side, obtaining parameters κp = 80, κt = 65,
κc = 64, κb = 37. The complexity of the analysis phase is about 2246. With 2126

data, and an advantage a = 10, we have a success probability of 26% and the
search phase has a complexity of 2246. Finally we obtain an average complexity
of (2246 + 2246)/0.26 ≈ 2249.

26

9 10 11 12 13 14 15 16 17 18 19

−80
−84
−88
−92
−96
−100
−104
−108
−112
−116
−120
−124
−128
−132
−136
−140
−144
−148

w

lo
g
2
(E

L
P
[(
1
,0
)
r w
(0
,1
)]
)

r = 25
r = 33
r = 41

Fig. 9. Effect of w on the probability of Simon linear hulls.

55-rounds Simon128/192. For Simon128/192, we use the 42-round linear
approximation (4, 0)→ (4, 1) with an ELP lower bound of 2−125.07 + 2−128. We
add 7 rounds on the plaintext side, and 6 rounds on the ciphertext side, obtaining
parameters κp = 64, κt = 37, κc = 56, κb = 23. The complexity of the analysis
phase is about 2180. With 2127 data, and an advantage a = 10, we have a success
probability of 13% and the search phase has a complexity of 2182. Finally we
obtain an average complexity of (2180 + 2182)/0.13 ≈ 2185.2.

45-rounds Simon96/144. We use the 33-round linear approximation (1, 0)→
(0, 1) with an ELP lower bound of 2−93.57 + 2−96. We add 6 rounds on each side,
obtaining parameters κp = 47, κt = 18, κc = 47, κb = 18. The complexity of the
analysis phase is about 2130. With 295 data, and an advantage a = 10, we have a
success probability of 19% and the search phase has a complexity of 2134. Finally
we obtain an average complexity of (2130 + 2134)/0.19 ≈ 2136.5.

7 Perspectives

Our work provides the first attack against 42-round Simeck64, showing that the
security margin is very slim (the full version has 44 rounds). Moreover, if the
designers of Simeck had proposed a 128-bit variant with the same number of
rounds as Simon128, the full version would be broken by our analysis.

We also improve significantly previous attacks on Simon. In particular we
show that Simon96/144 only has 17% of the rounds as security margin, while
the designers wrote [4]:

“After almost 4 years of concerted effort by academic researchers, the
various versions of Simon and Speck retain a margin averaging around
30%, and in every case over 25%. The design team’s analysis when making
stepping decisions was consistent with these numbers.”

27

Comparison of differential and linear cryptanalysis. Our work shows that
differential and linear attacks against Simon and Simeck are very similar. The
differential characteristics and linear approximations are almost equivalent; we use
trails with a single input/output bit in both cases, and the differential probability
p is almost the same as the linear potential ELP (See Table 4). Using advanced
techniques (dynamic key-guessing and Fast Walsh Transform respectively), both
attacks have a complexity that is essentially D + 2κg (with D = O(1/p) or
D = O(1/ELP) respectively).

However, there is an important difference in the key-recovery part. As seen in
Table 5, we have to guess more key bits for differential cryptanalysis than for
linear cryptanalysis (for the same number of additional rounds). This explains
why linear cryptanalysis is more efficient than differential cryptanalysis on those
ciphers, as shown by previous analysis.

Impact of the rotations. The main difference between Simeck and Simon
is the value of the rotations of the round function. In order to find which
combinations of the rotation constants a, b and c would be a bad or a good choice,
we reuse Algorithm 1 to obtain a lower bound for the probability of a differential
for several values of a, b and c. We set the following parameters: w = 13, r = 30,
and 0 ≤ a, b, c ≤ 10. A lower bound of the probability of all the differentials with
input (δL, δR) = (0, 1) is computed, and this allows to confirm that the following
trivial conditions must be verified: a, b and c must all be different, c must be
different from 0, and a, b and c must be of different parity: the three shifts must
not be all even or all odd.

