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Abstract. We cryptanalyse the SIDH-based oblivious pseudorandom
function from supersingular isogenies proposed at Asiacrypt’20 by Boneh,
Kogan and Woo. To this end, we give an attack on an assumption, the
auxiliary one-more assumption, that was introduced by Boneh et al. and
we show that this leads to an attack on the oblivious PRF itself. The
attack breaks the pseudorandomness as it allows adversaries to evalu-
ate the OPRF without further interactions with the server after some
initial OPRF evaluations and some offline computations. More specif-
ically, we first propose a polynomial-time attack. Then, we argue it is
easy to change the OPRF protocol to include some countermeasures,
and present a second subexponential attack that succeeds in the pres-
ence of said countermeasures. Both attacks break the security parameters
suggested by Boneh et al. Furthermore, we provide a proof of concept
implementation as well as some timings of our attack. Finally, we ex-
amine the generation of one of the OPRF parameters and argue that a
trusted third party is needed to guarantee provable security.

1 Introduction

An oblivious pseudorandom function (OPRF) is a two-party protocol between a
client and a server that computes a pseudorandom function (PRF) on a client’s
input with the server’s key. At the end, the server does not learn anything about
the client’s input or the output of the function and the client learns the evaluation
of the OPRF but nothing about the server’s key. In particular, a client should not
be able to compute the OPRF on any input without the server’s participation.

Moreover, a verifiable oblivious pseudo random function (VOPRF) is an
OPRF, where a server commits to some key and the client is ensured that the
server used this key to evaluate the OPRF. In particular, the client is guaranteed
that a server does not change their secret key across different executions of the
protocol.

Oblivious pseudorandom functions are an important building block in many
cryptographic applications. They can be used for private set intersection [23],
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which in turn has many applications such as private contact discovery for mes-
saging services [14] or checking for compromised credentials [25]. Further applica-
tions of (V)OPRFs include password-authenticated key exchange [22], password-
management systems [16], adaptive oblivious transfer [24], password-protected
secret sharing [21] and privacy-preserving CAPTCHA systems [10].

Apart from their theoretical relevance in cryptography, OPRFs have had
significant real-world impact recently. The password-authenticated key exchange
OPAQUE [22] which is built on an OPRF is intended for use in TLS 1.3 [33].

The privacy-preserving authorisation mechanism known as Privacy Pass by
Davidson et al. [10] is also based entirely on the security of a VOPRF. Pri-
vacy Pass is currently used at scale by Cloudflare. There is an ongoing effort to
standardise OPRFs at the Crypto Forum Research Group (CFRG) [11].

Generic techniques from two-party computation and zero-knowledge proofs
can be used to construct verifiable OPRFs. However, the resulting protocols
might be inefficient. Therefore, all of the real-world use-cases of (V)OPRFs are
currently instantiated with performant (V)OPRFs which are based on classical
security assumptions. Practical constructions are currently based either on the
hardness of the decisional Diffie-Hellman problem, called DH-OPRF [21], or they
are derived from RSA blind signatures [8,11].

For quantum-secure OPRFs, there are only few proposals. Indeed, only three
such solutions appear in the literature to date. In 2019, Albrecht et al. proposed
a lattice-based VOPRF [1] based on the ring learning with errors problem and
the short integer solution problem in one dimension. Seres et al. constructed
an OPRF based on the shifted Legendre symbol problem [31] and Boneh et al.
presented two isogeny-based (V)OPRFs at ASIACRYPT 2020 [3].

Isogeny-based cryptography is one of the branches of post-quantum cryp-
tography that are currently being explored. The particularly small key sizes re-
quired by isogeny-based cryptosystems make them very attractive in some areas
of information security. Isogeny-based cryptography was first proposed by Cou-
veignes in 1997 [9]. However, his ideas were not published at the time and they
were independently rediscovered by Rostovtsev and Stolbunov [30]. The idea of
Couveignes and Rostovtsev-Stolbunov (CRS) was to build a Diffie-Hellman type
key exchange using the class group of the endomorphism ring of ordinary elliptic
curves. However, neither of the suggested schemes was efficient enough to be
considered practical. Meanwhile, supersingular elliptic curves were first used in
cryptography by Charles, Lauter and Goren [7] to build a hash function.

Jao and De Feo took a different approach to isogeny-based cryptography
when they introduced the supersingular isogeny Diffie-Hellman (SIDH) key ex-
change [20]. Instead of computing class group actions as in the case of CRS, Jao
and De Feo use the following observation. Two subgroups of an elliptic curve of
coprime cardinality are only intersecting at the point at infinity. Independent of
the order in which two such subgroups are divided out of an elliptic curve, the
resulting curve will be equal up to isomorphism. The only isogeny-based cryp-
tosystem submitted to NIST’s ongoing post-quantum standardization process is
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the SIDH-based candidate SIKE [19,2] which has been selected as one of the
alternate finalists.

Later, the idea of CRS-type schemes was resurrected, when Castryck et al.
adapted it to supersingular elliptic curves and managed to eliminate most of its
performance issues [5]. The resulting scheme is called CSIDH.

In their ASIACRYPT 2020 paper [3], Boneh et al. propose an augmentable
commitment framework that can be used to build an OPRF and is instanti-
ated with both an SIDH-based scheme that can be made verifiable, and with a
CSIDH-based one. The SIDH-based variant relies on the hardness of the deci-
sional supersingular isogeny problem, a standard assumption in the area, and a
novel ‘one-more’ isogeny assumption.

Our contributions In this paper, we cryptanalyse the SIDH-based ‘one-more’
assumption introduced by Boneh, Kogan and Woo. We first give multiple vari-
ants of an attack on the assumption itself. A first variant leads to a polynomial-
time attack against the proposed SIDH-based OPRF protocol. We then argue
that a simple modification of the (V)OPRF protocol prevents such an attack.
Then, we show that a second variant of the attack leads to an attack on the
protocol even in the presence of those countermeasures. This attack has a subex-
ponential complexity, but there appear to be no simple countermeasures. Devel-
oping countermeasures is left as an open problem. As a result of our attack, the
parameters suggested by Boneh et al. fall short of their estimated security level.

The attacks on the OPRF allow malicious clients to evaluate the OPRF on
arbitrary inputs after some initial queries to the server, without even interacting
with the server any further. This breaks the pseudorandomness property of the
OPRF and could lead to significant attacks on OPRF-based protocols. In the
context of private set intersection based on oblivious PRFs, the proposed attack
allows the attacker to brute-force the other party’s set elements and break the
privacy requirement. In the Privacy Pass protocol used to guarantee privacy-
preserving CAPTCHAs, our attack allows the attacker to generate unlimited
tokens, thus avoiding solving CAPTCHAs and fully breaking the security of the
system.

Furthermore, we discuss how one of the parameters of the SIDH-based OPRF
by Boneh et al. is generated and which party should compute it. We argue there
are security implications if the server, the client or any third party maliciously
generates this parameter. The client or a third party can introduce a backdoor
through this parameter to recover the secret key of the server, whereas if the
server is malicious, they can break the supersingular-isogeny collision assumption
on which Boneh et al.’s security proofs are built. We suggest that a trusted setup
may be needed to guarantee provable security.

