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Abstract. In this paper we study cryptographic finite abelian groups of unknown order and
hardness assumptions in these groups. Abelian groups necessitate multiple group generators,
which may be chosen at random. We formalize this setting and hardness assumptions therein.
Furthermore, we generalize the algebraic group model and strong algebraic group model
from cyclic groups to arbitrary finite abelian groups of unknown order. Building on these
formalizations, we present techniques to deal with this new setting, and prove new reductions.
These results are relevant for class groups of imaginary quadratic number fields and time-lock
cryptography build upon them.
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1 Introduction

Abelian groups of hidden order have recently been gaining more attention in cryptography, due to
their applications in, for example, time-lock cryptography [30,22,6], cryptographic accumulators [5]
and zero-knowledge arguments [10,3]. Both RSA groups and class groups of imaginary quadratic
number fields have been proposed as hidden order groups for these applications. A trusted setup is
required in the RSA group setting to hide the order, but the class group setting does not suffer from
this restriction. In contrast to RSA groups, class groups are abelian groups which are not always
cyclic, i.e., they may require more than one generator to generate the full group. In particular, this
implies prime divisors of the group order may have multiplicity larger than one. Moreover, there
are no known generic efficient algorithms for hidden order abelian groups to compute a smallest set
of generators or to certify a set of elements generates the full group.

There has been significantly less study of computational assumptions in abelian groups compared
to cyclic groups. This paper aims to address this gap by studying the relation between various
computational problems in finite abelian groups in the (strong) algebraic group model. The algebraic
group model (AGM), introduced by Fuchsbauer, Kiltz and Loss [16], requires algorithms to output
an algebraic representation of their output elements in terms of input group elements. The strong
algebraic group model (SAGM), introduced by Katz, Loss and Xu [17], additionally requires any
algorithm to expose the circuit of group operations it computed for output group elements. Both
these models have predominantly been used to study computational assumptions in cyclic groups,
mainly those of prime order [16] and semiprime order [17]. Another aim of this paper is therefore to
generalize the AGM and the SAGM to the setting of finite abelian groups which are not necessarily
cyclic.

Restricted Group Models. There has been a relatively long history of studying computational
problems in groups in a restricted model of computation. Starting with Nechaev [21] and Shoup
[29] introducing the generic group model (GGM). The two main computational models relevant
to this paper are the algebraic group model (AGM) [16] and the strong algebraic group model
(SAGM) [17].
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Name Game ((G, g) $←− Gκ) Outcome

MOC N $←− A(g) N ≡ 0 (mod |G|)
HOC N $←− A(g) N = |G|

DLog/DLog1 X $←− G, e $←− A(g,X) ge = X
DLog2 X $←− G, Y $←− ⟨X⟩, e $←− A(g,X, Y ) Xe = Y

CDH/CDH1 a, b $←− U|G|, Y $←− A(g, ga, gb) Y = gab

CDH2 X $←− G, a, b $←− U|⟨X⟩|, Y $←− A(g,X,Xa, Xb) Y = Xab

Here G = (Gκ)∞κ=1 is a cyclic group family with security parameter κ, and A is an adversary playing the
game. Each game starts by sampling (G, g). See Section 3.

Table 1. Overview of the relevant computational games in cyclic groups

Name Game (G $←− Gκ, g := (g1, . . . , gn) $←− Gn) A wins if

MO N $←− A(g) N ≡ 0 (mod |G|) ∧N ̸= 0
HO N $←− A(g) N = |G|
LO (X, d) $←− A(g) X ̸= 1G ∧ 1 < d < 2κ ∧Xd = 1G

DLog1 X $←− G, e $←− A(g, X) ge = X
DLog2 X $←− G, Y $←− ⟨X⟩, e $←− A(g, X, Y ) Xe = Y

CDH2 X $←− G, a, b $←− U |⟨X⟩|, Y $←− A(g, X,Xa, Xb) Y = Xab

e-RT X $←− G, Y $←− A(g, Xe) Y e = X ∧ e > 1
StRoot X $←− G, (Y, e) $←− A(g, X) Y e = X ∧ e > 1