We also notice that (a, b, c) must not be of the form (i, 2j− i, j) or (2j− i, i, j)
and that the bias we observe strongly decreases when c increases. However, this
does not allow us to conclude that taking a large value of c ensures a better
security since it is possible that there exists other differentials with high bias. Our
approach does not allow to conclude when a and b are smaller than c because in
this case, the difference cannot remain in a fixed window after a large number of
rounds. This is due to the fact that the difference generated by the linear part
can never cancel out with the difference of the non-linear part.

Alternative class. Instead of using differences or masks in a fixed window of
w bits, we could consider low-weight values. Indeed, this class also includes the
iterative trails given in previous works, and should contain many high-probability
trails. We have implemented the search algorithm with this alternative class,
using 32-bit words of weight at most 5 (a set of 217.9 values).

In terms of resources, this requires roughly the same amount of memory
as with a window of size w = 18, but it runs about 50 times faster, because
there are fewer possible transitions at each round: the probability to reach a
value with weight lower than 5 is smaller than the probability to stay in a fixed
window. However, the bounds given with this class on Simeck and Simon are
not competitive with those obtained with a fixed window. On Simeck, using
words of weight 5 gives probabilities comparable to using a window with w = 9,

28

largely below w = 18. On Simon, the gap is smaller: we obtain results similar
to using a window of size w = 15. In both cases, using a fixed window requires
fewer resources (time and memory) to achieve the same quality of results.

Acknowledgements. We would like to thank the authors of [24] for sharing their
automatic tool. The second author is funded by a grant from Région Ile-de-France.
and the third author by ERC ADG 740972 (ALGSTRONGCRYPTO). This work
was also supported by ANR grant ANR-20-CE48-0017 (SELECT).

References

1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 525–545. Springer, Heidelberg (Mar 2015)

2. Alizadeh, J., AlKhzaimi, H., Aref, M.R., Bagheri, N., Gauravaram, P., Kumar,
A., Lauridsen, M.M., Sanadhya, S.K.: Cryptanalysis of SIMON variants with
connections. In: RFIDSec. Lecture Notes in Computer Science, vol. 8651, pp. 90–
107. Springer (2014)

3. Bagheri, N.: Linear cryptanalysis of reduced-round SIMECK variants. In: Biryukov,
A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 140–152. Springer,
Heidelberg (Dec 2015)

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
Notes on the design and analysis of SIMON and SPECK. Cryptology ePrint Archive,
Report 2017/560 (2017), http://eprint.iacr.org/2017/560

5. Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J., Wingers, L.:
The simon and speck lightweight block ciphers. In: 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC). pp. 1–6 (2015)

6. Beierle, C.: Pen and paper arguments for SIMON and SIMON-like designs. In:
Zikas, V., De Prisco, R. (eds.) SCN 16. LNCS, vol. 9841, pp. 431–446. Springer,
Heidelberg (Aug / Sep 2016)

7. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO’90. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (Aug 1991)

8. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal
of Cryptology 4(1), 3–72 (Jan 1991)

9. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
546–570. Springer, Heidelberg (Mar 2015)

10. Blondeau, C., Nyberg, K.: Improved parameter estimates for correlation and capacity
deviates in linear cryptanalysis. IACR Trans. Symm. Cryptol. 2016(2), 162–191
(2016), http://tosc.iacr.org/index.php/ToSC/article/view/570

11. Blondeau, C., Nyberg, K.: Joint data and key distribution of simple, multiple,
and multidimensional linear cryptanalysis test statistic and its impact to data
complexity. Des. Codes Cryptogr. 82(1-2), 319–349 (2017)

12. Chen, H., Wang, X.: Improved linear hull attack on round-reduced simon with
dynamic key-guessing techniques. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783,
pp. 428–449. Springer, Heidelberg (Mar 2016)

29

http://eprint.iacr.org/2017/560
http://tosc.iacr.org/index.php/ToSC/article/view/570

13. Collard, B., Standaert, F.X., Quisquater, J.J.: Improving the time complexity of
Matsui’s linear cryptanalysis. In: Nam, K.H., Rhee, G. (eds.) ICISC 07. LNCS,
vol. 4817, pp. 77–88. Springer, Heidelberg (Nov 2007)

14. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.)
FSE’94. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (Dec 1995)

15. Flórez-Gutiérrez, A., Naya-Plasencia, M.: Improving key-recovery in linear attacks:
Application to 28-round PRESENT. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part I. LNCS, vol. 12105, pp. 221–249. Springer, Heidelberg (May
2020)

