
Lattice sieving via quantum random walks

André Chailloux and Johanna Loyer

Inria de Paris, EPI COSMIQ,
andre.chailloux@inria.fr ‖ johanna.loyer@inria.fr

Abstract. Lattice-based cryptography is one of the leading proposals
for post-quantum cryptography. The Shortest Vector Problem (SVP) is
arguably the most important problem for the cryptanalysis of lattice-
based cryptography, and many lattice-based schemes have security claims
based on its hardness. The best quantum algorithm for the SVP is due
to Laarhoven [Laa16] and runs in (heuristic) time 20.2653d+o(d). In this
article, we present an improvement over Laarhoven’s result and present
an algorithm that has a (heuristic) running time of 20.2570d+o(d) where d
is the lattice dimension. We also present time-memory trade-offs where
we quantify the amount of quantum memory and quantum random access
memory of our algorithm. The core idea is to replace Grover’s algorithm
used in [Laa16] in a key part of the sieving algorithm by a quantum
random walk in which we add a layer of local sensitive filtering.

1 Introduction

Lattice-based cryptography is one of the most appealing modern public-key cryp-
tography. It has worst case to average case reductions [Ajt96], efficient schemes
and allows more advanced primitives such as fully homomorphic encryption
[Gen09]. Another important aspect is that lattice based problems are believed to
be hard even for quantum computers. Lattice-based cryptography is therefore
at the forefront of post-quantum cryptography, especially in the NIST post-
quantum standardization process. It is therefore very important to put a large
effort on quantum cryptanalysis and to understand the quantum hardness of
lattice problems in order to increase our trust in these post-quantum solutions.

For a given lattice L, the Shortest Vector Problem (SVP) asks to find a
short vector of this lattice. Solving the SVP is arguably the most important
problem for the cryptanalysis of lattice-based cryptography. Additionally to
its own importance, it is used as a subroutine in the BKZ algorithm, which is
often the best attack on lattice-based schemes. There are two main families of
algorithms for SVP: enumeration algorithms which are asymptotically slow but
have small memory requirements, and sieving algorithm which have the best
asymptotic complexities but have large memory requirements. For finding very
small vectors, which is required by the BKZ algorithm, sieving algorithms are
currently the most efficient algorithms despite their large memory requirements.

ar
X

iv
:2

10
5.

05
60

8v
1

 [
qu

an
t-

ph
]

 1
2

M
ay

 2
02

1

Indeed, in the SVP challenge, the 10 top performances are done by sieving
algorithms and the current record solves SVP for d = 1801.

For a lattice L of dimension d, sieving algorithms solve SVP classically in
time 20.292d+o(d) (with a heuristic analysis) using the local filtering technique
introduced in [BDGL16]. Laarhoven presented a quantum equivalent of this
algorithm that runs in time 20.265d+o(d) while using as much space as in the
classical setting, namely 20.208d+o(d). The BKZ algorithm is the most efficient
known attack against all lattice-based schemes which were chosen at the third
round of NIST standardization process2. These two exponents are used for
determining the number of bits of security in all these schemes hence improving
the time exponent for SVP has direct implications on the security claims of these
schemes.

Related work. Heuristic sieving algorithms were first introduced by Nguyen
and Vidick [NV08] that presented an algorithm running in time 20.415d+o(d)

and using 20.2075d memory. A more efficient sieve in practice but with the
same asymptotic running time was presented in [MV10]. Then, there has been
improvements by considering k-sieve algorithms [WLTB11, ZPH14, Laa16]. Also,
several works showed how to use nearest neighbor search to improve sieving
algorithms [LdW15, Laa15, BL16]. The best algorithm [BDGL16] runs in time
20.292d+o(d) and uses locality-sensitive filtering.

In the quantum setting, quantum analogues of the main algorithms for sieving
were studied [LMvdP15, Laa16]. The best algorithm runs in time 20.265d+o(d)

and is the quantum analogue of [BDGL16]. There has been two more recent
works on quantum sieving algorithms. First, quantum variants of the k-sieve
were studied in [KMPM19], giving interesting time-space trade-off and a recent
article [AGPS20] studied more practical speedups of these quantum algorithms,
i.e. when do these gains in the exponent actually translate to quantum speedups.

Contributions. In this article, we study and improve the asymptotic complexity of
quantum sieving algorithm for SVP. This is the first improvement on the asymp-
totic running time of quantum sieving algorithms since the work of Laarhoven
[Laa16]3.

It is not a priori clear how to use quantum random walks to adapt the
algorithm from [BDGL16]. This algorithm is divided into a pre-processing phase
and a query phase. In this query phase, we have several points that are in a filter
F , which means here that there are close to a specific point. We are then given
a new point ~v and we want to know whether there exists a point ~w ∈ F such
1 The SVP challenge can be accessed here https://www.latticechallenge.org/svp-
challenge.

2 At this stage, there are 3 encryption schemes / key encapsulation mechanisms:
KYBER, NTRU and SABER as well as two signature schemes: DILITHIUM and
FALCON.

3 We are talking here only about the asymptotic running time, there are other metrics
of interest that have been covered in [KMPM19, AGPS20] where there were some
improvements.

that ‖~v ± ~w‖ is smaller than min{‖~v‖ , ‖~w‖}4. Then we do not know how to do
better here than Grover’s algorithm, which takes time

√
|F |. On the other hand,

if instead of this query framework, we start from a filter F and we want to find
all the pairs ~v, ~w, then we can apply a quantum random walk.

Even within this framework, there are many ways of constructing quantum
random walks and most of them do not give speedups over [Laa16]. What we
show is that by adding proper additional information in the vertices of the
random walk, in particular by adding another layer of filters within the vertices
of the graph on which we perform the quantum walk, we can actually get some
improvement over Grover’s algorithm and achieve our speedups.

We now state our results. We present here not only the running time but also
the amount of classical memory, quantum memory and quantum RAM (QRAM)
operations required.

Our main theorem is an improvement of the best asymptotic quantum heuristic
running time for the SVP bringing down the asymptotic running time from
20.2653d+o(d) to 20.2570d+o(d). Our results are in the QRAM model where QRAM
operations can be done efficiently. Notice that Laarhoven’s result is in this model
so our result are directly comparable to his.

Theorem 1. There exists a quantum algorithm using quantum random walks
that solves the SVP on dimension d which heuristically solves SVP on dimension
d in time 20.2570d+o(d), uses QRAM of maximum size 20.0767d, a quantum memory
of size 20.0495d and a classical memory of size poly(d) · 20.2075d.

We can see that additionally to improving the best asymptotic running time,
this algorithm uses much less quantum resources (both quantum memory and
quantum RAM) than its running time which makes it fairly practical. We also
present two trade-offs: a quantum memory-time trade-off and a QRAM-time
trade-off. For a fixed amount of quantum memory, our algorithm performs as
follows.

Theorem 2 (Trade-off for fixed quantum memory). There exists a quan-
tum algorithm using quantum random walks that solves the SVP on dimension
d which, for a parameter M ∈ [0, 0.0495], heuristically runs in time 2τMd+o(d),
uses QRAM of maximum size 2γMd and quantum memory of size 2µMd and a
classical memory of size poly(d)20.2075d where

τM ∈ 0.2653− 0.1670M + [−2 ·10−5; 4·10−5]

γM ∈ 0.0578 + 0.3829M − [0; 2·10−4] ; µM = M.

With this theorem, we obtain for M = 0 the quantum running time of
Laarhoven’s quantum algorithm and, for M = 0.0495, the result of Theorem 1.

We now present our second trade-off theorem where we fix the amount of
QRAM.
4 We remain a bit imprecise and informal here as we haven’t properly described sieving
algorithms yet.

Theorem 3 (Trade-off for fixed QRAM). There exists a quantum algorithm
using quantum random walks that solves SVP on dimension d which for a pa-
rameter M ′ ∈ [0, 0.0767] heuristically runs in time 2τM′d+o(d), uses QRAM of
maximum size 2γM′d, a quantum memory of size 2µM′d and uses a classical
memory of size poly(d) · 20.2075d where

τM ′ ∈ 0.2925− 0.4647M ′ − [0; 6·10−4] ; γM ′ = M ′

µM ′ ∈ max{2.6356(M ′ − 0.0579), 0}+ [0; 9·10−4].

With this theorem, we obtain for M ′ = 0, the best classical exponent of
[BDGL16] (we can actually show the algorithm uses no quantum resources in
this case). For M ′ = 0.0577, we retrieve Laarhoven’s quantum exponent and for
M ′ = 0.0767, we get Theorem 1.