ARoot X $←− A(g), ℓ $←− Primes(2κ), Y $←− A(X, ℓ) X ̸= 1G ∧ Y ℓ = X

T -RSW A2 ← A1(g), X $←− G, Y $←− A2(g, X) Y = X2T ∧ ATime(A2) < T

Here G = (Gκ)∞κ=1 is a group family with security parameter κ, and A is an adversary playing the game.
Each game starts by sampling G, g1, . . . , gn. See Section 4.

Table 2. Overview of the relevant computational games in finite abelian groups

Intuitively speaking, in contrast to the GGM, an algorithm in the AGM is allowed to exploit
any additional group structure and representation of group elements like in the standard model.
However, the AGM is not equivalent to the standard model, as algorithms in the AGM are required
to provide an algebraic representation of their output group elements in terms of input group
elements. The SAGM lies between the AGM and the GGM as it requires that the algorithm exposes
the circuit of group operations it computed for output group elements.

In the (S)AGM one can study the hardness of computational problems through reductions to
other computational problems, just as in the standard model (SM). The generic group model also
allows for the proving of information-theoretic lower bounds on the complexity of computational
problems. See for instance, the lower bounds on the discrete logarithm and the computational
Diffie-Hellman problem by Shoup [29], and the lower bound on any generic reduction from the
discrete logarithm problem to the computational Diffie-Hellman problem when the group order has
a multiple prime factor by Maurer and Wolff [20].

Since reductions in the (S)AGM are typically generic, i.e. the reduction itself only uses generic
group operations, computational lower bounds in the GGM can imply the impossibility of efficient
generic reductions in the AGM.

1.1 Our Contributions

The main contributions of this paper consist of (1) a formalization of the finite abelian hidden order
setting and the respective generalizations of the (S)AGM, and (2) proving security reductions in
this setting as further detailed below.

In Section 4, we first formalize the setting of working with finite abelian groups of hidden order
and introduce a framework to study computational problems therein. An important example are
class groups of imaginary quadratic number fields. Instead of assuming the existence of a canonical
set of generators, a sufficiently large set of random group elements is used to generate the full group.
Hence, each game in Table 2 includes sampling a set of random generators.

We generalize both the AGM and SAGM to this setting, as earlier related works were restricted
to prime order cyclic groups [16] and hidden order RSA groups [17], respectively. We will refer to
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A
B

DLog1 DLog2 CDH2 HO MO T -RSW StRoot ARoot e-RT LO

DLog1 [29], 6.6 [29], 6.6 [29], 6.6 [29], 6.6 [29], 6.6 [29], 6.6 [29], 6.6

DLog2 [29], 6.6 [29], 6.6 [29], 6.6 [29], 6.6 [29], 6.6 [29], 6.6 [29], 6.6

CDH2 6.3 [29], 6.8 [29], 6.8 [29], 6.8 [29], 6.8 [29], 6.8 [29], 6.8 [29], 6.8

HO
MO 6.5 6.4 7.5 Trivial 8.2 7.1 7.2 7.4 7.3

T -RSW 6.5 6.4 7.5 [17], 6.1 [17], 6.1 7.1 7.2 7.4 7.3

StRoot 6.5 6.4 7.5 [13], 6.1 [13], 6.1 8.2 7.2 7.4 7.3

ARoot 6.5 6.4 7.5 [30], 6.1 [30], 6.1 8.2 7.1 7.4 [6]

e-RT †[2], 6.1 †[2], 6.1 †[2], 6.1 †[2], 6.1 †[2], 6.1 †[2], 6.1 †[2], 6.1 †[2], 6.1 †[2], 6.1
LO ‡6.2,6.5 ‡6.2,6.4 ‡6.2,7.5 ‡6.2 ‡6.2 ‡6.2,8.2 ‡6.2,7.1 ‡6.2,7.2 ‡6.2,7.4

Fig. 1. Overview of the relevant newreductions A ======⇒
AHO-GM

B in the finite abelian hidden order group

model, where GM is in the set {SM,AGM, SAGM}. The colors and symbols in the cells mean the following:

- new results (in SM/AGM/SAGM) ( ), partial results ( ), no generic newreduction ( )
- †: conditioned on e coprime with group order
- ‡: assuming an oracle for small prime subdivisor of group order

these generalized models as the abelian hidden order (strong) algebraic group model (AHO-AGM
and AHO-SAGM, respectively, for short).