Finally, we want to emphasise that the CSIDH-based OPRF proposal by
Boneh et al. is not affected by our attacks.

Outline. In Section 2, we introduce some background on isogeny-based cryp-
tography, the security properties of (verifiable) oblivious PRFs and Boneh et
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al.’s construction. The attacks against the ‘one-more’ assumption are presented
in Section 3, while their application to the OPRF protocol by Boneh et al. is
discussed in Section 4. We present our implementation of the attack and discuss
its results in Section 5. In Section 6, we argue that a trusted setup should be
used for the OPRF and briefly sketch two attacks that follow a lack of trusted
setup before concluding the paper in Section 7.

2 Preliminaries

In this section we introduce the necessary mathematical background on isogenies
and the SIDH key exchange, we summarize the security properties of OPRFs
and we briefly recall Boneh et al.’s OPRF construction [3].

2.1 Mathematical background on isogenies

Let Fq be a finite field of characteristic p. In the following, we assume p ≥ 3 and
therefore an elliptic curve E over Fq can be defined by its short Weierstrass form

E(Fq) = {(x, y) ∈ F2
q | y2 = x3 +Ax+B} ∪ {OE}

with A,B ∈ Fq such that the discriminant is non-zero and OE denotes the
point (X : Y : Z) = (0 : 1 : 0) on the associated projective curve Y 2Z =

X3 +AXZ2 +BZ3. The j-invariant of an elliptic curve is j(E) = 1728 4A3

4A3+27B2 .
A non-constant rational map φ : E1 → E2 between two elliptic curves is

an isogeny if it sends the point at infinity of E1 to the point at infinity of E2.
Equivalently, an isogeny is a rational map which is also a group homomorphism.
Thus an isogeny is the natural morphism of the category of elliptic curves. An
isogeny φ induces a field extension between the function fields of E1 and E2. The
degree of this extension is the degree of the isogeny. We call an isogeny separable
if this field extension is separable. The kernel of a separable isogeny as a group
homomorphism is finite and is equal to the degree of the isogeny. If φ : E1 → E2

is an isogeny of degree d, then there exists a unique isogeny φ̂ of degree d such
that φ ◦ φ̂ = [d], where [d] denotes multiplication by d. The isogeny φ̂ is called
the dual isogeny of φ. An isomorphism of elliptic curves is an isogeny of degree 1
and there is an isomorphism of curves f : E0 → E1 if and only if j(E0) = j(E1).

An endomorphism of E is an isogeny from E to itself. Endomorphisms of E
form a ring under composition and addition denoted by End(E). The endomor-
phism ring of an elliptic curve over a finite field is either an order in an imaginary
quadratic field (in which case the curve is called ordinary) or a maximal order
in the quaternion algebra ramified at infinity and p (in which case the curve is
called supersingular).

The j-invariant of any supersingular elliptic curve defined over Fq lies in Fp2 .

For a thorough introduction to elliptic curves and isogeny-based cryptogra-
phy, we refer to Silverman [32] and De Feo [12], respectively.
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2.2 SIDH

We briefly recall the supersingular isogeny Diffie-Hellman key exchange intro-
duced by Jao and De Feo [20].

Let E0 be a supersingular elliptic curve defined over Fp2 , where p is a prime of
the form f ·N1N2±1. Here f ∈ Z is a small cofactor and N1, N2 are two coprime
smooth integers (e.g. a power of 2 and 3 respectively). Furthermore, fix two bases
PA, QA and PB , QB such that 〈PA, QA〉 = E0[N1] and 〈PB , QB〉 = E0[N2]. To
agree on a secret key over an insecure channel, Alice and Bob proceed as follows:

1. Alice chooses a random cyclic subgroup of E0[N1] generated by a point of
the form A = PA + [xA]QA as her secret. Similarly, Bob chooses his secret
as 〈B〉 := 〈PB + [xB ]QB〉 ⊂ E0[N2].

2. Then, Alice and Bob compute their secret isogeny ϕA : E0 → E0/〈A〉 and
ϕB : E0 → E0/〈B〉, respectively.

3. Alice sends the curve EA := E0/〈A〉 and the points ϕA(PB), ϕA(QB) to Bob.
Mutatis mutandis, Bob sends EB := E0/〈B〉, ϕB(PA) and ϕB(QA) to Alice.

4. Both Alice and Bob can compute the shared secret curve EAB := E0/〈A,B〉
up to isomorphism as

EAB ∼= EB/〈ϕB(PA) + [xA]ϕB(QA)〉 ∼= EA/〈ϕA(PB) + [xB ]ϕA(QB)〉.

Since isomorphic curves have the same j-invariant, Alice and Bob use j(EAB)
as their shared secret.

2.3 Security properties of (V)OPRFs

In the following, we will call a function µ : N→ R negligible if for every positive
polynomial poly(·) there exists an integer Npoly > 0 such that for all x > Npoly,
we have |µ(x)| < 1/poly(x).

The security properties of an oblivious pseudorandom function (OPRF) in-
clude those of a standard pseudorandom function (PRF).

Definition 1. Let F : K ×X → Y be an efficiently computable function. F is
a pseudorandom function (PRF) if for all probabilistic polynomial-time distin-
guishers D, there is a negligible function negl such that

P[DF (k,·)(1n) = 1]− P[Df(·)(1n) = 1] ≤ negl(n),

where the first probability is taken over uniform choices of k ∈ {0, 1}n and the
randomness of D, and the second probability is taken over uniform choices of
functions f : X → Y and the randomness of D.

A consequence of pseudorandomness is that one cannot compute a new eval-
uation of F (k, ·) from existing evaluations. However, our attack on Boneh et al.’s
OPRF will allow adversaries to evaluate F (k, ·) on arbitrary inputs after some
initial evaluations.

Furthermore, an OPRF is oblivious in the following sense.
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Definition 2 ([17]). Let F : K×X → Y be a PRF. A protocol between a client
with input x ∈ X and a server with key k ∈ K is called oblivious PRF, if the
client learns F (k, x) and nothing else and the server learns nothing about x or
F (k, x) at the end of the protocol.

In particular, the server will learn nothing about the input x of the client
and the client will learn nothing about the server’s key k.

Additionally, an OPRF can be verifiable.

Definition 3. An OPRF is said to be verifiable if the evaluation y that the
client obtains at the end of the protocol is correct, i.e. if it satisfies y = F (k, x),
where x ∈ X is the client’s input and k ∈ K is the server’s private key.

In practice, verifiability is ensured by the server committing to a key k prior to
the execution of the verifiable OPRF (VOPRF) and providing a zero-knowledge
proof that the VOPRF execution uses the same key as the committed value.

2.4 An isogeny-based OPRF by Boneh, Kogan and Woo

We provide a simplified description of Boneh et al.’s OPRF based on the SIDH
key exchange protocol.

Let λ be the security parameter and let p = fNKNMNVNRNS− 1 be a prime
where f ∈ Z is a small cofactor and Ni are powers of distinct small primes such
that NK, NM, NV, NR are roughly of size 25λ/2 and NS ≈ 22λ. To prevent an
attack by Merz et al. [27], the factors NK, NM, NV, NR are of size 25λ/2 instead of
the more common size 22λ in the SIDH setting. Moreover, let H1 : {0, 1}∗ → ZNM

be a cryptographic hash function. In their proofs, Boneh et al. treat H1 as a
random oracle. Finally, let E0 be a randomly chosen supersingular elliptic curve
over Fp2 and let {Pi, Qi} denote a basis of E0[Ni] for i = K,M, V,R, S. While
Boneh et al. only require E0 to be a randomly chosen elliptic curve, we will
discuss how it is generated in Section 6 and argue that this choice should be
done by a trusted third party.