This theorem can also be helpful if we want to optimize other performance
measures. For example, it has been argued that having efficient QRAM operations
is too strong and that performing a QRAM operation should require time at
least r1/3 where r is the number of QRAM registers. This means we want to
minimize the quantity λ = τM ′ + 1

3 max{γM ′ , µM ′}5. We also show some mild
improvements in this metric: the previous best known bound was λ = 0.2849
[Laa16, AGPS20] while using our theorem, we can retrieve the previous results
by taking M ′ = 0.0577 and slightly improve it by taking M ′ = 0.0767 to obtain
λ = 0.2824.

Organisation of the paper. In section 2, we present preliminaries on Quantum
computing. In Section 3, we then present sieving algorithm, as well as useful
statements on lattices. In Section 4, we present the framework we use for sieving
algorithm that we use and perform a first study of its time complexity. Next, we
present in Section 5 the quantum walk that will allow our time improvements
and in Section 5.4 the numerical values we achieve and the space-time trade-offs.
We perform a final discussion in Section 8 and talk about parallelization of our
algorithm as well as possible improvements.

2 Quantum computing preliminaries

2.1 Quantum circuits.

We consider here quantum circuits consisting of 1 and 2 qubit gate, without any
locality constraint, meaning that we can apply a 2 qubit gate from a universal set
of gates to any pair of qubits in time 16. We use the textbook gate model where
the running time of a quantum circuit is just the number of gates used. The
5 We want to minimize 2τM′d ·

(
2γM′d + 2µM′d

)1/3 which asymptotically is equivalent
to minimizing τM′ + 1

3 max{γM′ , µM′}.
6 We are only interested in asymptotic running time here so we are not interested in
the choice of this universal gate set, as they are all essentially equivalent from the
Solovay-Kitaev theorem (see [NC00], Appendix 3).

width of a circuit is the number of qubits it operates on, including the ancilla
qubits. This quantity is important as it represents the number of qubits that
have to be manipulated simultaneously and coherently. We will also call this
quantity quantum memory.

When we will know much more precisely how quantum architectures look like,
it will be possible to make these models more precise and replace the gate model
with something more adequate. The gate model is still the most widely used in
the scientific community and is very practical to compare different algorithms.
We will use the gate model as our main model for computing quantum times but
we will also include other interesting quantum figures of merit, such as quantum
memory or Quantum Random Access Memory usage.

2.2 Quantum Random Access Memory.
Quantum Random Access Memory (denoted hereafter QRAM) is a type of
quantum operation which is not captured by the circuit model. Consider N
registers x1, . . . , xN ∈ {0, 1}d stored in memory. A QRAM operation consists of
applying the following unitary

UQRAM : |i〉|y〉 → |i〉|xi ⊕ y〉.
We say that we are in the QRAM model if the above unitary can be constructed
efficiently, typically in time O(d + log(N)). We can distinguish two different
types of QRAM: QRACM, where the registers x1, . . . , xN are stored in some
classical memory and QRAQM where the unitary UQRAM can be applied on fully
quantum registers. The former being of course easier to achieve than the latter.

QRAM operations are theoretically allowed by the laws of quantum mechanics
and there are some proposals for building efficiently QRAM operations, such as
[GLM08], even though its robustness has been challenged in [AGJO+15]. The
truth is that it very premature to know whether QRAM operations will be
efficiently available in quantum computers. This would definitely require a major
hardware breakthrough but as does quantum computing in general.

While our results are mainly in the QRAM model, we will also discuss other
metrics where the cost of a QRAM operation is not logarithmic in N but has a
cost of Nx for a constant x.

2.3 Grover algorithm.
One formulation of Grover’s search problem [Gro96] is the following. We are
given a list of data x1, ..., xr, with xi ∈ E. Given a function f : E → {0, 1}, the
goal is to find an i such that f(xi) = 1, and to output "no solution" if there are
no such i. Let Sol = {i ∈ [r] : f(xi) = 1}.

Classically, we cannot solve this problem with a better average complexity
than Θ(r

Sol) queries, which is done by examining random xi one by one until
we find one whose image is 1 through f . Quantum computing allows a better
complexity. Grover’s algorithm solves this search problem in O

(√
r

Sol
)
queries

to f . Applying Grover’s algorithm this way requires efficient QRAM access to
the data x1, . . . , xr.

2.4 Quantum random walks.
We present here briefly quantum random walks (QRW). There are several variants
of QRW and we will use the MNRS framework, first presented in [MNRS11].

We start from a graph G = (V,E) where V is the set of vertices and E ⊆ V ×V
is the set of edges. We do not allow self loops which means that ∀x ∈ V, (x, x) /∈ E
and the graph will be undirected so (x, y) ∈ E ⇒ (y, x) ∈ E. Let also N(x) =
{y : (x, y) ∈ E} be the set of neighbors of x. We have a set M ⊆ V of marked
elements and the goal of a QRW is to find v ∈M .

Let ε = |M |
|V | be the fraction of marked vertices and let δ be the spectral gap

of G7. For any vertex x, we define |px〉 =
∑
y∈N(x)

1√
|N(x)|

|y〉. We also define

|U〉 = 1√
|V |

∑
x∈V |x〉|px〉. We now define the following quantities:

– SETUP cost S: the SETUP cost S is the cost of constructing |U〉.
– UPDATE cost U : here, it is the cost of constructing the unitary

UUPDATE : |x〉|0〉 → |x〉|px〉.

– CHECK cost C: it is the cost of computing the function fCHECK : V → {0, 1}
where fCHECK(v) = 1⇔ v ∈M .

Proposition 1. [MNRS11] There exists a quantum random walk algorithm that
finds a marked element v ∈M in time

S + 1√
ε

(
1√
δ
U + C

)
.

In order to compute the update cost, we can actually compute the classical
running time of going from one vertex to another i.e. starting from a vertex x
and constructing a vertex y for a random neighbor y ∈ N(x). Then, we can use
this procedure in quantum superposition to construct the unitary UUPDATE. We
refer to [Amb07, MNRS11, dW19] for more details on these QRW.

Quantum random walks on the Johnson graph. A very standard graph on
which we can perform QRW is the Johnson graph J(n, r). Each vertex v consists
of r different (unordered) points x1, . . . , xr ∈ [n] as well as some additional data
D(v) that depends on the QRW we want to perform.

v = (x1, . . . , xr, D(v)) and v′ = (x′1, . . . , x′r, D(v′)) form an edge in J(n, r) iff.
we can go from (x1, . . . , xr) to (x′1, . . . , x′r) by removing exactly one value and then
adding one value. The Johnson graph J(n, r) has spectral gap δ = n

r(n−r) ≈
1
r

when r � n [dW19].
The additional data D(v) here is used to reduce the checking time C with the

drawback that it will increase the update time U . Johnson graphs were often used,
for example when trying to solve the element distinctness problem [Amb07], but
also for the subset-sum problem [BJLM13, HM18, BBSS20] or for code-based
problems [KT17].
7 For a regular graph, if λ1 > · · · > λ|V | are the eigenvalues of the normalized adjacency
matrix of G, then δ = λ1 −maxi=2...n |λi|.

Quantum data structures. A time analysis of quantum random walks on the
Johnson graph was done in [Amb07] when studying the element distinctness
problem. There, Ambainis presented a quantum data structure that uses efficient
QRAQM that allows in particular insertion and deletion in O(log(n)) time where
n is the database size while maintaining this database in quantum superposition.
Another paper on quantum algorithm for the subset problem using quantum
random walks [BJLM13] also presents a detailed analysis of a quantum data
structure based on radix trees to perform efficient insertion and deletion in
quantum superposition. All of these data structures require as much QRAQM
registers as the number of registers to store the whole database and this running
time holds only in the QRAM model. In our work, we will use such a quantum
data structure and refer to the above two papers for explicit details on how to
construct such quantum data structures.

3 Lattice preliminaries

Notations. The norm ‖·‖ we use throughout this paper is the Euclidian norm,
so for a vector ~v = (v1, . . . , vd) ∈ Rd, ‖~v‖ =

√∑d
i=1 v

2
i . The inner product

of ~v = (v1, . . . , vd) and ~w = (w1, . . . , wd) is 〈~v, ~w〉 :=
∑d
i=1 viwi. The non-

oriented angle between ~v and ~w is denoted θ(~v, ~w) := arccos
(
〈~v,~w〉
‖~v‖‖~w‖

)
. We

denote the d-dimensional sphere of radius R by Sd−1
R := {~v ∈ Rd : ‖~v‖ = R},

and Sd−1 := Sd−1
1 . Throughout the paper, for a known integer d, we will write

N := (
√

4/3)d.

Lattices. The d-dimensional lattice L ⊂ Rm generated by the basis B = (b1, ..., bn)
with ∀i, bi ∈ Rm is the set of all integer linear combinations of its basis vectors:
L(B) =

{∑d
i=1 λi bi, λi ∈ Z

}
.