An overview of the computational problems we consider in finite abelian hidden order groups is
given in Table 2. These are (including some works that depend on them):

MO/HO: the (multiple/exact) order problem ([12,2,30,22,6,5,10,17,3]);
LO: the low order problem ([22,6]);
ARoot: the adaptive root problem ([30,6,5,10]);
StRoot: the strong root problem ([12,5,10]);
e-RT: the e-th root problem ([23,2],[8, Ch. 12]);
T -RSW: the T -repeated squaring problem ([25,30,22,6,17]);
DLog1: the generalized discrete logarithm problem ([7]);
DLog2: the subgroup discrete logarithm problem ([2],[8, Ch. 12]);
CDH2: the subgroup computational Diffie-Hellman problem ([9],[8, Ch. 12]).

An overview of the relevant counterparts of these computational games in cyclic groups is given
in Table 1.

For cyclic groups of hidden order, we show in Section 3 the simple reduction MOC ⇒ DLog in the
hidden order cyclic group model (HO-SM). Subsequently, we prove a novel reduction HOC ⇒ DLog
in the HO-SM (see Theorem 3.5).

For finite abelian hidden order groups, our contributions are outlined in Figure ?? and detailed
in Sections 5, 6, 7 and 8. In the AHO-SM, we prove reductions of MO to DLog1 and DLog2, and
of LO to MO in the case where an oracle for a small prime divisor of the group order exists. We
provide an example of such an oracle for the class group setting.

In the AHO-AGM, we prove that MO is equivalent to ARoot as well as StRoot. Furthermore, we
prove reductions of MO to e-RT, LO and CDH2. Lastly, in the AHO-SAGM, we prove that T -RSW
is equivalent to MO.

Overview of Techniques. The main results of this paper are reductions from the problem of
computing a multiple of the order of a finite abelian group to other computational problems. A key
observation here is that when G is a finite abelian group generated by g = (g1, . . . , gn), then the
integer vectors e = (e1, . . . , en) with g

e1
1 · · · genn = 1G form a lattice, called the relationship lattice of

g. We show in Lemma 5.1 that if one can find relations e1, . . . , en which form a full rank sublattice
of L(g), then |det(e1, . . . , en)| is an integer multiple of the order of G.

In Lemma 5.4 we prove a template reduction to obtain a multiple of the group order with
specified bounded loss in time and success probability, based on a given simple transformation
from an adversary to a relation sampler with the following requirements: (1) repeated calls have
independent and identical success probability, which may not hold for the underlying adversary; (2)

3



n relations from n successful executions of the resulting relation sampler have negligible probability
to be linearly dependent. The reduction succeeds when n linearly independent relations are obtained
among ⌈Sn/p⌉ calls to the sampler, where S is an oversampling parameter and p is the adversary’s
advantage. Lemmas 2.6 and 2.7 on probability distribution ensembles allow us to bound the success
probability loss of the reduction.

To use the template reduction for several of our results, in each case we need to construct
such a relation sampler and prove it satisfies these requirements. To show that the determinant
|det(e1, . . . , en)| is non-zero, one can pick a suitable large prime p and show that the determinant is
non-zero modulo p with all but negligible probability. This can be achieved by demonstrating that
the relationship coefficients modulo p (i.e., the coefficients of the matrix E = (e1, . . . , en) mod p) are
distributed close, i.e., at negligible statistical distance, to uniform (see Lemma 2.5). Subsequently,
we can apply the Schwartz-Zippel lemma [28,31] to conclude that the determinant of E will be zero
modulo p with negligible probability.