First, the server chooses their private key k which is the PRF key and pub-
lishes a commitment to this key. To evaluate the OPRF at an input x in the
input space, a client computes the hash H1(x) = m ∈ ZNM

. Furthermore, the
client randomly chooses an element r ∈ ZNR

.
The client computes the isogenies φm : E0 → Em := E0/〈PM + [m]QM 〉 and

φr : Em → Emr := Em/〈φm(PR) + [r]φm(QR)〉. Then, the client sends Emr
together with the torsion point images of Pi, Qi for i = V,K, S to the server as
well as a basis of Emr[NR]. To avoid active attacks like the GPST attack [18],
where a malicious client tries to recover information about the server’s private
key by sending manipulated torsion point information, the client proves to the
server in a non-interactive zero-knowledge proof that they know the kernel of the
isogeny from E0 to Emr and that the provided torsion point images are indeed
the images under this isogeny. For full details about the zero-knowledge proof
we refer to Section 5 of [3].
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Subsequently, the server computes their secret isogeny φk : Emr → Emrk,
where Emrk := Emr/〈φr ◦ φm(PK) + [k]φr ◦ φm(QK)〉. Moreover, the server
computes the images of the order NV torsion points and the basis of Emr[NR]
provided by the client. The server sends Emrk together with the torsion point
information to the client. Using an interactive zero-knowledge proof with a cut-
and-choose approach between server and client, the server can prove to the client
that it computed the isogeny and the torsion point images correctly. This proof
uses the torsion point images of order NV and the server’s initial commitment
to the key k. Details about this zero-knowledge proof can be found in Section 6
of [3].

After executing the zero-knowledge proof with the server to convince itself
of the correctness of the server’s reply, the client uses the images of the Emr[NR]

torsion to “unblind” Emrk. The unblinding isogeny φ̂′r is a translation of the dual
of φr starting from Emrk. This allows the client to compute a curve isomorphic
to Emk := Em/〈φm(PK) + kφm(QK)〉 without knowing k at any point in time.
Hashing the input together with the j-invariant of Emk and the server’s initial
commitment to his key k yields the output of the VOPRF. The entire evaluation
is sketched in Figure 1.

E0 Em

Emr

Emk

Emrk

φm

φr

φk

φ̂′
r

Fig. 1. Sketch of Boneh et al.’s isogeny-based VOPRF. The isogenies computed by the
client are marked in red (φm, φr, and φ̂′r) while the server’s isogeny is noted in blue
(φk). The green isogenies represent the PRF which is jointly evaluated by the client
and the server. The output of the OPRF is computed as F (k, x) = H(x, j(Emk), pk),
where H is a cryptographic hash function and pk is the server’s (public) commitment
to his key k.

3 Attacks on the auxiliary one-more SIDH assumption

In [3], Boneh et al. introduce the auxiliary one-more SIDH assumption. This is
a new security assumption to prove the unpredictability of their isogeny-based
VOPRF. In this section we challenge the validity of this assumption and we
present multiple attacks on the corresponding computational problem.
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All of the attacks follow a similar strategy. First, an attacker recovers certain
torsion point images up to a scalar under the secret isogeny using queries in
the security game. Having recovered these torsion point images, an attacker is
capable of answering any challenge set by the challenger correctly. This breaks
the security assumption and also leads to an attack on Boneh et al.’s (V)OPRF.

We start by recalling the security assumption introduced by Boneh et al. [3].
Then, we show that recovering said torsion point images up to a scalar is suffi-
cient to compute the correct answer to arbitrary challenges in the corresponding
security game. Subsequently, we give multiple approaches to recover these tor-
sion point images. In Section 4, we will show how the attack on the security
assumption translates to an attack on the (V)OPRF itself.

3.1 The auxiliary one-more SIDH assumption

First, we recall the game underlying the auxiliary one-more SIDH assumption as
defined by Boneh et al. [3]. While Boneh et al. use the “decision queries” defined
in the following game in their security proofs, our attacks will not make use of
decision queries and a reader may ignore this additional ability of an adversary.

Game 1 (Auxiliary One-More SIDH). Let p = f · N1 · · ·Nn − 1 be a
prime depending on the security level λ and n, where Ni are smooth coprime
integers and f is a small cofactor, and let M,K ∈ {1, . . . , n} be two distinct
indices. Consider the following game between a challenger and an adversary:

– The challenger chooses a random supersingular curve E0/Fp2 and a
basis {P,Q} of E0[(p + 1)/(NM ·NK)]. Moreover, it chooses K ∈ E0 of
order NK, computes φK : E0 → EK := E0/〈K〉, and sends E0, P,Q,
and EK to the adversary.

– The adversary can make a sequence of queries of the following types to
the challenger:
• Challenge query: The challenger chooses M ∈ E0[NM] randomly and

sends it to the adversary
• Solve query: The adversary submits V ∈ E0[(p + 1)/NK] to the

challenger1, who computes φKV : E0 → E0/〈K,V 〉 and sends
j(E0/〈K,V 〉), φKV (P ), and φKV (Q) to the adversary.
• Decision query: The adversary submits a pair (i, j) to the challenger,

where i is a positive integer bounded by the number of challenge
queries made so far, and j ∈ Fp2 . The challenger responds true if
j = j(E0/〈K,M〉), where M is the challenger’s response to the ith
challenge query, and false otherwise.

– The adversary outputs a list of distinct pairs of the form (i, j), where i
is a positive integer bounded by the number of challenge queries made
and j ∈ Fp2 .
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We call an output-pair (i, j) correct, if j is the j-invariant of E0/〈K,M〉,
whereM is the challenger’s response to the ith challenge query. An adversary
wins the game, if the number of correct pairs exceeds the number of Solve
queries.

Assumption 2 (Auxiliary One-More SIDH [3]). For every constant n and
every distinct M,K ∈ {1, . . . , n}, every efficient adversary wins the above game
with probability negligible in λ.

In the following, we will show that the auxiliary one-more SIDH assumption
does not hold. We will give different attacks on the security problem underlying
Assumption 2 that follow a similar strategy. Let K be the server’s secret, de-
termining the isogeny φK : E0 → E0/〈K〉. The idea is to use a number of solve
queries to subsequently predict E0/〈K,M〉 for any M ∈ E0[NM]. To this end,
we will derive a method to extract the subgroup generated by φK(P ) for any
P ∈ E0[NM] with a number of solve queries. Using this procedure, an adversary
can extract the subgroups generated by φK(PM ), φK(QM ) and φK(PM +QM ),
where {PM , QM} is a basis of E0[NM].

Knowing these subgroups allows the adversary to compute the subgroups gen-
erated by φK(M) for arbitrary M ∈ E0[NM] without any further solve queries.
Given a generator of 〈φK(M)〉, the adversary can compute the j-invariant of
E0/〈K,M〉 as E0/〈K,M〉 ∼= EK/〈φK(M)〉. In particular, the adversary can pro-
duce arbitrarily many correct output-pairs and win the security game underlying
the auxiliary one-more SIDH assumption (Assumption 2).