Shortest Vector Problem. Given a basis of a lattice L, the Shortest Vector Problem
(SVP) asks to find a non-zero vector in L of minimal norm. SVP is known to
be NP-hard [Ajt98]. This problem and its derivatives (SIS, LWE) have been
used in several public-key cryptosystems, specifically as candidate for quantum-
resistant cryptography [DKL+19, FHK+19, CDH+19]. Thereby, one of the most
important ways to know their security and choose parameters is to estimate the
computational hardness of the best SVP-solving algorithms.

Sieving algorithms.

SVP solving methods. The algorithm LLL [LLL82] returns a reduced basis of a
lattice in a polynomial time. However it is not sufficient to solve SVP. All the
fastest known algorithms to solve SVP run in exponential time. A first method
is enumeration [Kan83], that solves deterministically SVP using low space but in
super-exponential time in the lattice dimension d.

Another method, which will interest us in this article, is lattice sieving
[NV08, MV10]. They are heuristic algorithms that probably solve SVP in time
and space 2Ω(d). To this day, the best complexity for sieving in the QRAM
model is obtained by quantum hypercone LSF [Laa16] in 20.2653d+o(d) time and
20.2075d+o(d) space. Another algorithm [KMPM19] uses k-lists to solve SVP in
20.2989d+o(d) time and 20.1395d+o(d) space.

The NV-sieve. The NV-sieve [NV08] is a heuristic algorithm. It starts with a
list of lattice vectors, that we can consider of norm at most 1 by normalization.
Given this list and a constant γ < 1, the NV-sieve returns a list of lattice vectors
of norm at most γ. It iteratively builds lists of shorter lattice vectors by applying
a sieve. This sieve step consists in computing all the sums (plus and minus) of
two list vectors, and fills the output list with those which have norm at most
γ. For γ tending to 1, two vectors form a reducing pair - i.e. their sum is of
norm at most γ - iff. they are of angle at most π/3. The first list of lattice
vectors can be sampled with Klein’s algorithm [Kle00] for example. A list size
of N1+o(1) = (

√
4/3)d+o(d) suffices to have about one reducing vector in the list

for each list vector, as stated in [NV08]. Because of the norms of the list vectors
reduces with a factor by γ < 1 at each application of the algorithm, the output
list will hopefully contain a non-zero shortest lattice vector after a polynomial
number of application of the NV-sieve.

NNS and application to lattice sieving. A logic improvement of this algorithm is
to use Neighbor Nearest Search (NNS) [IM98] techniques. The NNS problem is:
given a list L of vectors, preprocess L such that one can efficiently find the nearest
vector in L to a target vector given later. Used in the NV-sieve, the preprocessing
partitions the input list in several buckets of lattice points, each bucket being
associated with a hash function. The algorithm will only sum vectors from a
same bucket, which are near to each other, instead of trying all pairs of vectors.

Locality-sensitive hashing (LSH). A method to solve NNS is locality-sensitive
hashing (LSH) [IM98]. An LSH function is a hash-function that have high
probability to collide for two elements if they are close, and a low one if they
are far. Several categories of LSH functions exists: hyperplane LSH [Cha02],
hypercone or spherical LSH [AINR14, AR15] and cross-polytope LSH [TT07].

Locality-sensitive filtering (LSF).

Locality-sensitive filtering (LSF). More recently, [BDGL16] improved NNS solving
by introducing locality-sensitive filtering (LSF). LSF functions, called filters, map
a vector ~v to a boolean value: 1 if ~v survives the filter, and 0 otherwise. They act
similarly to LSH but only few vectors survive the filter.

These filters are instantiated by hypercone filters, characterized by a vector
~s and an angle α ∈ [0, π/2]. For a filter f of center ~s and angle α, the vector
~v survives f iff θ(~v,~s) 6 α. In this case, the filter f is said relevant for ~v. The

set of the vectors from a list that survives a filter f is called its bucket, and is
denoted fα(~s). More formally, we define the spherical cap of center ~v and angle
α as follows:

H~v,α := {~x ∈ Sd−1 | θ(~x,~v) 6 α}

and ~v survives the filter fα(~s) iff. ~v ∈ H~s,α.

Proposition 2. [MV10] For an angle α ∈ [0, π/2] and ~v ∈ Sd−1, the ratio of
the volume of a spherical cap H~v,α to the volume of the sphere Sd−1 is

Vd(α) := poly(d) · sind(α).

Proposition 3. [BDGL16] For an angle α ∈ [0, π/2] and two vectors ~v, ~w ∈
Sd−1 such that θ(~v, ~w) = θ, the ratio of the volume of a wedge H~v,α ∩ H~w,α to
the volume of the sphere Sd−1 is

Wd(α, θ) := poly(d) ·
(

1− 2 cos2(α)
1 + cos(θ)

)d/2

.

Random product codes (RPC). LSF method from [BDGL16] uses a decoding
oracle that returns relevant filters for a given vector. A random-product code
(RPC) that admits a fast list-decoding algorithm is sampled over the sphere
Sd−1. The filters are determined by its code words, and the oracle is its decoding
algorithm.

We assume d = m · b, for m = O(polylog(d)) and a block size b. The vectors
in Rd will be identified with tuples of m vectors in Rb. A random product code
C of parameters [d,m,B] on subsets of Rd and of size Bm is defined as a code of
the form C = Q · (C1 × C2 × · · ·Cm), where Q is a uniformly random rotation
over Rd and the subcodes C1, ..., Cm are sets of B vectors, sampled uniformly
and independently random over the sphere

√
1/m · Sb−1, so that codewords are

points of the sphere Sd−1. We can have a full description of C by storing mB
points corresponding to the codewords of C1, . . . , Cm and by storing the rotation
Q. When the context is clear, C will correspond to the description of the code or
to the set of codewords. Random product codes can be easily decoded in some
parameter range:

Proposition 4 ([BDGL16]). Let C be a random product code of parameters
[d,m,B] with m = log(d) and Bm = NO(1). For any ~v ∈ Sd−1 and α ∈ [0, π/2],
one can compute H~v,α ∩ C in time No(1) ·|H~v,α ∩ C|.

We can now present the NV-sieve with LSF.

The NV-sieve with LSF. Let α ∈ [π/3, π/2] be an angle. The NV-sieve with LSF
[BDGL16] takes as input a list of lattice vectors lying on Sd−1 and a constant
γ < 1. This algorithm runs in two phases. First, during the processing, it samples
a random-product code C on the sphere, whose words give the α-filters. The

algorithm decodes half of the vectors of the list to get their nearest α-filters, and
then add the vectors to the buckets associated to their α-filters.

Secondly, there is the queries phase. For each vector ~v from the other half
of the list, the algorithm computes the α-filters of ~v, and for each vector ~w
having a common α-filter with ~v, the algorithm checks whereas ‖~v − ~w‖ 6 γ.
If it is the case, ~v − ~w is added to the output list. This algorithm solves SVP
time8 20.292d+o(d), and in space 20.208d+o(d) with its space-efficient version [Laa16].
Applying a Grover search instead of testing each candidate in the filter gives
the quantum NV-sieve with LSF [Laa16], which run in same space and in time
20.265d+o(d).

Probabilistic argument. If we consider any vector ~w ∈ Sd−1 and Nρ0 random
points ~s1, . . . , ~sNρ0 in H~v,α for ρ0 := Vd(α)

Wd(α,θ) ; then this proposition implies that
there exists, with constant probability, an i ∈ [Nρ0] such that ~si ∈ H~w,α.

Consider a set S = ~s1, . . . , ~sM points taken from the uniform distribution on
the sphere Sd−1 and ~v another point randomly chosen on the sphere. Fix also an
angle α ∈ (0, π/2). We have the following statements:

Proposition 5. ∀i ∈ [M], Pr[~v ∈ H~si,α] = Pr[~si ∈ H~v,α] = Vd(α).

Proof. Immediate by definition of Vd(α) considering that both ~v and ~si are
uniform random points on the sphere.

From the above proposition, we immediately have that E[|S∩H~v,α|] = MVd(α).
We now present a standard concentration bound for this quantity.

Proposition 6. Assume we haveMVd(α) = Nx with x > 0 an absolute constant.
Then

Pr[|S ∩H~v,α| ≥ 2Nx] ≤ e−N
x

3 .

Proof. As before, let Xi be the random variable which is equal to 1 if ~si ∈ H~v,α
and is equal to 0 otherwise. Let Y =

∑M
i=1 Xi so E[Y] = Nx. Y is equal to the

quantity |S ∩H~v,α|. A direct application of the multiplicative Chernoff bound
gives

Pr[Y ≥ 2Nx] ≤ e−N
x

3

which is the desired result.