In order to obtain these relations with close to uniformly distributed coefficients modulo p,
we query an adversary A, which solves a given computational problem G, a number of times on
independent random inputs from a fixed group G, i.e., a new set of generators and challenge group
elements. Note that by each time freshly sampling a set of generators and input challenge it also
satisfies the requirement for independent and identical success probabilities.

From a correct input and output instance (and algebraic representations of these instances with
respect to g), we need to show one can obtain a relation with respect to g. To construct relations
which are distributed sufficiently close to uniform modulo p, a main observation is that if we pass an
element X = gr11 · · · grnn to the adversary A, and write ri = r′i + r′′i · |⟨gi⟩| with 0 ≤ r′i < |⟨gi⟩|, then
the group element X is independent of the values of r′′i (as g

|⟨gi⟩|
i = 1G) and thus any execution

of A is independent of these r′′i . If we sample ri uniformly from a sufficiently large set, then their
modular reduction r′′i mod p is going to be distributed negligibly close to uniform modulo p as
desired.

In the case of cyclic groups, we show one can obtain the exact group order with high probability
from several multiples of the group order obtained from a discrete logarithm adversary (Theorem
3.5). The main ingredient in this proof is a theorem which states that independent uniformly
sampled integers, shifted by some bounded independent integers, have greatest common divisor
equal to one with high probability (Theorem 3.4).

1.2 Related Work

Damg̊ard and Koprowski [13] considered a variant of the strong root problem StRoot and the e-th
root problem e-RT in the GGM. The main difference is that our work considers these assumptions in
the AGM, and the methods we use are mostly incomparable. This paper [13] did however introduce
a version of the GGM in which the group order is hidden and introduced the notion of a (hard)
group family, on which our definitions in Section 4 are based.

Katz et al. [17] showed a reduction from the integer factorization problem to the T -repeated
squaring problem T -RSW for RSA groups in the SAGM. Their reduction is in fact a reduction
from the exact order problem HO to the T -RSW problem. They show this through a reduction
from HO to the multiple order problem MO, which happen to be equivalent in RSA groups [17,
Lemma 1]. Although Lemma 8.1 and Theorem 8.2 of our work can be seen as a generalization of
[17, Theorem 2] from the family of RSA groups to all finite abelian groups, the techniques we use
to prove these results are distinct and novel. Additionally, our work in the finite abelian group
setting investigates more relations between more computational problems. The motivation to do so
is that class groups of imaginary quadratic number fields are not covered by [17], while this is one
of the main candidate group families for hidden order cryptography like VDFs.

Finally, the line of work by Rotem, Segev and Shahaf [27] and Rotem and Segev [26] considers
generic-group delay functions and generic-ring delay functions, respectively. In particular, they
show that generically speeding up repeated squaring is equivalent to factoring [26]. Their work [26]
is however again limited to rings of the form ZN with N = pq an RSA modulus. Moreover, the
works are in the setting of the generic group model (for cyclic groups) [27] and the generic ring
model [26], and their methods are unlike this work.
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1.3 Applications of Hidden-Order Groups

Verifiable Delay Functions. Verifiable delay functions (VDFs) were introduced by Boneh,
Bonneau, Bünz and Fisch [4] as a cryptographic primitive with proposed applications in, for
example, public randomness beacons [24,6,15] and computational timestamping [6,18]. The most
popular VDF constructions are those introduced by Weselowski [30] and Pietrzak [22], both are based
on the notion of time-lock puzzles from Rivest, Shamir and Wagner [25]. Time-lock puzzles assume

that no efficient adversary can compute X2T faster than by computing T sequential squarings,
which translates to the T -RSW hardness assumption in the AHO-SAGM. We show in Theorem 8.2
that T -RSW is hard in the AHO-SAGM if it is hard to compute a multiple of the group order (i.e.,
MO is hard). Furthermore, these constructions assume the hardness of the adaptive root problem
ARoot (for Weselowski’s construction) and the low order problem LO (for Pietrzak’s construction).
We show in Theorem 7.2 that ARoot is hard in the AHO-AGM if MO is hard. It follows from the
known standard model reduction ARoot⇒ LO [6] that LO is hard in the AHO-AGM if MO is hard
(Corollary 7.3).