16. Huang, M., Wang, L., Zhang, Y.: Improved automatic search algorithm for differen-
tial and linear cryptanalysis on SIMECK and the applications. In: Naccache, D.,
Xu, S., Qing, S., Samarati, P., Blanc, G., Lu, R., Zhang, Z., Meddahi, A. (eds.)
ICICS 18. LNCS, vol. 11149, pp. 664–681. Springer, Heidelberg (Oct 2018)

17. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family.
In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215,
pp. 161–185. Springer, Heidelberg (Aug 2015)

18. Kölbl, S., Roy, A.: A brief comparison of simon and simeck. In: Bogdanov, A. (ed.)
Lightweight Cryptography for Security and Privacy - 5th International Workshop,
LightSec 2016, Aksaray, Turkey, September 21-22, 2016, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 10098, pp. 69–88. Springer (2016)

19. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT’91. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (Apr 1991)

20. Li, H., Ren, J., Chen, S.: Improved integral attack on reduced-round simeck. IEEE
Access 7, 118806–118814 (2019)

21. Liu, Z., Li, Y., Wang, M.: Optimal differential trails in SIMON-like ciphers. IACR
Trans. Symm. Cryptol. 2017(1), 358–379 (2017)

22. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT’93. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (May 1994)

23. Nyberg, K.: Linear approximation of block ciphers (rump session). In: Santis, A.D.
(ed.) EUROCRYPT’94. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (May
1995)

24. Qiao, K., Hu, L., Sun, S.: Differential security evaluation of simeck with dynamic
key-guessing techniques. In: Camp, O., Furnell, S., Mori, P. (eds.) Proceedings of
the 2nd International Conference on Information Systems Security and Privacy,
ICISSP 2016, Rome, Italy, February 19-21, 2016. pp. 74–84. SciTePress (2016)

25. Qin, L., Chen, H., Wang, X.: Linear hull attack on round-reduced simeck with
dynamic key-guessing techniques. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 16,
Part II. LNCS, vol. 9723, pp. 409–424. Springer, Heidelberg (Jul 2016)

26. Rohit, R., Gong, G.: Correlated sequence attack on reduced-round Simon-32/64
and Simeck-32/64. Cryptology ePrint Archive, Report 2018/699 (2018), https:
//eprint.iacr.org/2018/699

27. Wang, N., Wang, X., Jia, K., Zhao, J.: Differential attacks on reduced SIMON
versions with dynamic key-guessing techniques. Sci. China Inf. Sci. 61(9), 098103:1–
098103:3 (2018)

28. Wang, X., Wu, B., Hou, L., Lin, D.: Automatic search for related-key differential
trails in SIMON-like block ciphers based on MILP. In: Chen, L., Manulis, M.,
Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 116–131. Springer, Heidelberg
(Sep 2018)

30

https://eprint.iacr.org/2018/699
https://eprint.iacr.org/2018/699

29. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The simeck family of
lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. 307–329. Springer, Heidelberg (Sep 2015)

A Key bits involved in the key recovery

Algorithm 2. key_bits_for_diff (i, j)

Input: a round number i and a bit position j. The extended path is supposed to be
known and readable.
Output: a list of the necessary subkey bits to compute ∆x(i)j .
L ← []
if i < 2 then

return L
if ∆x(i−1)

j = ∗ then
L← L ∪ key_bits_for_diff (i− 1, j)

if ∆x(i−1)
j+5 = ∗ then

L← L ∪ key_bits_for_diff (i− 1, j + 5)
if ∆x(i−1)

j+1 = ∗ then
L← L ∪ key_bits_for_diff (i− 1, j + 1)

if ∆x(i−2)
j = ∗ then

L← L ∪ key_bits_for_diff (i− 2, j)
if ∆x(i−1)

j 6= 0 then
A,B ← key_bits_for_val (i− 1, j + 5)
L← L ∪ [A] ∪B

if ∆x(i−1)
j+5 6= 0 then

A,B ← key_bits_for_val (i− 1, j)
L← L ∪ [A] ∪B

return L

Algorithm 3. key_bits_for_val (i, j)