3.2 Winning the security game given torsion point images

In this section, we show how mapping three different NM-order subgroups to
EK := E0/〈K〉 is enough to recover sufficient information to compute a generator
of 〈φK(M)〉 ∈ EK for any point M ∈ E0[NM].

Lemma 1. Let PV , QV , RV := PV +QV ∈ E0 be pairwise linearly independent
points of smooth order NM and let φK : E0 → EK be an unknown isogeny
of degree coprime to NM. Given the points PV , QV , RV and the subgroups
〈φK(PV )〉, 〈φK(QV )〉 and 〈φK(RV )〉, an adversary can compute 〈φK(M)〉 for
arbitrary M ∈ E0[NM].

Proof. Fix P ′, Q′, andR′ to be generators of 〈φK(PV )〉, 〈φK(QV )〉 and 〈φK(RV )〉
respectively. Note that the given information 〈φK(PV )〉, 〈φK(QV )〉 and 〈φK(RV )〉
is the same as knowing φK(PV ), φK(QV ), φK(RV ) up to a scalar multiple. There

1 In Algorithm 1, we will describe how an adversary can win the game in polynomial
time, if the point V is not required to be of full order.
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are many different generators for the groups 〈φK(PV )〉, 〈φK(QV )〉 and 〈φK(RV )〉
but for any fixed choice we have

P ′ = αφK(PV ),

Q′ = βφK(QV ),

R′ = γφK(RV )

for some (unknown) integers α, β, γ coprime to NM. As isogenies are homo-
morphisms, we have φK(RV ) = φK(PV ) + φK(QV ). One finds a, b such that
R′ = aP ′ + bQ′, which can be done efficiently as computing discrete logarithms
is easy in a group of smooth order NM. We have γ = aα = bβ. Thus, it is possible
for the attacker to recover the ratio α/β = b/a.

Given any M ∈ E0[NM], an adversary can compute integers k1, k2 such that
M = k1PV + k2QV (which again is possible because NM is smooth) and obtain
〈φK(M)〉 by computing 〈k1φK(P ) + k2φK(Q)〉 = 〈k1P ′ + k2

α
βQ
′〉.

In particular, an adversary who knows φK(PV ), φK(QV ) and φK(RV ) up to
a scalar and EK := E0/〈K〉 can compute E0/〈K,M〉 ∼= EK/〈φK(M)〉 for any
M ∈ E0[NM].

3.3 Recovering points in φK(E0[NM]) up to a scalar

The previous subsection shows that E0/〈K,M〉 can be computed by an adversary
for arbitrary M ∈ E0[NM] as long as they can recover images of points in E0[NM]
under the secret isogeny φK up to scalar. In this section, we will present multiple
ways an adversary can recover this information. For didactic purposes, we include
not only a polynomial and a subexponential attack (in case countermeasures to
prevent the former one are put in place) but also an exponential attack in our
exposition.

Query points of arbitrary order Let M ∈ E0[NM]. We are interested in
recovering φK(M) up to a scalar, given access to the oracle provided by the
“solve queries” in Game 1. Note that our attack will not use “decision queries”
as defined in the same game.

There is a simple procedure to compute an isogeny between EK and EM :=
EK/〈φK(M)〉 and therefore φK(M) up to scalar, if “solve queries” are allowed
for points of arbitrary order. Recall that during a solve query in Game 1, an
adversary gets to submit points V ∈ E0[(p + 1)/NK] to the challenger, who
replies with the j-invariant of E0/〈K,V 〉 and some additional torsion point im-
ages. Algorithm 1 describes how an adversary can recover φK(M) up to a scalar
for arbitrary M ∈ E0[NM]. The Algorithm recovers the isogeny from EK to
EK/〈φK(M)〉 by using solve queries to obtain all intermediate curves. This al-
lows to recover the isogeny EK → EK/〈φK(M)〉 one step at a time and therefore
its kernel 〈φK(M)〉.
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Algorithm 1: Computation of 〈φK(M)〉 using solve queries on points
of arbitrary order

Let {li}ni=0 be an integer sequence of all divisors of NM such that li+1/li is a
prime, li < li+1, with l0 := 1, ln := NM.

Input: EK , M ∈ E0[NM] and access to an oracle answering solve queries as
defined in Game 1.

Output: A generator of 〈φK(M)〉

1 E(n) ← E0/〈K〉 ;
2 for i = n− 1, . . . , 0 do
3 Query the oracle with the point Vi := [li]M and obtain the curve

E(i) := E0/〈K,Vi〉 = E0/〈K, [li]M〉 = EK/〈[li]φK(M)〉;
4 Find li+1/li-isogeny φi from E(i+1) to E(i);

5 return A generator of ker(φ0 ◦ · · · ◦ φn−1);

Lemma 2. Algorithm 1 returns λφK(M), where λ ∈ Z is coprime to NM.

Proof. Let ψM be the isogeny from EK to EK/φK(M). Then the claim follows
from the observation that E0/〈K, [li]M〉 ∼= E0/〈[li]K, [li]M〉, since li is coprime
to the order of K.

Remark 1. Note that an attacker can easily change the attack to require fewer
queries. Instead of using one query for each intermediate curve, an attacker can
choose any factorisation f1 · · · ft of NM such that fi are roughly of equal size

and query the oracle with
[∏b

j=1 fi

]
M for b = 1, . . . , t. Then, the attacker is left

to recover the isogeny between any two consecutive queries, i.e. the isogenies of
degree fi for i = 1, . . . , t, using a meet-in-the-middle attack.

In Game 1, Boneh et al. did not specify any restrictions on the points of
E0[(p+1)/NK] that can be submitted to the solve queries. However, in the context
of the game, this attack can be easily thwarted by answering to a solve query
only if the submitted point is of order (p+ 1)/NK. This property can be checked
efficiently by the challenger. In Section 4, we discuss how this polynomial-time
attack and its countermeasures translate to the VOPRF protocol.

Query points of order (p + 1)/NK Next, we present how an attacker can
retrieve the necessary information even if they are only allowed to send solve
queries on points of order (p+ 1)/NK, i.e. if the challenger checks the order of a
submitted point and only replies to a query if the point is of order (p+ 1)/NK.

Let φV denote the isogeny EK → E0/〈V,K〉 of degree (p + 1)/NK and let
φV = φV ′ ◦φM be its decomposition into a degree (p+ 1)/(NKNM) and a degree
NM isogeny. Our attack aims to recover the image of multiple subgroups of
E0[NM] under the isogeny φK , i.e. we are interested in the kernel of the isogeny
φM for different points V . The isogenies are depicted in Figure 2.
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E0/〈K,V 〉

•

EK

E0

φM

φV ′

φV

φK

Fig. 2. Depiction of the isogenies of a solve query

Recovering φV ′ from torsion point information Let P,Q ∈ E0[(p +
1)/NMNK] be the torsion point basis provided by the challenger and let V ∈
E0[(p+ 1)/NK] be linearly independent of P or Q. Then, we can use the torsion

point images provided during a solve queries to compute φ̂′V as follows.
Let P ′ := φV ◦ φK(P ), Q′ := φV ◦ φK(Q) be the images of the torsion

points provided by the challenger. The adversary can compute φ̂V ′ as the isogeny
from E0/〈K,V 〉 with kernel 〈P ′, Q′〉. Note that 〈P ′, Q′〉 ⊂ ker(φ̂V ′), because

φ̂V ′ ◦ φV ′ = [(p + 1)/NMNK] is the order of the points P,Q. As V is linearly
independent to at least one of P and Q, the other inclusion follows from 〈P ′, Q′〉
spanning a subgroup of size (p+ 1)/NMNK.