Cryptographic Accumulators. Boneh, Bünz and Fisch [5] propose a construction for a universal
accumulator in a distributed setting, together with batching and aggregation techniques, in hidden
order groups. The security of the accumulator is based on a variant of the strong root problem
StRoot. We show in Theorem 7.1 that StRoot is hard in the AHO-AGM if MO is hard. The authors
moreover construct succinct arguments for knowledge of discrete logarithms in hidden order groups
based on the adaptive root problem ARoot [5].

Zero-Knowledge Arguments. Bünz et al. [10] construct transparent SNARKs based on hidden
order groups, where its security depends on a variant of the strong root problem StRoot and the
adaptive root problem ARoot. Block et al. [3] adapt this scheme from [10] to overcome a gap in
the proof of security in order to construct time and space efficient non-interactive zero-knowledge
arguments. Their construction is based on the hardness of computing a multiple of the order of a
random group element, which is closely related to the MO/HO problems.

2 Preliminaries

For integers a ≤ b, let [a, b] denote the set {a, a + 1, . . . , b − 1, b} and for a < b let [a, b) denote
[a, b− 1]. For a positive integer n, let Primes(n) denote the set of the first 2n primes.

Let G be a finite abelian group. For g = (g1, . . . , gn) ∈ Gn and e = (e1, . . . , en) ∈ Zn,
we use the shorthand ⟨g⟩ := ⟨g1, . . . , gn⟩ for the subgroup generated by g1, . . . , gn, and ge :=∏n

i=1 g
ei
i for coordinate-wise exponentiation and multiplication of the results. Furthermore, for

A = (a1, . . . ,an) ∈ Zn×n, we denote gA := (ga1 , . . . , gan).
For a finite set S, let US denote the uniform distribution on S. Moreover, for any 0 < M ≤ N ,

we define UM := U[0,M) and RN,M := [x modM | x $←− UN ] for the probability distribution on the
set [0,M) obtained by reducing samples from UN modulo M . For sets and probability distributions,
we use

∏
to denote the cartesian product. In particular, for probability distributions Di over

domains Si, the cartesian product D =
∏n

i=1Di is the probability distribution over
∏n

i=1 Si defined
by the probability function: p((xi)

n
i=1) :=

∏n
i=1 PrXi∼Di [Xi = xi].

We assume that all algorithms receive 1κ as input, where κ is the security parameter. Furthermore,
we assume the asymptotic runtime of our reductions is dominated by the runtime of the original
adversary it calls as subroutine. To avoid unnecessary clutter, we omit asymptotic lower order
additive terms in the running time analyses of our reductions. These generally include very simple
operations such as sampling of integers, passing arguments between algorithms, and simple bit-wise
operations. Also, we scale time units such that multiplication in the group G under consideration
takes unit time.

2.1 Statistical Distance and Approximate Uniform Sampling

We introduce several lemmas on probability distributions that we use later on.
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Lemma 2.1. For a given positive integer M ≥ 1, let X and Y be independent random variables
on [0,M) and define the random variable Z := [X + Y modM ]. If X ∼ UM or Y ∼ UM , then
Z ∼ UM is uniformly distributed on [0,M) as well.

Definition 2.2. For given probability distributions D1 and D2 over a finite set S, the statistical
distance between D1 and D2 is defined as

δ(D1,D2) :=
1

2

∑
x∈S

∣∣∣∣ Pr
X∼D1

[X = x]− Pr
Y∼D2

[Y = x]

∣∣∣∣ .
An equivalent definition we use is the maximal absolute difference that can occur between both
probability distributions over all possible events:

δ(D1,D2) = max
T⊆S

∣∣∣∣ Pr
X∼D1

[X ∈ T ]− Pr
Y∼D2

[Y ∈ T ]
∣∣∣∣ .