Input: a round number i and a bit position j.
Output: the subkey bits needed to compute x(i)j split into a bit combination that
affects x(i)j linearly, and the remaining bit combinations.
if i ≤ 0 then

return [0, []]
A1, B1 ← key_bits_for_val (i− 1, j)
A2, B2 ← key_bits_for_val (i− 1, j + 5)
A3, B3 ← key_bits_for_val (i− 1, j + 1)
A4, B4 ← key_bits_for_val (i− 2, j)
return A3 ⊕A4 ⊕ k(i−1)

j , [A1] ∪ [A2] ∪B1 ∪B2 ∪B3 ∪B4

31

B Details of additional attacks

Table 15. Summary of attacks against Simon and Simeck. Attacks marked with †
recover information about subkey bits, but the advantage is too low to attack the cipher.
Attacks marked with ‡ use the duality between linear and differential trails, which is
not exact.

Cipher Rnds Data Time Mem Succ. rate Ref Note

Simeck32/64 22 232 257.9 232 0.47 [24] Differential †
22 232 256 226.3 0.73 [16] Differential †
22 231 263 255.9 1 [20] Integral
23 231.91 261.78 0.47 [25] Linear † ‡
27 3 262.94 250 1 [26] Correlated sequence
22 231 258.8 259 0.63 New Differential
23 231.5 262.2 244 0.63 New Linear

Simeck48/96 26 247 295 282.52 1 [20] Integral
26 247 262 247 0.75 [18] Differential
28 246 268.3 0.47 [24] Differential †
29 247 283.1 231.5 0.78 [16] Differential †
30 247.66 288.04 0.87 [25] Linear † ‡
30 248 285.5 276 0.63 New Differential
32 247 290.9 255 0.63 New Linear

Simeck64/128 33 263 2115 263 [18] Differential
35 263 2116.3 263 0.55 [24] Differential †
35 262 2105.5 230.7 0.73 [16] Differential †
37 263.09 2121.25 0.47 [25] Linear † ‡
40 263 2123.9 2123 0.63 New Differential
41 263 2110 2105 0.63 New Linear
42 263.5 2123.9 268 0.63 New Linear
42 264 2121.5 268 0.63 New Linear

Simon96/96 37 295.2 288 0.48 [12] Linear
37 295 287.2 [27] Differential
43 294 289.6 294 0.63 New Linear

Simon96/144 37 295 2130.8 [27] Differential
38 295.2 2136 0.48 [12] Linear
45 295 2136.5 295 0.63 New Linear

Simon128/128 49 2127.6 2120 0.48 [12] Linear
50 2127 2119.2 [27] Differential
53 2127 2121 2127 0.63 New Linear

Simon128/192 51 2127.6 2184 0.48 [12] Linear
51 2127 2183.2 [27] Differential
55 2127 2185.2 2127 0.63 New Linear

Simon128/256 51 2127 2247.2 [27] Differential
53 2127.6 2249 0.48 [12] Linear
56 2126 2249 2144 0.63 New Linear

32

T
ab

le
12

.
D
et
ai
ls

of
th
e
bi
ts

to
gu

es
s
ro
un

d
by

ro
un

d
an

d
th
e
co
rr
es
po

nd
in
g
co
m
pl
ex
it
y
w
he

n
st
ar
ti
ng

fr
om

2
t
pa

ir
s.

R
ou

nd
s

B
it
s
to

gu
es
s

#
of

bi
ts

#
co
nd

.
C
om

pl
ex
it
y

38
k
(3

9
)

4
,8
,9
,1
2
,1
3
,1
4
,1
6
,1
7
,1
8
,2
0
,2
1
,2
2
,2
5
,2
6
,3
0
,3
1
.