4 General framework for sieving algorithms using LSF

We present here a general framework for sieving algorithms using LSF. We
present here one sieving step where we start from a list L of N ′ = N1+o(1)

lattice vectors of norm 1 and output N ′ lattice vectors of norm γ < 1. Sieving
algorithms for SVP then consists of applying this subroutine poly(d) times (where
8 We consider here the values of the NV-sieve, which have asymptotically better space
requirements even though this sieve is less efficient in practice.

we renormalize the vectors at each step) to find at the end a small vector. We
can actually take γ very close to 1 at each iteration, and we refer for example to
[NV08] for more details. This framework will encompass the best classical and
quantum sieving algorithms.

Algorithm 1 Sieving algorithms using LSF with parameter c
Input: a list L of N ′ = N1+o(1) lattice vectors of norm 1, a constant γ < 1 and
parameter c ∈ (0, 1).
Output: a list L′ of N ′ lattice vectors of norm at most γ.
Algorithm:
L′ := {} (empty list)
while |L′| ≤ N ′ do
Sample a random product code C of parameter [d, log(d), N

1−c
log(d)]. Let

~s1, . . . , ~sN1−c be the code points of C and let α ∈ [π/3, π/2] st. Vd(α) = 1
N1−c .

for ~v in L do
Add ~v to its α-filter’s buckets fα(~si)

for each i ∈ [N1−c] do
S ← FindAllSolutions(fα(~si), γ)
L′ := L′ ∪ S

return L′

The FindAllSolutions(fα(~si), γ) subroutine starts from a list of vectors
~x1, . . . , ~xNc ∈ fα(~si) and outputs all vectors of the form ~xi ± ~xj (with i 6= j)
of norm less than γ. We want to find asymptotically all the solutions and not
strictly all of them. Let’s say here we want to output half of them. Sometimes,
there are no solutions so the algorithm outputs an empty list.

4.1 Analysis of the above algorithm

Heuristics and simplifying assumptions. We first present the heuristic
arguments and simplifying assumptions we use for our analysis.

1. The input lattice points behave like random points on the sphere Sd−1. The
relevance of this heuristic has been studied and confirmed in a few papers
starting from the initial NV-sieve [NV08].

2. The code points of C behave like random points of the sphere Sd−1. This was
argued in [BDGL16], see for instance Lemma 5.1 and Appendix C therein.

3. We assume that a random point in fα(~si) is on the border of the filter, i.e.
that it can be written ~x = cos(α)~si + sin(α)~y with ~y⊥~si and of norm 1. As
we argue below, this will be approximately true with very high probability.

In order to argue point 3, notice that for any angle α ∈ (π/4, π/2) and ε > 0,
we have Vd(α)� Vd(α− ε). Indeed, for an angle ε > 0, Vd(α− ε) = sind(α− ε) =

Vd(α) · (ε′)d with ε′ = cos ε − sin ε cosα
sinα < 1 for α > ε. So the probability for a

point to be at angle α with the center of the cap is exponentially higher than to
be at angle α− ε. That justifies that with very high probability, points in fα(~si)
lie at the border of the cap and hence justifies point 3.

Completion. We start from a list L of N ′ points. The heuristic states that
each point in L is modeled as a random point on the sphere Sd−1 so each pair of
points ~x, ~x′ ∈ L reduces with probability Vd(π/3) = 1

N . Since there are N ′(N ′−1)
2

pairs of points in L, we have on average N ′(N ′−1)
2N pairs in L that are reducible.

We can take for example N ′ = 6N to ensure that there are on average ≈ 3N ′
pairs. Therefore, each time we find a random reducible pair, with probability at
least 3N ′−|L′|

3N ′ ≥ 2/3, it wasn’t already in the list L′.
Throughout the rest of the paper

Time analysis.

Condition of reduction of vectors. Consider two random vectors ~x0 and ~x1 that
are in the same α-filter’s bucket of center ~s. We write

~x0 = cos(α)~s+ sin(α)~y0 (1)
~x1 = cos(α)~s+ sin(α)~y1 (2)

with ~y0, ~y1 of norm 1 both orthogonal to ~s. The vectors ~y0 and ~y1 are called
residual vectors and if ~x0 and ~x1 are random vectors of fα(~s) then ~y0, ~y1 are
random vectors in the sphere of dimension d− 2 of vectors of norm 1 orthogonal
to ~s.

Proposition 7. Using the notations just above, we have

θ(~y0, ~y1) 6 2 arcsin
(1

2 sin(α)
)
⇐⇒ θ(~x0, ~x1) 6 π

3 .

Proof. We denote for simplicity θy := θ(~y0, ~y1). By subtracting Equation 2 from
Equation 1 and then by squaring, we have

‖~x0 − ~x1‖2 6 1⇔ sin2(α)‖~y0 − ~y1‖2 6 1
⇔ sin2(α)(2− 2 cos(θy)) 6 1

⇔ cos(θy) > 1− 1
2 sin2(α)

⇔ θy 6 arccos
(
1− 1

2 sin2(α)
)

= 2 arcsin
(1

2 sin(α)
)
, true for α 6 π/2.

Corollary 1. Let α ∈ [π/3, π/2] and a random pair of vectors in a same α-
filter’s bucket. The probability that the pair is reducing is equal to Vd−1(θ∗α),
with

θ∗α := 2 arcsin
(1

2 sin(α)

)
.

Notice that we have Vd−1 because we work with residual vectors (orthogonal
to ~s) but since Vd and Vd−1 are asymptotically equivalent, we will keep writing
Vd(θ∗α) everywhere for simplicity. From the above corollary, we have that for
an α-filter that has N c points randomly distributed in this filter, the expected
number of reducing pairs is N2c · Vd−1(θ∗α).

Proposition 8. Consider Algorithm 1 with parameter c ∈ [0, 1] and associ-
ated angle α ∈ [π/3, π/2] satisfying Vd(α) = N−(1−c). Let ζ such that Nζ =
N2c ·Vd−1(θ∗α). The above algorithm runs in time T = NBREP ·(INIT + FAS)
where

NBREP = max{1, N c−ζ+o(1)} ; INIT = N1+o(1) ; FAS = N1−cFAS1

where FAS1 the running time of a single call to the FindAllSolutions subroutine.

Proof. We first analyze the two for loops. INIT is the running time of the first
loop. For each point ~v ∈ L, we need to compute H~v,α ∩ C and update the
corresponding buckets fα(~si). We have |C| = N1−c and we chose α such that
Vd(α) = N−(1−c), so the expected value of |H~v,α ∩ C| is 1. For each point ~v, we
can compute H~v,α ∩ C in time No(1)|H~v,α| using Proposition 4. From there, we
can conclude that we compute the filter for the N ′ points in time INIT = N1+o(1).

The second loop runs in time FAS = N1−cFAS1 by definition. After this loop,
the average number of solutions found is Nζ for each call to FindAllSolutions
so N1−c+ζ in total (notice that we can have ζ < 0, which means that we can
find on average much less that one solution for each call of FindAllSolutions).
We run the while loop until we find N ′ solutions so we must repeat this process
NBREP = max{1, N1−(1−c+ζ)+o(1)} = max{1, N c−ζ+o(1)} times.

This formulation of sieving algorithms is easy to analyze. Notice that the
above running time depends only on c (since α can be derived from c and ζ
can be derived from c, α) and on the FindAllSolutions subroutine. We now
retrieve the best known classical and quantum sieving algorithm in this framework.

Best classical algorithm. In order to retrieve the time exponent of [BDGL16], we
take c → 0, which implies α → π/3. We can compute θ∗π/3 ≈ 1.23rad ≈ 70.53◦
and ζ = −0.4094. In this case, we have FAS1 = O(1). From the above proposition,
we get a total running time of T = N1.4094+o(1) = 20.2925d+o(d).

Best quantum algorithm. In order to retrieve the time exponent of [Laa16],
we take c = 0.2782. This value actually corresponds to the case where ζ = 0, so
we have on average one solution per α-filter. For the FindAllSolutions subrou-
tine, we can apply Grover’s algorithm on pairs of vectors in the filter to find this

solution in time
√
N2c = N c (there are N2c pairs) so FAS1 = N c. Putting this

together, we obtain T = N1+c+o(1) = N1.2782+o(1) = 20.2653d+o(d).

In the next section, we show how to improve the above quantum algorithm.
Our main idea is to replace Grover’s algorithm used in the FindAllSolutions
subroutine with a quantum random walk. In the next section, we present the
most natural quantum walk which is done over a Johnson graph and where a
vertex is marked if the points of a vertex contain a reducible pair, in a similar way
than for element distinctness. We then show in a later section how this random
walk can be improved by relaxing the condition on marked vertices.