Lemma 2.3. Let M ≤ N be positive integers and let X ∼ UN . Then

∀y ∈ [0,M) : |Pr[X ≡ y modM ]− 1/M| ≤ 1/N,

hence the statistical distance between [X modM ] = RN,M and UM is bounded as

δ (RN,M , UM ) ≤ M/2N.

Lemma 2.4. Let M ≤ N be positive integers and let X ∼ UN . For any x ∈ [0, N) there are unique
y ∈ [0,M), z ∈ [0, ⌈N/M⌉) such that x = y + zM . Let Zy := [⌊X/M⌋ | X ≡ y modM ] be the
random variable related to z obtained by dividing X by M and rounding down, conditioned on
X ≡ y modM . Then

Pr[Zy = z] =


1/⌈N/M⌉ if y < (N modM) ∧ y + zM ∈ [0, N);
1/⌊N/M⌋ if y ≥ (N modM) ∧ y + zM ∈ [0, N);

0 otherwise.

Hence Zy ∼ U⌈N/M⌉ if y < (N modM) and Zy ∼ U⌊N/M⌋ otherwise. Moreover, the statistical
distance between those two distributions is bounded:

δ(Zy,U⌈N/M⌉) ≤ δ(U⌊N/M⌋,U⌈N/M⌉) ≤ 1/⌈N/M⌉.

Lemma 2.5. Let UM be the uniform distribution on the set [0,M) and let Di be probability
distributions over the same set for i = 1, . . . , ℓ. Assume that there exists a constant 0 < δ ≤ 1/Mℓ

such that for all instances x ∈ [0,M)∣∣ Pr
X∼Di

[X = x]− Pr
Y∼UM

[Y = x]
∣∣ ≤ δ.

Then the statistical distance between the cartesian products
∏ℓ

i=1Di and
∏ℓ

i=1 UM is upper bounded
by 1

2

(
δℓM + (δℓM)2

)
.

Proof. See Appendix A.

We prove the following Lemma that we use in reductions to analyze repeatedly calling adversaries
with inputs belonging to the same group.

Lemma 2.6. Let X = {Xi}i∈I be a finite probability distribution ensemble, where Xi ∼ B(N, pi)
follows the binomial distribution with N samples with probability pi. Let the set X itself be endowed
with the uniform distribution. Given n ≥ 1, S ≥ 4 and the average probability p = E[pi], if
N = ⌈Sn/p⌉ then

Pr
X∈X

[X ≥ n] ≥ (p/2) · (1− e−n·CS )

where CS := (S − 3)/2 + 1/S − log (S/2). Note that CS ≥ 1 for S ≥ 8.

6



Proof (sketch). The claim can be shown by analyzing the subset X2 = {Xi ∈ X | pi > p/2} and
bounding its size |X2| ≥ (p/2) · |X |. For each Xi ∈ X2, one can then upper bound Pr[Xi ≤ n] using
Chernoff’s bound and the fact that pi > p/2. See Appendix A for a full version of the proof.

Lemma 2.7. Let B(N, p) and B(N, p′) be binomial distributions with N samples and respective
success probabilities p and p′. Then the statistical distance between these distributions is bounded by
(N2/2) · |p− p′|.

Proof (sketch). Define xi,j := Pr[B(i, p) = j], yi,j := Pr[B(i, p′) = j] and αi := maxj |xi,j − yi,j |.
Then the statistical distance is bounded by 1/2 ·N · αN . One can show that α1 = |p− p′|, and for
i ≥ 1 that αi+1 ≤ αi + α1 since for any j:

|xi+1,j − yi+1,j | =
|y1,1(xi,j−1 − yi,j−1) + y1,0(xi,j − yi,j) + xi,j−1(x1,1 − y1,1) + xi,j(x1,0 − y1,0)|
≤ y1,1αi + y1,0αi + xi,j−1α1 + xi,jα1 ≤ αi + α1,

It follows that αN ≤ N · |p− p′|, which proves the claim.