Choosing PV , QV as a basis of E0[(p + 1)/NK] such that [NM]PV = P +
[(p+ 1)/NMNK]Q and [NM]QV = [(p+ 1)/NMNK]P +Q, every point of the form
PV + [i]QV or [i]PV +QV will be linearly independent of P or Q.

As a consequence of φV ′ being easy to recover, we may assume that during a
solve query an attacker can send a point M of order NM to the challenger who
returns E0/〈K,M〉. We are left to recover the kernel of φM .

Näıve attack to recover φM Next we describe an exponential attack that
recovers φ̂M using meet-in-the-middle (MITM) computations of increasing size.
In the subsequent part, we will introduce a trade-off between queries and com-
putation costs that reduces the complexity of the attack to subexponential.

Let PM , QM denote a basis of E0[NM]. For simplicity of exposition we treat
NM as a prime power and we write NM = `eMM . The attack recovers φM : EK →
EK/〈PM 〉 by recovering each of the eM intermediate curves one at a time.

The attacker starts by querying the solve oracle with two points V0 := PM
and V1 := PM+[`eM−1M ]QM . Note that the curves EK/〈φK(V0)〉 and EK/〈φK(V1)〉
are `2M -isogenous, since they are both `M -isogenous to EK/〈[`M ]φK(V0)〉 =
EK/〈[`M ]φK(V1)〉. The attacker recovers the curve EK/〈[`M ]φK(V0)〉, which is
the first intermediate curve on the φM isogeny path by computing the common
neighbour of EK/〈φK(V0)〉 and EK/〈φK(V1)〉.



Cryptanalysis of an oblivious PRF from supersingular isogenies 13

The rest of the attacks proceeds similarly. The attacker queries with the
points Vi := PM + [`eM−iM ]QM , i = 1, . . . , eM/2 and runs a MITM attack to re-
cover EK/〈[`iM ]φK(V0)〉 given EK/〈φK(Vi)〉 and EK/〈[`i−1M ]φK(V0)]〉. This could
be repeated eM times to recover the entire isogeny φM . However, the attacker
does not need to recover the last part of the isogeny through this strategy, since

it is faster to directly compute the MITM between EK/〈[`eM/2
M ]V0〉 and the start-

ing curve EK . The attack with the required meet-in-the-middle computations is
shown in Figure 3.

EK

•

•

•

EK/〈φK(VeM/2)〉 EK/〈φK(Vi)〉 EK/〈φK(V1)〉 EK/〈φK(PM )〉

Fig. 3. Näıve attack where isogenies of increasing length need to be recovered. The
blue lines represent the meet-in-the-middle computations.

Note that the isogenies that need to be recovered using MITM grow at each
step. To recover the i-th intermediate curve, the attacker needs to compute

an isogeny between two curves that are `
(i+1)
M -isogenous, which takes roughly

O(`
(i+1)/2
M ).
Clearly, this attack can be optimised by recovering multiple steps of φM at

a time, and by making sure that the different MITM attacks that need to be
executed have similar complexity. We will discuss these improvements in the
following.

Full attack with query-time trade-off We can reduce the complexity of the
näıve attack by introducing a trade-off between queries and the cost of MITM
computations. This is because the attacker recovers the whole path between two
isogenies during a MITM computation. Thus, it is possible to recover more than
one intermediate curve with a single (longer) MITM computation. Moreover, the
queries can be spaced out more in order to reduce the length of the isogenies
that have to be recovered using MITM strategies.

More formally, let 2q denote the number of queries that an attacker can (or
wants to) send to the challenger. For simplicity of this exposition, assume that
2em is divisible by q + 2. The attacker chooses the Vi such that E0/〈K,Vi〉
correspond to curves that are the leaves of a binary isogeny tree. The Vi should

be chosen such that there is an `
2eM/(q+2)
M isogeny between any two siblings

in the binary tree and the curve that is `
eM/(q+2)
M -isogenous to both leaves is
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their parent in the tree. Again, the parent and its sibling should be `
2eM/(q+2)
M -

isogenous, etc.

E0

•

• •

• • • •

E0/〈V0〉 E0/〈V1〉 E0/〈V2〉 E0/〈V3〉 E0/〈V2q−4〉 E0/〈V2q−3〉 E0/〈V2q−2〉 E0/〈V2q−1〉

Fig. 4. The attacker queries the challenger on points corresponding to isogeny kernels
leading to the leaves of this binary tree

Remark 2. Note that it is easy to choose such a set of points Vi. Let PM , QM
be a basis of E0[`eMM ]. The attacker can choose

V0 := PM

Vi := Vi−2blog ic + [`
eM−(blog ic+1)2eM/(q+2)
M ]QM

Lemma 3. Let E0/〈Vi〉 and E0/〈Vj〉 be `kM isogenous curves. Then EK/〈φK(Vi)〉
and EK/〈φK(Vj)〉 are `kM -isogenous curves too.

Proof. This follows from NK = deg(φK) being coprime to `kM .

In particular, {φK(PM ), φK(QM )} is a basis of EK [NM] and EK/〈φK(Vi)〉
are the leaves in a binary tree where all siblings are `

2eM/(q+2)
M isogenous.

After querying the oracle to obtain EK/〈φK(Vi)〉 = E0/〈K,Vi〉, an attacker
recovers iteratively parent nodes in the binary tree using a meet-in-the-middle

approach. Any siblings in the tree correspond to curves that are `
2eM/(q+2)
M -

isogenous, thus this can be done in O(`
eM/(q+2)
M ). Note that the root of the

binary tree is recovered after 2q − 1 such meet-in-the-middle instances, i.e. the
number of internal nodes in the binary tree. This root of the binary tree is then

by construction `
2eM/(q+2)
M -isogenous to E0. This final isogeny can be recovered

using meet-in-the-middle again. An attacker recovers and saves the intermediate
nodes and isogenies from EK to the leaf EK/φK(V0). Clearly, the kernel of this
isogeny is φK(V0).

In summary, we can recover the isogeny from EK → EK/〈φK(PM )〉 for any
PM with 2q queries to the challenger and 2q instances of meet-in-the-middle

isogeny computations with cost of O(`
eM/(q+2)
M ) each.

Remark 3. If `M = 2, we get q bits for free, i.e. one additional bit per layer of
the binary tree. This is because every parent node in the binary tree has three
outgoing edges: two edges leading to its children and one edge leading towards
the root. Thus, having recovered both paths to the children an attacker gets one
step towards the root for free.
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3.4 Attack analysis

The proposed attack is composed of two stages: firstly the generators of 〈φK(PV )〉,
〈φK(QV )〉, and 〈φK(RV )〉 are recovered, and then these points are used to re-
cover φK(M) for any possibly challenge M ∈ E0[NM].