5 Quantum random walk for the FindAllSolutions
subroutine: a first attempt

5.1 Constructing the graph

We start from an unordered list ~x1, . . . , ~xNc of distinct points in a filter fα(~s) with
α satisfying Vd(α) = 1

N1−c . Let Lx be this list of ~xi. For each i ∈ [N c], we write
~xi = cos(α)~s+sin(α)~yi where each ~yi is of norm 1 and orthogonal to ~s. Recall from
Proposition 7 that a pair (~xi, ~xj) is reducible iff. θ(~yi, ~yj) = θ∗α = 2 arcsin(1

2 sin(α)).
We will work only on the residual vectors ~yi and present the quantum random
walk that finds pairs ~yi, ~yj such that θ(~yi, ~yj) = θ∗α more efficiently than with
Grover’s algorithm. Let Ly = ~y1, . . . , ~yNc be the list of all residual vectors.

The quantum walk has two extra parameters c1 ∈ [0, c] and c2 ∈ [0, c1].
From these two parameters, let β ∈ [π/3, π/2] st. Vd(β) = N c2−c1 and ρ0 st.
Nρ0 = Vd(β)

Wd(β,θ∗α) . We start by sampling a random product code C2 with parameters

[(d− 1), log(d− 1), N
ρ0+c1−c2

log(d−1)] which has therefore Nρ0+c1−c2 = 1
Wd(β,θ∗α) points

denoted ~t1, . . . ,~tNρ0+c1−c2 . We perform our quantum random walk on a graph
G = (V,E) where each vertex v ∈ V contains:

– An unordered list Lvy = ~y1, . . . , ~yNc1 of distinct points taken from Ly.
– For each ~ti ∈ C2, we store the list of elements of Jv(~ti) := fβ(~ti) ∩ Lvy. For

each ~ti, we do this using a quantum data structure that stores Jv(~ti) where
we can add and delete efficiently in quantum superposition. This can be done
with QRAM. Notice that we have on average

|Jv(~ti)| = N c1 ·Vd(β) = N c2 ,

and we need to store in total |C2|·N c2 = N c1+ρ0 such elements in total for
each vertex.

– A bit that says whether the vertex is marked (we detail the marked condition
below).

The vertices of G consists of the above vertices for all possible lists Lvy. We
have (v, w) ∈ E if we can go from Lvy to Lwy by changing exactly one value. In

order words

(v, w) ∈ E ⇔ ∃~yold ∈ Lvy and ~ynew ∈ Ly\Lvy st. Lwy =
(
Lvy\{~yold}

)
∪ {~ynew}.

This means the graph G is exactly a Johnson graph J(N c, N c1) where each
vertex also has some additional information as we described above. Once we find
a marked vertex, it contains a pair (~yi, ~yj) such that θ(~yi, ~yj) ≤ θ∗α from which
we directly get a reducible pair (~xi, ~xj).

Condition for a vertex to be marked. We define the following subsets of vertices .
We first define the set M0 vertices for which there exists a pair of points which is
reducible.

M0 := {v ∈ V : ∃~yi, ~yj 6= ~yi ∈ Lvy, θ(~yi, ~yj) ≤ θ∗α}.
Ideally, we would want to mark each vertex in M0, however this would induce a
too large update cost when updating the bit that specifies whether the vertex is
marked or not. Instead, we will consider as marked vertices subsets of M0 but for
which the update can be done more efficiently, but losing only a small fraction of
the marked vertices. For each Jv(~ti), we define J̃v(~ti) which consists of the first
2N c2 elements of Jv(~ti)9 and if |Jv(~ti)| ≤ 2N c2 , we have J̃v(~ti) = Jv(~ti) . We
define the set of marked elements M as follows:

M := {v ∈ V : ∃~t ∈ C2,∃~yi, ~yj 6= ~yi ∈ J̃v(~t), st. θ(~yi, ~yj) ≤ θ∗α}.

The reason for using such a condition for marked vertices is that when we
will perform an update, hence removing a point ~yold from a vertex and adding a
point ~ynew, we will just need to look at the points in J̃v(~t) for ~t ∈ fβ(~ynew) ∩ C2
which can be done faster than by looking at all the points of the vertex. If we
used Jv(~t) instead of J̃v(~t) then the argument would be simpler but we would
only be able to argue about the average running time of the update but the
quantum walk framework require to bound the update for any pair of adjacent
vertices10. Also notice that each vertex still contain the sets Jv(~ti) (from which
one can easily compute J̃v(~ti)).

5.2 Time analysis of the quantum random walk on this graph
We are now ready to analyze our quantum random walk, and compute its different
parameters. Throughout our analysis, we define K(~yi) := fβ(~yi)∩C2 and we have
on average

|K(~yi)| = Nρ0+c1−c2 · Vd(β) = Nρ0 .

9 We consider an global ordering of elements of Ly, for example with respect to their
index, and Jv(~ti) consists of the 2Nc2 elements of Jv(~ti) which are the smallest with
respect to this ordering.

10 This problem arises in several quantum random walk algorithms, for example for
quantum subset-sum algorithms. One solution is to use a heuristic that essentially
claims that we can use the average running time of the update cost instead of the
worst case. In our case, we don’t need this heuristic as we manage to bound the
update cost in the worst case. We refer to [BBSS20] for an interesting discussion on
the topic.

Using Proposition 6, we have for each i,

Pr[|K(~yi)|] > 2Nρ] ≤ e−N
ρ0
3 (3)

and using a union bound, we have for any absolute constant ρ0 > 0:

Pr[∀i ∈ [N c], |K(~yi)| ≤ 2Nρ] ≥ 1−N ce−
Nρ0

3 = 1− o(1). (4)

So for a fixed α-filter, we have with high probability that each |K(~yi)| is bounded
by 2Nρ0 and we assume we are in this case. The sets K(~yi) can hence be
constructed in time Nρ0+o(1) using the decoding procedure (Proposition 4) for
C2.

Setup cost. In order to construct a full vertex v from a list Lvy = ~y1, . . . , ~yNc1 , the
main cost is to construct the lists Jv(~ti) = fβ(~ti) ∩ Lvy. To do this, we start from
empty lists Jv(~ti). For each ~yi ∈ Lvy, we construct the list K(~yi) = fβ(~yi) ∩ C2

and for each codeword ~tj ∈ K(~yi), we add ~yi in Jv(~ti).
This takes time N c1 ·Nρ0+o(1). We can perform a uniform superposition of

the vertices by performing the above procedure in quantum superposition. This
can also be done in N c1 ·Nρ0+o(1) since we use a quantum data structure that
performs these insertions in Jv(~ti) efficiently. So in conclusion,

S = N c1+ρ0+o(1).

Update cost. We show here how to go from a vertex v with associated list Lvy to
a vertex w with Lwy =

(
Lvy\{~yold}

)
∪ {~ynew}. We start from a vertex v so we also

have the lists Jv(~ti) = fβ(~ti) ∩ Lvy.
In order to construct the lists Jw(~ti), we first construct K(~yold) = fβ(~yold)∩C2

and for each ~ti in this set, we remove ~yold from Jv(~ti). Then, we constructK(~ynew)
and for each ~ti in this set, we add ~ynew to Jv(~ti), thus obtaining all the Jw(~ti).
Constructing the two lists takes time on average Nρ0+o(1) and we then perform
at most 2Nρ0 deletion and insertion operations which are done efficiently. These
operations take Nρ0+o(1) deletions and insertions, which can be done efficiently.

If v was marked and ~yold is not part of the reducible pair then we do not
change the last registers for Lwy . If v was not marked, then we have to ensure
that adding ~ynew doesn’t make it marked. So we need to check whether there
exists ~y′ 6= ~ynew such that

∃~t ∈ C2, ~ynew, ~y0 ∈ J̃w(~t) and (~ynew, ~y0) are reducible .

If such a point ~y0 exists, it necessarily lies in the set ∪~t∈K(~ynew)J̃
v(~t) which is of

size at most 2Nρ ·2N c2 = 4Nρ0+c2 . We perform a Grover search on this set to
determine whether there exists a ~y0 ∈ ∪~t∈C2

J̃v(~t) that reduces with ~ynew, and
this takes time N

ρ0+c1+o(1)
2 . In conclusion, we have that the average update time

is
U = Nρ0+o(1) +N

ρ0+c2+o(1)
2 ≤ Nmax{ρ0,

ρ0+c2
2 }+o(1).

Checking cost. Each vertex has a bit that says whether it is marked or not so we
have

C = 1.

Computing the fraction of marked vertices Epsilon. We prove here the following
proposition
Proposition 9. ε ≥ Θ

(
min

{
N2c1Vd(β), 1

})
.