2.2 Security Games and Adversaries

Definition 2.8. A security game G is defined with respect to a set of parameters par (defining the
group family) and an adversary A that plays the game. A game consists of a main procedure that
receives as input a security parameter κ ∈ Z≥1 and at the end outputs a single bit 0 (A loses) or
1 (A wins). We denote the output of a game G executed with parameters par and adversary A as
GA
par(κ). We define the advantage of A in G as

AdvGpar,A(κ) := Pr[GA
par(κ) = 1].

We denote the (expected) running time of GA
par(κ) by TimeGpar,A(κ). We extend this notation to be

able to denote the advantage conditional on an event E in G:

AdvGpar,A|E(κ) := Pr[GA
par(κ) = 1 | E].

Definition 2.9. Let G, H be security games. We write H
(∆ε,∆t)
=====⇒ G if there exists an algorithm R

(called a (∆ε, ∆t)-reduction) such that for all algorithms A playing game G, the algorithm B := RA

playing game H satisfies

AdvHpar,B(κ) ≥ ∆ε · AdvGpar,A(κ)− negl(κ), TimeHpar,B(κ) ≤ ∆t · TimeGpar,A(κ) + T (κ),

where T (κ) is an insignificant overhead, i.e., limκ→∞ T (κ)/TimeGpar,A(κ)→ 0.

This notation can be extended, e.g., as H
(∆ε,∆t)
=====⇒

AGM
G to specify the reduction holds within the

mentioned restricted model (AGM in the example).

2.3 Algebraic Group Model

The algebraic group model (AGM) is a simplified model of computation introduced by Fuchsbauer
et al. [16]. It lies between the generic group model (GGM), first introduced by Nechaev [21] and
Shoup [29], and the standard (Turing machine) model. In the AGM all algorithms are modeled as
algebraic. This means that for any group element X ∈ G an algorithm may output, it additionally
has to output an algebraic representation a = (a1, . . . , aℓ) ∈ Zℓ such that X =

∏ℓ
i=1 g

ai
i in terms

of the group elements g = (g1, . . . , gℓ) ∈ Gℓ the algorithm has received as input. We will denote
such a representation by [X]g. In the GGM every algorithm only receives random identifiers of
group elements and can only perform group operations through oracle queries. In contrast to the
generic group model GGM, the AGM does not let us prove information-theoretic lower bounds on
the complexity of algebraic adversaries trying to solve a given problem. Just as in the standard
model, security implications in the AGM are proven through reductions.

The AGM has originally only been defined for cyclic groups G of known prime order [16]. In this
work, we will generalize this to the setting where G is an arbitrary finite abelian group of unknown
order |G|. The formal definition will be given in Subsection 4.1.
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2.4 Strong Algebraic Group Model

The strong algebraic group model (SAGM) has been introduced by Katz et al. [17] as a strengthened
version of the algebraic group model (AGM). The SAGM lies between the GGM and the AGM.
Any SAGM algorithm is algebraic, but it must expose the algebraic representation of output group
elements instead as an algebraic circuit more similar to the GGM. More specifically, algorithms
in the SAGM may use one or more output rounds, where in each output round any output group
element must be described as a primitive group operation on one or two group elements that were
input or were output in a previous round. Our definition of the SAGM is completely identical to the
definition from Katz et al. [17]. However, since the definition depends on our generalized definition
of the AGM, we will postpone giving the formal definition until Section 4.2.

3 Hidden Order Cyclic Group Model (HO-SM)

As a stepping stone to the theory of finite (not necessarily cyclic) abelian groups, we first consider
a simple reduction of the multiple order problem MOC to the discrete logarithm problem DLog for
cyclic groups of unknown order. Then we prove a novel reduction from HOC to DLog in Theorem
3.5, which will also illustrate some of the main techniques used in the rest of this paper.