The second part consists mostly of pairing evaluations and discrete log com-
putations in groups of smooth order. Thus, it runs in polynomial time. The
complexity of the attack is dominated by the complexity of recovering the sub-
groups in the first step.

The algorithm proposed in Section 3.3 offers different trade-offs between com-
putation costs and solve queries. As little as two solve queries can be enough to
recover φM with two meet-in-the-middle computations. If we write NM ≈ 2m,
each meet-in-the-middle requires O(2m/3) operations. This is already an im-
provement over the standard meet-in-the-middle attack that requires O(2m/2)
time. The OPRF protocol targets 128 bits of security, which corresponds to
m ≈ 5λ/2 = 320. Thus six queries (two per generator) are enough to reduce
the security to m/3 = 106 bits. The number of solve queries can be significantly
increased to obtain a faster attack. Note that OPRF protocols are usually used
for applications such as private set intersection, that support a large number of
queries. Thus, common scenarios where the OPRF may be used would easily
lend themselves to an attack with many queries.

Since OPRFs are used in protocols where the clients interact several times
with the server, we can expect the attacker to be able to run several OPRF in-
stances. Thus, we model a solve query as an oracle query, where it has a unitary
complexity. Then, the overall complexity of recovering a generator of 〈φK(PV )〉
with 2q solve queries is O(2m/(q+2)+q) operations, since the attacker needs to
compute 2q meet-in-the-middle instances between curves which are 22m/(q+2)-
isogenous. In terms of the security parameter, that complexity is equivalent to
O(25λ/2(q+2) + q), since the OPRF protocol suggests using m ≈ 5λ/2. If the
number of solve queries is unrestricted, the complexity of the attack is mini-

mized for q =
√

5λ/2 − 2, which gives an overall complexity of O(2
√
10λ−2),

or using the L-notation L[1/2, c], for some constant c. This shows the attack is
subexponential, assuming that the solve query complexity is O(1).

At 128-bit of security, our attack becomes feasible with around 64 solve
queries, when it requires 64 meet-in-the-middle computations between curves
which are 280-isogenous, i.e. each MITM has a complexity of 240 operations. If
the number of solve queries is unrestricted, an attacker can use 218 solve queries
to reduce the overall complexity of the attack to 218 MITM computations, where
each MITM operations has a complexity of 216 operations.

The high-level attack does not generally require much memory. Storing the
isogeny tree in memory is not particularly demanding, especially if the tree is
traversed depth-first. In particular, memory is used only to store the part of the
recovered isogeny, together with the two curves between which the meet-in-the-
middle needs to be computed. However, a more significant amount of memory is
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used by the meet-in-the-middle computations, and indeed we see that the mem-
ory used by a single meet-in-the-middle generally outweighs the memory used by
the rest of the attack. Meet-in-the-middle computations between curves which
are 2n-isogenous require to store 2n/2 curves. Thus, their memory requirements
are given by 2·2n/2 log p, since each curve can be represented by its j-invariant in
Fp2 . For common security levels, such as those proposed by Boneh et al. [3], the
memory requirements remain moderate. In Section 5, we show that indeed our
attack requires about 3 GB of memory to break 128 bits of security. However, for
a more complete asymptotical analysis, we note that the memory requirements
may become a bottleneck for the attack against higher security levels. In those
instances, it may be preferable to substitute the meet-in-the-middle approach
with the van Oorschot-Wiener algorithm [28]. This reduces the memory con-
sumption at the cost of higher asymptotic complexity. In particular, the vOW
algorithm requires O(23n/4) computations (compared to O(2n/2) of MITM) to
recover the halfway curve between curves which are 2n-isogenous. Thus, while
the concrete performance of the attack may differ, its asymptotic complexity
remains subexponential.

Future improvements A natural question to ask is whether the proposed
attack that queries points of the correct order may be improved to achieve a
polynomial running time. Consider that an attacker chooses an isogeny φV :
E0 → E0/〈V 〉 and he is given the curve E0/〈K,V 〉. Since the attacker knows
the entire isogeny φV , backtracking from E0/〈K,V 〉 to EK to recover φK(V )
in polynomial time does not seem too far fetched, since the attacker knows the
entire isogeny φV . A possible strategy may start by retrieving E0/〈K,V 〉 and
E0/〈K,V + `eMM V ′〉, for a point V ′ linearly independent of V . Their common
`M -neighbour is the first curve on the isogeny path. Then, the attacker may use
the knowledge of φV starting from E0 to distinguish between the `M possible
candidates for the next curve on the isogeny path. Unfortunately, our efforts to
develop such an attack did not succeed. It remains an open problem whether
such an attack is possible.

4 Attack on the OPRF

Having presented an attack on one of the security assumptions underlying the
isogeny-based OPRF by Boneh et al., we investigate how an adversary can use
the same method to attack the OPRF itself.

We will show that a malicious client can send carefully crafted queries to the
server for which it can produce all necessary NIZK proofs required by the proto-
col that was summarized in Section 2.4. However, after some offline computation
analogously to the attack on the auxiliary one-more SIDH assumption outlined
in the previous section, the malicious client can evaluate the OPRF on any input
without the help of the server. Even though the malicious client does not recover
the server’s secret key k, this breaks the “pseudorandomness”, Definition 1, of
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the OPRF. We will use the same notation as in Section 2.4 to refer to different
isogenies of the OPRF.

A malicious client will not use a hashed input to obtain the kernel for the
first isogeny φm : E0 → Em but rather choose the kernel of this first isogeny
maliciously. The choice is analogous to the points from E0[NM] that the attacker
submitted to the solve queries in the attack of the previous section. In other
words, instead of computing Em as E0/〈P + H(x)Q〉 for some input x, the
malicious client chooses a point Vi and computes Em as E0/〈Vi〉 in the i-th
evaluation of the OPRF.

The rest of the protocol is executed honestly. The malicious client can pick
some r ∈ NR to blind his maliciously chosen Em. And it can compute the torsion
point information for the server honestly since it knows the kernel of the isogeny
E0 → Emr = Em/〈φm(PR) + [r]φm(QR)〉. In particular, the malicious client
will always be able to produce the valid non-interactive zero-knowledge proof
of knowledge for the kernel of E0 → Emr and the correct computation of the
torsion point information.

Following through with the rest of the OPRF protocol, the malicious client
obtains the j-invariant of the curve E0/〈Vi,K〉 after unblinding. Here K denotes
the server’s secret PK + [k]QK . This is exactly what corresponds to a “solve
query” in the auxiliary one-more SIDH game, Game 1.

Now the malicious client can proceed as in the attacks on the auxiliary one-
more SIDH assumption.

In the attack using points of arbitrary order dividing NM, the malicious client
recovers the isogeny EK → EK/〈φK(P )〉 = E0/〈K,P 〉 and therefore 〈φK(P )〉
for any P ∈ E0[NM] in polynomial time. This is done by submitting points of
lower order, i.e. choosing the isogeny E0 → Em shorter, to recover the isogeny
stepwise. After recovering three such isogenies corresponding to pairwise linearly
independent points P,Q, P + Q, the malicious client can compute E0/〈M,K〉
for any M ∈ E0[NM] as was shown in Section 3.2.