Proof. We consider a random vertex in the graph and lower bound the probability
that it is marked. A sufficient condition for a vertex v to be marked is if it satisfies
the following 2 events :

– E1 : ∃~t ∈ C2,∃~yi, ~yj 6= ~yi ∈ Jv(~t), st. θ(~yi, ~yj) ≤ θ∗α.
– E2 : ∀~t ∈ C2, |Jv(~t)| ≤ 2N c2 .

The second property implies that ∀~t ∈ C2, J
v(~t) = J̃v(~t) and in that case, the

first property implies that v is marked. We now bound the probability of each
event

Lemma 1. Pr[E1] ≥ Θ
(
min

{
N2c1Vd(β), 1

})
.

Proof. For a fixed pair ~yi, ~yj 6= ~yi ∈ Lvy, we have Pr[θ(~yi, ~yj) ≤ θ∗α] = Vd(θ∗α).
Since there are Θ(N2c1) such pairs, if we define the event E0 as: ∃~yi, ~yj 6= ~yi ∈
Lvy, st. θ(~yi, ~yj) ≤ θ∗α, we have

Pr[E0] ≥ Θ
(
min

{
N2c1Vd(β), 1

})
.

Now we assume E0 holds and we try to compute the probability that E1 is true
conditioned on E0. So we assume E0 and let ~yi, ~yj 6= ~yi ∈ Lvy, st. θ(~yi, ~yj) ≤ θ∗α.
For each code point ~t ∈ C2, we have

Pr[~yi, ~yj ∈ Jv(~t)] = Pr[~t ∈ H~yi,β ∩H~yj ,β] =Wd(β, θ∗α).

Therefore, we have

Pr[∃~t ∈ C2, ~yi, ~yj ∈ Jv(~t)] = 1− (1−Wd(β, θ∗α))|C2|. (5)

Since |C2| = 1
Wd(β,θ∗α) , we can conclude

Pr[E1|E0] ≥ Pr[∃~t ∈ C2, ~yi, ~yj ∈ Jv(~t)] = 1− (1−Wd(β, θ∗α))|C2| ≥ Θ(1),

which implies Pr[E1] ≥ Pr[E1|E0] · Pr[E0] ≥ Θ
(
max

{
N2c1Vd(β), 1

})
.

Lemma 2. Pr[E2] ≥ 1− |C2|e−
Nc2

3 .

Proof. For each ~t ∈ C2, we have using Proposition 6 that Pr[|Jv(~t)| ≤ 2N c2] ≥
1− e−N

c2
3 . Using a union bound, we have

Pr[∀~t ∈ C2, |Jv(~t)| ≤ 2N c2] ≥ 1− |C2|e−
Nc2

3 .

We can now finish the proof of our Proposition. We have

ε ≥ Pr[E1 ∧ E2] ≥ Pr[E1] + Pr[E2]− 1

≥ Θ
(
max

{
N2c1Vd(β), 1

})
− |C2|e−

Nc2
3

≥ Θ
(
max

{
N2c1Vd(β), 1

})
The last inequality comes from the fact that |C2|e−

Nc2
3 is vanishing doubly

exponentially in d (N is exponential in d) so it is negligible compared to the first
term and is absorbed by the Θ(·).

Computing the spectral gap Delta. We are in a J(N c, N c1) Johnson graph so we
have

δ ≈ N−c1 .

Running time of the quantum walk. The running time T1 of the quantum walk is
(omitting the o(1) terms and the O(·) notations)

T1 = S + 1√
ε

(
1√
δ
U + C

)
= N c1+ρ0 + 1

max{1, N c1
√
Vd(θ∗α)}

(
Nmax{ρ0,

ρ0+c2
2 }+ c1

2

)
In this running time, we can find one marked vertex with high probability if
it exists. We repeat this quantum random walk until we find max{N

ζ

2 , 1} solutions.

Algorithm for the FindAllSolutions procedure

Pick a random product code C2.
while the number of solutions found is < Nζ

2 :
Run our QRW to find a solution and add it to the list of solutions

if it hasn’t been found.
For ζ > 0, there are Nζ different solutions that can be found in each α-filter.

Each time we find a solution, since the list of solutions found is < Nζ

2 . Therefore,
the probability that each solutions found by the QRW is new is at least 1

2 . We
have therefore

FAS1 = max{Nζ , 1} · T1.

If ζ > 0, our algorithm finds Θ(Nζ) solutions in time NζT1 and if ζ ≤ 0, our
algorithm finds 1 solution in time T1 with probability Θ(N−ζ).

5.3 Memory analysis

Classical space. We have to store at the same time in classic memory the N list
vectors of size d, and the buckets of the α-filters. Each vector is in No(1) α-filter,
so our algorithm takes classical space N1+o(1).

Memory requirements of the quantum random walk. Each vertex v of the graph
stores all the Jv(~ti) which together take space N c1+ρ0 . We need to store a
superposition of vertices so we need N c1+ρ0 quantum registers and we need
that same amount of QRAM because we perform insertions and deletions in the
database in quantum superposition. All the operations require QRAM access to
the whole list Ly which is classically stored and is of size N c. Therefore, we also
require N c QRAM.

5.4 Optimal parameters for this quantum random walk

Our algorithm takes in argument three parameters: c ∈ [0, 1], c1 ≤ c and c2 ≤ c1
from which we can express all the other variables we use: α, θ∗α, β, ρ0 and ζ. We
recall these expressions as they are scattered throughout the previous sections:

– α: angle in [π/3, π/2] that satisfies Vd(α) = 1
N1−c .

– θ∗α = 2 arcsin(1
2 sin(α)).

– β: angle in [π/3, π/2] that satisfies Vd(β) = 1
Nc1−c2 .

– ρ0: non-negative real number such that Nρ0 = Vd(β)
Wd(β,θ∗α) .

– ζ: real number such that Nζ = N2cVd(θ∗α).

Plugging the value of FAS1 from the end of Section 5.2 in Proposition 8,
we find that the total running time of our quantum sieving algorithm with
parameters c, c1, c2 is

T = N c−ζ

(
N +N1−c max{Nζ , 1}

(
N c1+ρ0 + 1

max{1, N c1
√
Vd(θ∗α)}

(
Nmax{ρ0,

ρ0+c2
2 }+ c1

2

)))
.

We ran a numerical optimization over c, c1, c2 to get our optimal running
time, summed up in the following theorem.

Proposition 10. Our algorithm with parameters

c ≈ 0.3300 ; c1 ≈ 0.1952 ; c2 ≈ 0.0603

heuristically solves SVP on dimension d in time T = N1.2555+o(1) = 20.2605d+o(d),
uses QRAMM of maximum size N0.3300+o(1) = 20.0685d+o(d), a quantum memory
of size N0.2555+o(1) = 20.0530d+o(d) and uses a classical memory of size N1+o(1) =
20.2075d+o(d).

With these parameters, we obtain the values of the other parameters:

α ≈ 1.1388rad ≈ 65.25◦; θ∗α ≈ 1.1661rad ≈ 66.46◦; β ≈ 1.3745rad ≈ 78.75◦

ρ0 ≈ 0.0603; ζ ≈ 0.0745.

As well as the quantum walk parameters:

S = N c1+ρ0 = N0.2555; U = Nρ0 = N0.0603; C = 0; ε = δ = N−c1 = N−0.1952.

The equality ρ0 = c2 allows to balance the time of the two operations during
the update step. With these parameters we also obtain S = U/

√
ε δ = N c1+ρ0 =

N0.2555d, which balances the overall time complexity.
Notice that with these parameters, we can rewrite T as

T = N c−ζ (N +N1−c+ζ+c1+ρ0
)

= N1+c−ζ +N1+c1+ρ0 .

Also, we have c1 + ρ0 = c− ζ, which equalizes the random walk step with the
initialization step. From our previous analysis, the amount of required QRAM is
N c and the amount of quantum memory needed is N c1+ρ0 .

6 Quantum random walk for the FindAllSolutions
subroutine: an improved quantum random walk

We now add a variable ρ ∈ (0, ρ0] that will replace the choice of ρ0 above. ρ0
was chosen in order to make sure that if a pair ~yi, ~yj exists in a vertex v, then it
will appear on one of the Jv(~t) for ~t ∈ C2. However, we can relax this and only
mark a small fraction of these vertices. This will reduce the fraction of marked
vertices, which makes it harder to find a solution, but having a smaller ρ will
reduce the running time of our quantum random walk.