16
11

2
t
·2

1
6
−
1
1
=

2
t+

5

37
k
(3

8
)

3
,7
,8
,9
,1
1
,1
2
,1
3
,1
5
,1
6
,1
7
,2
1
,3
0
,k

(3
9
)

2
,3
,6
,7
,1
0
,1
1
,1
5
,2
9
,k

(3
9
)

1
9
⊕
k
(3

8
)

2
0

,k
(3

9
)

2
4
⊕
k
(3

8
)

2
5

.
23

11
2
t+

5
·2

2
3
−
1
1
=

2
t+

1
7

36
k
(3

7
)

2
,6
,7
,8
,1
0
,1
1
,1
2
,1
6
,2
9
,3
0
,k

(3
8
)

1
,2
,5
,6
,1
0
,2
0
,2
4
,2
5
,2
8
,2
9
,k

(3
9
)

0
,1
,5
,2
3
,2
7
,2
8
,k

(3
8
)

1
4
⊕
k
(3

7
)

1
5

,
k
(3

8
)

1
9
⊕
k
(3

7
)

2
0

.
28

9
2
t+

1
7
·2

2
8
−
9
=

2
t+

3
6

35
k
(3

6
)

1
,6
,7
,1
1
,2
8
,2
9
,k

(3
7
)

0
,1
,5
,1
5
,2
3
,2
4
,2
8
,k

(3
8
)

0
,4
,1
8
,1
9
,2
2
,2
3
,2
7
,k

(3
7
)

4
⊕
k
(3

6
)

5
,k

(3
7
)

9
⊕
k
(3

6
)

1
0

,
k
(3

7
)

1
4
⊕
k
(3

6
)

1
5

,k
(3

8
)

2
6
⊕
k
(3

7
)

2
7

.
24

7
2
t+

3
6
·2

2
4
−
7
=

2
t+

5
3

34
k
(3

5
)

6
,2
8
,k

(3
6
)

0
,5
,1
0
,2
2
,2
3
,2
7
,k

(3
7
)

1
7
,1
8
,2
1
,2
2
,2
6
,2
7
,3
1
,k

(3
7
)

3
⊕
k
(3

6
)

4
⊕
k
(3

5
)

5
,k

(3
6
)

9
⊕
k
(3

5
)

1
0

,
k
(3

7
)

2
5
⊕
k
(3

6
)

2
6
⊕
k
(3

5
)

2
7

,k
(3

6
)

3
1
⊕
k
(3

5
)

0
.

19
5

2
t+

5
3
·2

1
9
−
5
=

2
t+

6
7

F
ilt
er
in
g
k
(3

5
)

6
,2
8
us
in
g
ke
y
sc
he

du
le

re
la
ti
on

s
-2

2
t+

6
7
·2
−
2
=

2
t+

6
5

33
(1
)

k
(3

5
)

0
,5

,k
(3

7
)

3
,k

(3
6
)

3
⊕
k
(3

5
)

4
⊕
k
(3

4
)

5
.

4
1

2
t+

6
5
·2

4
−
1
=

2
t+

6
8

F
ilt
er
in
g
k
(3

5
)

0
,5

us
in
g
ke
y
sc
he

du
le

re
la
ti
on

s
-2

2
t+

6
8
·2
−
2
=

2
t+

6
6

33
(2
)

k
(3

5
)

2
2
,2
7
,k

(3
6
)

1
7
,2
1
,2
6
,k

(3
6
)

2
5
⊕
k
(3

5
)

2
6
⊕
k
(3

4
)

2
7

.
6

1
2
t+

6
6
·2

6
−
1
=

2
t+

7
1

F
ilt
er
in
g
k
(3

5
)

2
2
,2
7
us
in
g
ke
y
sc
he

du
le

re
la
ti
on

s
-2

2
t+

7
1
·2
−
2
=

2
t+

6
9

2
k
(0

)
0
,5
,6
,1
0
,2
7
,2
8

6
5

2
t+

6
9
·2

6
−
5
=

2
t+

7
0

3
k
(0

)
2
2
,k

(0
)

4
⊕
k
(1

)
5

,k
(0

)
2
6
⊕
k
(1

)
2
7

3
2

2
t+

7
0
·2

3
−
2
=

2
t+

7
1

33

Table 13. Comparison of key recovery rounds for linear attacks against Simon (plaintext
side).