Then, the malicious client can evaluate the OPRF on arbitrary inputs x as
follows: They compute the point M := PM + H1(x)QM as in the honest eval-
uation and then they compute j(E0/〈M,K〉) directly. Hashing this j-invariant
together with the input x and public information of the server yields the output
of the OPRF. Note that the malicious client does not even need to interact with
the server to evaluate the OPRF on arbitrary inputs.

Clearly, this breaks the pseudorandomness property of an OPRF, see Defini-
tion 1, as a malicious client will be able to predict the output of the OPRF for
any input after the initial queries.

Remark 4. The SIDH-based OPRF protocol by Boneh et al. does not prohibit
malicious clients from using points of smaller order dividing NM, i.e. from using
a shorter isogeny E0 → Em. However, this attack could be thwarted if the server
checked that the submitted curve is of correct distance from the starting curve. A
simple test using pairing computations on the provided torsion point information
may be tricked, but the NIZK of the client could be extended to include a proof
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that the client’s witness, i.e. the kernel of the isogeny E0 → Emr, is of full order
NMNR.

Even if countermeasures for this polynomial-time attack are put in place, we
are left with the following subexponential attack when points of full order are
used.

The client evaluates the OPRF on a certain number of inputs that correspond
to solve queries in the auxiliary one-more game. More precisely, the client chooses
the kernel of his first isogeny as in the subexponential attack of the previous
section. After blinding, evaluation of the server and unblinding, the client obtains
what would have been the result of a “solve query” in the previous section. After
the offline computation which, using meet-in-the-middle routines, recovers the
binary tree described in Section 5, the client obtains torsion point images of
E0[NM] up to scalar under the isogeny E0 → EK := E0/〈PK + [k]QK〉. Again
this is enough to compute E0/〈M,K〉 for any M ∈ E0[NM] by Section 3.2,
allowing the client to compute the OPRF on arbitrary inputs and therefore
breaking the pseudorandomness property.

Possible countermeasures In the case where the degree of the client’s isogeny
is forced to be NMNR, the proposed attack has subexponential complexity, and
thus possible countermeasures may include increasing the parameter sizes. How-
ever, the solve queries to time trade-off may reduce the feasibility of such an
approach. If the number of possible solve queries is unrestricted, to get 128-
bit security one would need the isogeny degree NM to be ≈ 2(128

2). This can
be partially mitigated by guaranteeing security only up to a certain number of
queries. Given a limit of 2Q queries, the exponent m needs to guarantee that
min{2

√
m−2, 2m/(Q+2)+Q} is at least 2λ. Thus, for 128-bit security, with Q = 64

the isogeny degree NM would have to be increased to ≈ 24224, whereas Q = 32
would require a degree NM ≈ 23264. Note that handling 232 queries may well be
within the scope of several OPRF applications, and isogenies of such a size may
become impractically large. Their feasibility, however, depends on the specifics of
the OPRF application and its time and bandwidth requirements. Thus, while the
attack is subexponential (assuming O(1) complexity for solve queries), increas-
ing the parameter size comes at a significant performance and communication
cost.

Therefore, it is important to consider possible algorithmic countermeasures.
Firstly, note that the attacker submits seemingly valid requests, so the server
cannot stop such interactions. Even if the server did want to prevent these re-
quests, it may not be able to detect them. This is because the attacker only
submits the image curve and some torsion point images under an isogeny with
chosen kernel.

However, the attack strongly depends on the attacker choosing the point V .
If the input points V were randomized, the attack as such could not work. The
OPRF protocol requires that such points are obtained via hashing the client’s
PRF input x, but it does not enforce it. Hence, a possible countermeasure to
the proposed attack would be requiring the client to provide a zero-knowledge
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proof that the curve Emr is not only the result of honest isogeny computations,
but also that the kernel of φm is the result of some hash function. However,
developing an ad-hoc and efficient proof that can prove such statements remains
an open problem.

5 Attack implementation

We implemented the subexponential attack of Section 3.3 in SageMath to demon-
strate the correctness of the algorithm and prove its feasibility. The source code
is freely available at https://github.com/isogenists/isogeny-OPRF. We re-
mark that this implementation is to be regarded only as a proof-of-concept and
that several subroutines can be further optimized. Improving their performance
and using lower-level languages, such as C, as well as platform-specific instruc-
tions, such as AVX, could significantly reduce the running time of the attack.

The proposed attack has two distinguishing features that help its implemen-
tation: it can be easily parallelized, and it has very low memory requirements.
Indeed, the computations to recover the generators of 〈φK(PV )〉, 〈φK(QV )〉 and
〈φK(PV + QV )〉 are independent of each other. It is also possible to achieve a
higher degree of parallelization. Within each computation to recover a single
generator, the meet-in-the-middle operations within each layer of the tree are
also independent of each other, and they can thus be parallelized. In this case,
the tree is generated layer-by-layer in a breadth-first manner. Note that while
this may require a sizeable amount of memory to fully store an entire layer,
the memory requirements are hardly the bottleneck. An attack with 220 queries
requires to store, at most, 219 curves. Since an elliptic curve can be represented
by its j-invariant, the memory limit is 219 · 2 log p. With a prime of size ≈ 21500,
as proposed in the OPRF protocol, the memory limit is about 196 MB. Alter-
natively, it is possible to traverse the tree in a depth-first manner to further
lower the memory requirement, but this may limit the degree of parallelization.
We remark that while parallelization only provides a linear speed-up, its effects
can be significant. Our implementation provides parallelized meet-in-the-middle
computations with a configurable number of cores in parallel.

Results The majority of the attack’s subroutines have polynomial complexity
and they are optimized enough that their performance does not affect the overall
running time. The building block that most affects the performance of the attack
is the meet-in-the-middle computation. Indeed, the timings of the attack are
directly correlated to the timing of a single meet-in-the-middle and the total
number of queries. The memory requirements of the attack are given by the
amount of memory needed for a single meet-in-the-middle, which in turn depends
on the distance between the two curves. For parallelized implementations of the
attack, the memory requirements correspond to as many meet-in-the-middle
computations as there are parallel instances.

https://github.com/isogenists/isogeny-OPRF
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Table 1 shows the running times at different security levels on an Apple M1
CPU clocked at 3.20 GHz with 4 CPUs running in parallel. Up to 32 bits of secu-
rity, the results come from running the entire attack, whereas for higher security
levels the results are estimated based on those of a single MITM computation.
The estimated time t is computed as

t =
3(M +Q)2q

C
, (1)

where M is the average running time of a MITM computation, Q is the average
running time of a solve query computation, 2q is the number of queries and C
is the number of CPUs running in parallel. This formula follows from the fact
that there are 2q MITM computations and 2q solve queries for each generator
recovery, and three of those are needed. Moreover, parallelization gives a linear
speed-up, and the remaining computations (such as those of Section 3.2) are
extremely fast when compared to the rest of the attack, and thus negligible.
Running computations at lower security levels and computing Eq. 1 does indeed
estimate the running time accurately. It should be noted that this remains an
estimate and the real results may vary to some degree.