The construction is exactly the same as in the previous section just that we
replace ρ0 with ρ. This implies that |C2| = Nρ+c1−c2 . We can perform the same
analysis as above

Time analysis of this QRW in the regime ζ + ρ− ρ0 > 0. We consider the regime
where ζ + ρ − ρ0 > 0 and ρ ∈ (0, ρ0] (in particular ζ > 0, since ρ0 > 0). This
regime ensures that even when if we have less marked vertices, then there on
average more than one marked vertex, so our algorithm at least finds one solution
with a constant probability.

The analysis walk is exactly the same than in Section 5.2, each repetition of
the quantum random walk takes time T1 with

T1 = S + 1√
ε

(
1√
δ
U + C

)
with

S = N c1+ρ, U = Nmax{ρ, ρ+c2
2 }+o(1), C = 1,

ε = N2c1Nρ−ρ0Vd(θ∗α), δ = N−c1.

The only thing maybe to develop is the computation of ε. We perform the
same analysis as above but with |C2| = Nρ+c1−c2 . This means that Equation 5
of Lemma 1 becomes

Pr[∃~t ∈ C2, ~yi, ~yj ∈ Jv(~t)] = 1− (1−Wd(β, θ∗α))|C2|

≥ |C2|Wd(β, θ∗α) = Nρ−ρ0 .

which gives the extra term Nρ−ρ0 in ε. Another issue is that now, we can only
extract Nζ+ρ−ρ0 solutions each time we construct the graph, we have therefore to
repeat this procedure to find Nζ+ρ−ρ0

2 solutions with this graph and then repeat
the procedure with a new code C2. The algorithm becomes

Algorithm from Section 6 with parameter ρ

while the total number of solutions found is < Nζ

2 :
Pick a random product code C2.
while the number of solutions found is < Nζ+ρ−ρ0

2 with this C2:
Run our QRW with ρ to find a new solution.

With this procedure, we also find Θ(Nζ) solutions in time NζT1 and FAS1 =
NζT1 (Recall that we are in the case ζ ≥ ζ + ρ − ρ0 > 0). Actually, Optimal
parameters will be when c2 = 0 and ρ→ 0.

6.1 Analysis of the above algorithm

This change implies that some reducing pairs are missed. For the quantum random
walk complexity, this only change the probability, denoted ε, so that a vertex is
marked. Indeed, it is equal to the one so that there happens a collision between
two vectors through a filter, which is no longer equal to the existence of a reducing
pair within the vertex. Indeed, to have a collision, there is the supplementary
condition of both vectors of a reducing pair are inserted in the same filter, which
is of probability Nρ0−ρ. So we get a higher value of ε = N2c1Vd(θ∗α) ·Nρ0−ρ.

However, this increasing is compensated by the reducing of the costs of the
setup (N c1+ρ+o(1)) and the update (2Nmax{ρ, ρ+c2

2 }+o(1)).
A numerical optimisation over ρ, c, c1 and c2 leads to the following theorem.

Theorem 4 (Theorem 1 restated). Our algorithm with a free ρ with param-
eters

ρ→ 0 ; c ≈ 0.3696 ; c1 ≈ 0.2384 ; c2 = 0

heuristically solves SVP on dimension d in time T = N1.2384+o(1) = 20.2570d+o(d),
uses QRAM of maximum size N0.3696 = 20.0767d, a quantum memory of size
N0.2384 = 20.0495d and uses a classical memory of size N1+o(1) = 20.2075d+o(d).

With these parameters, we obtain the values of the other parameters:

α ≈ 1.1514 rad; θ∗α ≈ 1.1586 rad; β ≈ 1.1112 rad; ζ ≈ 0.1313.

As well as the quantum walk parameters:

S = N c1+ρ = N0.2384; U = Nρ = No(1); C = 0; ε = δ = N−c1 = N−0.2384.

With these parameters, we also have ρ0 = 0.107 so we are in the regime where
ζ + ρ − ρ0 > 0. As in the previous time complexity stated in Theorem 10, we

reach the equality S = U/
√
εδ, which allows to balance the time of the two steps

of the quantum random walk: the setup and the search itself.
Notice that with these parameters, we can rewrite T as

T = N c−ζ (N +N1−c+ζ+c1+ρ) = N1+c−ζ +N1+c1+ρ.

With our optimal parameters, we have ρ = 0 and c− ζ = c1, which equalizes the
random walk step with the initialization step. From our previous analysis, the
amount of required QRAM is N c and the amount of quantum memory needed is
N c1 .

7 Space-time trade-offs

By varying the values c, c1, c2 and ρ, we can obtain trade-offs between QRAM
and time, and between quantum memory and time. All the following results come
from numerical observations.

7.1 Trade-off for fixed quantum memory.

We computed the minimized time if we add the constraint that the quantum
memory must not exceed 2Md. For a chosen fixed M , the quantum memory
is denoted is 2µMd = 2Md and the corresponding minimal time by 2τMd. The
variation of M also impacts the required QRAM to run the algorithm, that we
denote by 2γMd.

So we get a trade-off between time and quantum memory in Figure 1, and
the evolution of QRAM in function of M for a minimal time is in Figure 2.

Fig. 1: Quantum memory-time trade-off.

Fig. 2: QRAM in function of available quantum memory for minimized time.

For more than 20.0495d quantum memory, increasing it does not improve
the time complexity anymore. An important fact is that for a fixed M the
corresponding value τM from figure 1 and γM from Figure 2 can be achieved
simultaneously with the same algorithm.

We observe that from M = 0 to 0.0495 these curves are very close to affine.
Indeed, the function that passes through the two extremities points is of expression
0.2653− 0.1670M . The difference between τM and its affine approximation does
not exceed 4·10−5. By the same way, the difference between γM and its affine
average function of expression 0.0578 + 0.3829M is inferior to 2 ·10−4. All this is
summarized in the following theorem.

Theorem 5 (Trade-off for fixed quantum memory). There exists a quan-
tum algorithm using quantum random walks that solves SVP on dimension d
which for a parameter M ∈ [0, 0.0495] heuristically runs in time 2τMd+o(d), uses
QRAM of maximum size 2γMd, a quantum memory of size 2µMd and a classical
memory of size 20.2075d where

τM ∈ 0.2653− 0.1670M + [−2 ·10−5; 4·10−5]

γM ∈ 0.0578 + 0.3829M − [0; 2·10−4] ; µM = M.

In the informal formulation of this theorem, we used the symbols / and '
that refers to these hidden small values.

7.2 Trade-off for fixed QRAM.

We also get a trade-off between QRAM and time. For a chosen fixed M ′, the
QRAM is denoted by 2γM′d = 2M ′d, and the corresponding minimal time by

2τM′d. The required quantum memory is denoted 2µM′d. Note that 2µM′d is the
also the amount of the required quantum QRAM called "QRAQM".

This gives a trade-off between time and QRAM in the figure 3, and the
evolution of quantum memory in function of M ′ is in the figure 4.

Fig. 3: QRAM-time trade-off.

Fig. 4: Quantum memory in function of available QRAM for minimized time.

For more than 20.0767d QRAM, increasing it does not improve the time
complexity.

The difference between the function τM ′ and its average affine function of
expression 0.2926− 0.4647·M ′ does not exceed 6 ·10−4. This affine function is a
upper bound of τM ′ .

From M ′ = 0 to 0.0579 the function γM ′ is at 0. Then, it is close to the
affine function of expression 2.6356(M ′ − 0.0579). So γM ′ can be approximated
by max{2.6356(M ′ − 0.0579), 0}, and the difference between γM ′ and this ap-
proximation does not exceed 9·10−4. All this is summarized in the following
theorem.

Theorem 6 (Trade-off for fixed QRAM). There exists a quantum algorithm
using quantum random walks that solves SVP on dimension d which for a pa-
rameter M ′ ∈ [0, 0.0767] heuristically runs in time 2τM′d+o(d), uses QRAM of
maximum size poly(d) · 2γM′d, a quantum memory of size poly(d) · 2µM′d and uses
a classical memory of size poly(d) · 20.2075d where

τM ′ ∈ 0.2927− 0.4647M ′ − [0; 6·10−4] ; γM ′ = M ′

µM ′ ∈ max{2.6356(M ′ − 0.0579), 0}+ [0; 9·10−4].

Finally, we present a table with a few values that presents some of the above
trade-offs.

Time τM ′ 0.2925 0.2827 0.2733 0.2653 0.2621 0.2598 0.2570
QRAM γM ′ 0 0.02 0.04 0.0578 0.065 0.070 0.0767

Q. memory µM ′ 0 0 0 0 0.0190 0.0324 0.0495
Comment [BDGL16] alg. [Laa16] alg. Thm 1.

Fig. 5: Time, QRAM and quantum memory values for our algorithm.