96 128

total independent total independent
Rounds κ = 96 κ = 144 κ = 128 κ = 192 κ = 256

1 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
3 7 7 7 7 7 7 7
4 18 18 18 18 18 18 18
5 37 37 37 37 37 37 37
6 65 61 65 65 61 65 65
7 101 83 98 101 83 98 101
8 143 126 145 104 129 142
9 197 125 159 181
10 255 186 217

Table 14. Comparison of key recovery rounds for linear attacks against Simon (cipher-
text side).

96 128

total independent total independent
Rounds κ = 96 κ = 144 κ = 128 κ = 192 κ = 256

1 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
3 7 7 7 7 7 7 7
4 18 18 18 18 18 18 18
5 37 37 37 37 37 37 37
6 65 61 61 65 61 61 65
7 101 83 87 101 83 87 99
8 143 110 145 104 113 136
9 189 129 197 125 138 172
10 237 141 255 160 205

34

B.1 Linear cryptanalysis of 23-rounds Simeck32

Starting from the linear approximations (0, 1)→ (1, 0), we add 5 rounds on the
plaintext side, and 5 on the ciphertext side. We need the following key bits, with
κp = 22, κt = 7, κc = 22, κb = 7:

kp = k
(0)
[0,−1,...,−8,−10,−11,−12,−15], k

(1)
[0,−1,−2,−5,−6,−7,−10,−11,−15]

kt = k
(2)
[0,−1,−5,−6,−10], k

(3)
[0,−5]

kb = k
(r−3)
[0,−1,−5,−6,−10], k

(r−4)
[0,−5]

kc = k
(r−1)
[0,−1,...,−8,−10,−11,−12,−15], k

(r−2)
[0,−1,−2,−5,−6,−7,−10,−11,−15]

The complexity of the analysis phase is about 2κg = 258. For Simeck32, we
can compute the exact ELP of the linear approximation using our algorithm
with w = 16; we obtain an ELP of 2−27.68 over 13 rounds. With 231.5 data,
and an advantage a = 37, we have a success probability of 7% and the search
phase has a complexity of 256. Finally we obtain an average complexity of
(258 + 256)/0.07 ≈ 262.2.

B.2 Linear cryptanalysis of 32-round Simeck48

Starting from the linear approximations (0, 1)→ (1, 0), we add 7 rounds on the
plaintext side, and 4 on the ciphertext side. We need the following key bits, with
κp = 41, κt = 30, κc = 14, κb = 2:

kp = k
(0)
[0,−1,...,−18,−20,−21,−22], k

(1)
[0,−1,...,−13,−15,−16,−17,−20,−21]

kt = k
(2)
[0,−1,−2,−3,−5,−6,−7,−8,−10,−11,−12,−15,−16,−20],

k
(3)
[0,−1,−2,−5,−6,−7,−10,−11,−15], k

(4)
[0,−1,−5,−6,−10], k

(5)
[0,−5]

kb = k
(r−3)
[0,−5]

kc = k
(r−1)
[0,−1,−2,−5,−6,−7,−10,−11,−15], k

(r−2)
[0,−1,−5,−6,−10]

The complexity of the analysis phase is about 2κg = 287. Over 21 rounds, we
have ELP = 2−43.56; with 247 data, and an advantage a = 26, we have a success
probability of 10% and the search phase has a complexity of 286. Finally we
obtain an average complexity of (287 + 286)/0.1 ≈ 290.9.

C Observations on Simeck differentials

Let Aw be the matrix of difference propagations in a Simeck64 round, in the
space ∆2

w. If we start from an arbitrary difference, then it represents a distribution
vector C with a single non-zero component, and the distribution of differences
after r rounds is given by ArwC.

35

When r increases, ArwC will eventually converge towards λrwV where λw is the
highest eigenvalue of A, and V is a corresponding eigenvector. Taking a higher
w decreases the value λw. This vector V represents a stationary distribution of
differences in ∆2

w. Once we approach this distribution, each round is passed with
the same probability. This is represented in Figure 10.

With our first experiments, we conjectured that λw converged towards 1/4
when w increased. This turned out to be disproved by w = 10. Thus for w higher
than 10, an input difference following the stationary distribution remains in ∆2

w

with probability larger than 1/4 after one Simeck round.