We estimate that our non-optimized implementation running on a laptop
with 4 CPUs can break 64 bits2 of security in less than two days and 128 bits of
security in about 5 years. If the same attack was performed with more powerful
hardware and an optimized implementation, the running time could easily be
reduced to a matter of months, if not weeks. We remark that if a server ro-
tates its keys often, an attack that breaks the server one-more unpredictability
after the key has changed still leads to significant attacks. For instance, in the
case of OPRF-based private set intersection protocols, breaking the one-more
unpredictability property allows the attacker to break the privacy property of
the server’s set at the time when that specific key was used.

Lastly, note that in the implementation solve queries are simulated locally.
A real attack would interact with the server, and thus the “correct” attack time
should not include the query computation times. For completeness, Table 1 re-
ports the running time of the entire implementation, including the solve queries.

6 Trusted setup

In the OPRF protocol of Boneh et al., the authors suggest using a random
supersingular elliptic curve as starting curve. However, there is currently no
known algorithm to generate a random supersingular elliptic curve such that its
endomorphism ring is unknown to the person who generated it. Some attempts

2 We report the results for eM = 169, which corresponds to λ = 67. That is because
our implementation requires (q + 2) | eM , and 169 allows choosing q = 11. Using
eM = 160 would have required using significantly more queries or a longer MITM,
thus resulting in worse performance. Note that the requirement that (q + 2) | eM is
a limitation of the implementation and not of the attack itself.
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Parameters MITM Running Time
log p λ eM q Distance Memory (kB) (s)

112 8 20 3 8 3.5 15
216 16 40 6 10 13.8 212 (3.53 m)
413 32 80 8 16 211.4 1,371 (22.85 m)
859 67 169 11 26 14,073 163,869 (1.89 d)

1,614 128 320 18 40 3,384,803 174,709,440 (5.54 y)

Table 1. Results of our proof-of-concept implementation of the attack, running on an
Apple M1 CPU clocked at 3.20 GHz with 4 CPUs in parallel and SageMath version
9.2. Results for λ = 128 are estimated based on the average running time of a meet-
in-the-middle computation. Parameters include the size of the prime p, the security
level λ, the degree of the isogeny written as NM = 2eM , and the number of queries
2q. The MITM section reports the distance between the curves and memory needed to
compute a single meet-in-the-middle.

to solve this problem have been proposed in [26] and further studied in [6]. This
motivates the following question:

Is a trusted third party needed to generate the starting curve E0?

Phrased differently, would choosing the starting curve E0 and therefore knowl-
edge of its endomorphism ring allow a malicious server, client or third party to
break security properties of the (V)OPRF?

We first discuss whether a server may know the endomorphism ring of the
starting curve E0. The security proof by Boneh et al.’s OPRF relies on the
hardness of finding two distinct isogenies (up to isomorphism) of the same degree
from E0 to a second curve [3, Lemma 29]. If the server chooses the starting
curve and therefore knows its endomorphism ring, they are able to produce
such collisions by breaking the collision resistance of the CGL hash function as
in [29,15]. To guarantee provable security, a server should therefore not choose
the starting curve.

However, breaking the verifiability insured by the zero-knowledge proof [3,
Protocol 17] or the weak binding property [3, Game 3] of the protocol seems
harder than finding collisions. Indeed, the server would need to produce two
isogenies of degree dividing NK such that both isogenies have the same action
on the NV-torsion for a chosen starting curve. We leave adapting the security
proofs or finding an attack on the zero-knowledge proof for future work.

We now argue that any other party, either the client or a third party, cannot
choose the curve E0 either without compromising the security of the protocol.
In [13], the authors describe algorithms for finding a secret isogeny when torsion
information is provided. Their algorithms can be split into two categories: one
where the starting curve has j-invariant 1728 and one where the starting curve
is a trapdoor curve from which one can solve the isogeny problem faster than
generic meet-in-the-middle algorithms. Trapdoor curves are parameterized by a



22 A. Basso, P. Kutas, S.-P. Merz, C. Petit, A. Sanso

pair (A,B) where A corresponds to the degree of the secret isogeny and B to the
order of torsion points whose image under the secret isogeny is known. When
B ≈ A2 or larger, then one can construct (A,B) trapdoor curves from which
one can retrieve secret isogenies of degree A in polynomial time, if the action on
the B-torsion is known [13, Theorem 15].

Attacks from the special starting curve with j-invariant 1728 do not apply
here, since the starting curve cannot have j-invariant 1728 because the endomor-
phism ring needs to be unknown to the server. However, trapdoor curves have
the property that without extra information they are difficult to distinguish from
a random supersingular curve.

Suppose that a malicious party generates the starting curve E0 in the fol-
lowing way. They generate a curve E′ which is a trapdoor (NK, NVNR)-curve
and then perform a random walk of length NMNR to obtain E0 which is sent
to the server. Now the malicious party poses as a client and instead of honestly
complying with the protocol, they use E′ as Emr. They can prove knowledge of a
suitable isogeny and torsion point images as they know an isogeny of the correct
degree from E0. Then the server computes Emrk and reveals the action of the
NVNR-torsion. Since Emr was chosen to be a trapdoor curve and NVNR ≈ N2

K,
the malicious party can retrieve this isogeny in polynomial time.

Such an attack can be thwarted by applying a trusted setup in which E0 is a
truly random curve. In [4, §4], an efficient way to perform a distributed trusted
setup is described, ensuring that, if at least one participant is honest, the setup
can be trusted. In that case, torsion point attacks are not applicable. The attack
can also be weakened by substantially increasing NK. However, this might be
susceptible to future improvements of trapdoor curve constructions.

7 Conclusion

In this paper, we perform a thorough cryptanalysis of Boneh et al.’s SIDH-based
oblivious pseudorandom function. The security of this OPRF is based on a new
hardness assumption, the auxiliary one-more assumption. We investigate this as-
sumption and we show how an attacker can win the corresponding security game
in polynomial time, or with the appropriate countermeasures in subexponential
time.

The attack on the underlying hardness assumption leads to an attack on
the pseudorandomness of the OPRF itself. We show how a malicious client can
extract enough information from a number of initial executions of the OPRF
protocol to subsequently evaluate the OPRF on arbitrary inputs without fur-
ther interaction with the server. In particular, this attack breaks the security
parameters provided by Boneh et al. As a proof of concept, we implement the
attack in SageMath, verified its correctness and give timings for various security
levels.

Furthermore, we discuss the security implications following from a lack of a
trusted setup when generating the starting curve parameter in the SIDH-based
OPRF. Note that Boneh et al. do not explicitly require a trusted setup. We
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show how a client or a third party generating the starting curve can backdoor
it to retrieve the server’s secret key, while a malicious server could generate the
starting curve to break the supersingular-isogeny collision assumption.

This work leads to some open problems. On one hand, one could improve
and extend the proposed attack, with a particular focus on reducing the com-
plexity of the subexponential attack to polynomial time, as well as extending
it to the CSIDH-based OPRF. On the other hand, further work is needed to
develop efficient countermeasures against the subexponential attack or to design
a novel SIDH-based VOPRF. Future research will also focus on understanding
the implications of breaking the supersingular-isogeny collision assumption on
the OPRF protocol itself, and whether it is possible to avoid a trusted setup.
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Péter Kutas and Christophe Petit and the grant EP/P009301/1 for Simon-
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