8 Discussion

Impact on lattice-based cryptography. Going from a running time of 20.2653d+o(d)

to 20.2570d+o(d) slightly reduces the security claims based on the analysis of the
SVP (usually via the BKZ algorithm). For example, if one claims 128 bits of
security using the above exponent then one must reduce this claim to 124 bits
of quantum security. This of course can usually be fixed with a slight increase
of the parameters but cannot be ignored if one wants to have the same security
claims as before.

Parallelization. On thing we haven’t talked about in this article is whether our
algorithm paralellizes well. Algorithm 1 seems to parallelize very well, and we
argue that it is indeed the case.

For this algorithm, the best classical algorithm takes c → 0. In this case,
placing each ~v ∈ L in its corresponding α-filters can be done in parallel and with
N processors (or N width) it can be done in time poly(d). Then, there are N

separate instances of FindAllSolutions which can be also perfectly parallelized
and each one also takes time poly(d) when c → 0. The while loop is repeated
N−ζ = N0.409d times so the total running time (here depth) is N0.409d+o(d) with
a classical circuit of width N . Such a result already surpasses the result from
[BDGL16] that achieves depth N1/2 with a quantum circuit of width N using
parallel Grover search.

In the quantum setting, our algorithm parallelizes also quite well. If we consider
our optimal parameters (c = 0.3696) with a similar reasoning, our algorithm will
parallelize perfectly with N1−c processors (so that there is exactly one for each
call to FindAllSolutions i.e. for the quantum random walk). Unfortunately,
after that, we do not know how to parallelize well within the quantum walk.
When we consider circuits of width N , our optimizations didn’t achieve better
than a depth of N0.409+o(d) which is the classical parallelization. This is also
the case if we use Grover’s algorithm as in [Laa16] for the FindAllSolutions
and we use parallel Grover search as in [BDGL16] so best known (classical or
quantum) algorithm with lowest depth that uses a circuit of width N is the
classical parallel algorithm described above.

Acknowledgments and paths for improvements

The authors want to thank Simon Apers for helpful discussions about quantum
random walks, in particular about the fact that there are no better generic
algorithms for finding k different marked than to run the whole random walk
(including the setup) O(k) times. There could however be a smarter way to do
this in our setting which would improve the overall complexity of our algorithm.
Another possible improvement would be to embed the local sensitivity property
in the graph on which we perform the random walk instead of working on the
Johnson graph.

References

[AGJO+15] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-O’Connor,
Michele Mosca, and Priyaa Varshinee Srinivasan. On the robustness
of bucket brigade quantum ram. New Journal of Physics, 17(12):123010,
Dec 2015.

[AGPS20] Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and
John M. Schanck. Estimating quantum speedups for lattice sieves. In
Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2020, pages 583–613, Cham, 2020. Springer International
Publishing.

[AINR14] Alexandr Andoni, Piotr Indyk, Huy Lê Nguyên, and Ilya Razenshteyn.
Beyond locality-sensitive hashing. SODA, page 1018–1028, 2014.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, page 99–108, New York, NY, USA,
1996. Association for Computing Machinery.

[Ajt98] Miklos Ajtai. The shortest vector problem in l2 is np-hard for randomized
reductions (extended abstract). 30th Annual ACM Symposium on Theory
of Computing Proceedings, pages 10 – 19, 1998.

[Amb07] Andris Ambainis. Quantum walk algorithm for element distinctness.
SIAM J. Comput., 37(1):210–239, 2007.

[AR15] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing
for approximate near neighbors. STOC, page 793–801, 2015.

[BBSS20] Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen.
Improved classical and quantum algorithms for subset-sum. In Shiho Mo-
riai and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT
2020 - 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7-
11, 2020, Proceedings, Part II, volume 12492 of Lecture Notes in Computer
Science, pages 633–666. Springer, 2020.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New
directions in nearest neighbor searching with applications to lattice sieving.
Proc. of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms,
2016.

[BJLM13] Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer.
Quantum algorithms for the subset-sum problem. In Philippe Gaborit, edi-
tor, Post-Quantum Cryptography - 5th International Workshop, PQCrypto
2013, Limoges, France, June 4-7, 2013. Proceedings, volume 7932 of Lec-
ture Notes in Computer Science, pages 16–33. Springer, 2013.

[BL16] Anja Becker and Thijs Laarhoven. Efficient (ideal) lattice sieving using
cross-polytope lsh. In David Pointcheval, Abderrahmane Nitaj, and
Tajjeeddine Rachidi, editors, Progress in Cryptology – AFRICACRYPT
2016, pages 3–23, Cham, 2016. Springer International Publishing.

[CDH+19] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J.M. Schanck,
P. Schwabe, W. Whyte, and Z. Zhang. Ntru. Round-3 submission to the
NIST pqc project, 2019.

[Cha02] Moses S. Charikar. Similarity estimation techniques from rounding algo-
rithms. STOC, page 380–388, 2002.

[DKL+19] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé. Crystals-dilithium, algorithm specifications and supporting
documentation. Round-3 submission to the NIST pqc project, 2019.

[dW19] Ronald de Wolf. Quantum computing: Lecture notes, 2019.
[FHK+19] P-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,

T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-
fourier lattice-based compact signatures over ntru. Round-3 submission
to the NIST pqc project, 2019.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, STOC ’09, page 169?178, New York, NY, USA, 2009. Associ-
ation for Computing Machinery.

[GLM08] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random
access memory. Phys. Rev. Lett., 100:160501, Apr 2008.

[Gro96] Lov Grover. A fast quantum mechanical algorithm for database search.
Proc.28th Annual ACM Symposium on the Theory of Computing STOC,
pages 212 – 219, 1996.

[HM18] Alexander Helm and Alexander May. Subset sum quantumly in 1.17n.
In Stacey Jeffery, editor, 13th Conference on the Theory of Quantum
Computation, Communication and Cryptography, TQC 2018, July 16-18,
2018, Sydney, Australia, volume 111 of LIPIcs, pages 5:1–5:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: To-
wards removing the curse of dimensionality. STOC, pages 604 – 613, 1998.

[Kan83] R. Kannan. Improved algorithms for integer programmingand related
lattice problems. Proceedings of the 15thSymposium on the Theory of
Computing (STOC), ACM Press, pages 99 – 108, 1983.

[Kle00] Philip Klein. Finding the closest lattice vector when it’s unusually close.
SODA, page 937–941, 2000.

[KMPM19] Elena Kirshanova, Erik Martensson, Eamonn W. Postlethwaite, and
Subhayan Roy Moulik. Quantum algorithms for the approximate k-list
problem and their application to lattice sieving. ASIACRYPT, 2019.

[KT17] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set
decoding algorithms. In Tanja Lange and Tsuyoshi Takagi, editors, Post-
Quantum Cryptography - 8th International Workshop, PQCrypto 2017,
Utrecht, The Netherlands, June 26-28, 2017, Proceedings, volume 10346
of Lecture Notes in Computer Science, pages 69–89. Springer, 2017.

[Laa15] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology – CRYPTO 2015, pages 3–22, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[Laa16] Thijs Laarhoven. Search problems in cryptography, From fingerprinting
to lattice sieving. PhD thesis, Eindhoven University of Technology, 2016.

[LdW15] Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lat-
tice vectors using spherical locality-sensitive hashing. In Kristin Lauter
and Francisco Rodríguez-Henríquez, editors, Progress in Cryptology –
LATINCRYPT 2015, pages 101–118, Cham, 2015. Springer International
Publishing.

[LLL82] A.K. Lenstra, H.W. Lenstra, and L. Lovasz. Factoring polynomials with
rational coefficients. Mathematische Annalen, pages 513–534, 1982.

[LMvdP15] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest
lattice vectors faster using quantum search. Des. Codes Cryptogr., 77(2-
3):375–400, 2015.

[MNRS11] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha.
Search via quantum walk. SIAM J. Comput., 40(1):142–164, 2011.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time
algorithms for the shortest vector problem. SODA, page 1468 – 1480,
2010.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and
quantum information. Cambridge University Press, New York, NY, USA,
2000.

[NV08] P.Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector
problem are practical. J. Math. Crypt. 2, pages 181 – 207, 2008.

[TT07] Kengo Terasawa and Yuzuru Tanaka. Spherical lsh for approximate
nearest neighbor search on unit hypersphere. WADS, page 27–38, 2007.

[WLTB11] Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved
nguyen-vidick heuristic sieve algorithm for shortest vector problem. In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’11, page 1–9, New York, NY, USA,
2011. Association for Computing Machinery.

[ZPH14] Feng Zhang, Yanbin Pan, and Gengran Hu. A three-level sieve algorithm
for the shortest vector problem. In Tanja Lange, Kristin Lauter, and Petr
Lisoněk, editors, Selected Areas in Cryptography – SAC 2013, pages 29–47,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