Observing the Truncated Differential Path. A quick look at the probabil-
ities of (0, 1)→ (1, 0) given in Table 4 shows that they are well approximated
by 2−1.9r−3.5, where r is the number of rounds. The 1.9 value comes from the
stationary distribution, and corresponds to the largest eigenvalue of Aw for
w = 18. The additional 3.5 comes from the connection between (0, 1), (1, 0) and
∆2
w in the first and last rounds of the differential path.
When starting from (0, 1), the single-bit differential can expand at a low cost

before it starts to reach outside ∆2
w. Since the largest rotation in Simeck is by

5 bits, for w = 18, the three first rounds are even completely free. After that,
the difference will stay in ∆2

w with some probability, converging towards the
stationary distribution.

In fact, the typical behavior in this first expansion phase is to increase the
number of active bits by a small amount, typically one (two for the two words),
at each round. This is because the probability of such transitions is larger than
the probability of a stationary transition. Indeed, to increase by only one bit, it
is enough to have 4 ANDs equal to zero, with probability ≥ 2−1.7 instead of the
stationary 2−1.9.

In the stationary phase, the truncated difference remains in the space ∆2
w. At

some point, it needs to connect with the final difference (1, 0). This is the last,
compression phase. Similarly as the first phase, the typical intermediate steps
consist in reducing progressively the range of active bits. A single-bit reduction
at each round is the most probable.

36

0 10 20 30 40 50 60

0

10

20

30

40

50

60

c = 8, round 2

12

10

8

6

4

2

0 10 20 30 40 50 60

0

10

20

30

40

50

60

c = 8, round 4

22

20

18

16

14

12

10

8

0 10 20 30 40 50 60

0

10

20

30

40

50

60

c = 8, round 6

32.5

30.0

27.5

25.0

22.5

20.0

17.5

15.0

0 10 20 30 40 50 60

0

10

20

30

40

50

60

c = 8, round 10

45

40

35

30

25

0 10 20 30 40 50 60

0

10

20

30

40

50

60

c = 8, round 14

50

45

40

35

0 10 20 30 40 50 60

0

10

20

30

40

50

60

c = 8, round 20

65.0

62.5

60.0

57.5

55.0

52.5

50.0

47.5

45.0

Fig. 10. Evolution of the probabilities, starting from (0, 1). We took w = 8 but the
figure is cropped to a quarter. We can observe the convergence towards a stationary
distribution. Note that when starting from (0, 1), we can never obtain a pair of even
differences by going through ∆2

w, which is why a quarter of the points are missing.

37

	Clustering Effect in Simon and Simeck
	Introduction
	Our Contribution.
	Outline.

	Notations
	Description of Simon and Simeck

	Differential and Linear Cryptanalysis
	Differential cryptanalysis
	Differential distinguisher.

	Linear cryptanalysis
	Linear distinguisher.

	Last-round Key Recovery
	Complex key schedules.

	Analysis of Simon-like ciphers
	A class of high probability trails
	Links between Linear and Differential trails
	Key Bits for Last-round Key Recovery
	Linear cryptanalysis.
	Differential cryptanalysis.
	Comparison.

	Key-recovery attacks using Differential Cryptanalysis
	The dynamic key-guessing technique
	Offline phase.
	Online phase.
	Complexity and success probability.

	40-round Key-recovery on Simeck64/128
	Attack parameters.

	Key-recovery attacks using Linear Cryptanalysis
	The FWT Approach of ICISC:ColStaQui07,EC:FloNay20
	Statistical Models to Estimate the Success Probability
	Single dominant characteristic.
	Single approximation with many trails.
	Multiple approximations.

	12-round Key-recovery
	Attack Parameters
	42-round Simeck64 with 263.5 plaintexts.
	41-round Simeck64 with 263 plaintexts.

	Experimentations

	Application to Simon
	56-rounds Simon128/256.
	55-rounds Simon128/192.
	45-rounds Simon96/144.

	Perspectives
	Comparison of differential and linear cryptanalysis.
	Impact of the rotations.
	Alternative class.

	Key bits involved in the key recovery
	Details of additional attacks
	Linear cryptanalysis of 23-rounds Simeck32
	Linear cryptanalysis of 32-round Simeck48

	Observations on Simeck differentials
	Observing the Truncated Differential Path.