Definition 3.1. A cyclic group family G = (Gκ)∞κ=1 is a family of probability distributions over
finite cyclic groups defined with:

1. An efficient sampling algorithm GGen that, on input 1κ, randomly samples a group G ∈ Gκ and
outputs a group description of G, a generator g and 1G.

2. An efficient sampling algorithm GSample which, given a group description of G, outputs a group
element x ∈ G sampled uniformly at random.

3. Efficient algorithms GMul and GInv that, respectively, multiplies two group elements, and inverts
a group element.

4. A group order upper bound U(κ): ∀κ∀G ∈ Gκ : U(κ) ≥ |G|, such that logU(κ) ∈ poly(κ) and
1/U(κ) ∈ negl(κ).

Remark 3.2. Note that the bit size of the representations of the group elements of all G ∈ Gκ
should be polynomial in the security parameter κ, since otherwise it would not be possible to
construct efficient algorithms on G. If we assume that an upper bound p(κ) on the bit size of the
representations is known, this automatically gives an upper bound Uκ = 2p(κ) on the order of G,
for which log(Uκ) is polynomial in κ.

Lemma 3.3. For any cyclic group family G = (Gκ)∞κ=1:

MOC
1,1

=====⇒
HO-SM

DLog.

Proof. Given a DLog adversary A, we construct an MOC adversary BA as follows, which takes
inputs G, g, U .

r $←− UU2 , d← A(g, gr)

if gd = gr then return |r − d| else return ⊥

By Lemma 2.3, the statistical distance between r mod |G| and the uniform distribution on [0, |G|)
has negligible bound ε1 := 1/U ∈ negl(κ). Since A succeeds with probability p := AdvDLog

(G,g),A when

gr is distributed uniformly in G, it follows that A succeeds on each instance (g, gr) with probability
at least p− ε1. Moreover, if A succeeds and gd = gr, then BA outputs |r − d| which is indeed an
integer multiple of the group order, but potentially zero if r = d.

To bound the probability that r = d, write r = r′+r′′|G| with 0 ≤ r′ < |G| and r′′ ∈ [0, N), where
N := ⌈U2/|G|⌉ ≥ U . Then gr = gr

′
only depends on r′, thus the execution and output d of A only

depends on r′ as well. This implies that we can view the experiment as if r is sampled, conditioned
on r ≡ r′ mod |G|, only after we receive the output d of A(g, gr′). Note that r′′ = (r − r′)/|G| is
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distributed as Zy in Lemma 2.4, and thus r′′ has statistical distance at most 1/N to UN . Since
furthermore, the probability that any particular value is sampled from UN is at most 1/N, it follows
that Pr[r = d] = Pr[r′′ = (d− r′)/|G|] ≤ 2/N =: ε2, then ε2 ≤ 2/U ∈ negl(κ). Hence, BA outputs a
non-zero multiple of the group order with probability at least (p− ε1)(1− ε2) = p− negl(κ) and
with the same time complexity as A plus some insignificant overhead.

The above Lemma shows that we can leverage a DLog adversary to obtain a multiple of the
group order with non-negligible probability. By repeating this process with independently randomly
chosen gr, we can obtain various multiples of the group order, and using the following theorem we
can show that in this way we can obtain the exact group order with high probability.

Theorem 3.4. Let k ≥ 2, n ≥ 223, and 1 ≤ d < n be positive integers, and let s1, . . . , sk be
arbitrary integers with |si| ≤ nd. Let X1, . . . , Xk be independent random variables with distribution
Un, then:

Pr[gcd(s1 +X1, . . . , sk +Xk) = 1] ≥ (1− (d/n)k−1) · (1− ϵk) · 1/ζ(k) =: σ(k, d/n),

where ζ(k) is the Riemann zeta function, ϵk ≤ .077 for k = 2 and ϵk ≤ 2.9 · 10−5 for k ≥ 3. When
d ≤ n/10, this probability is at least .505 for k ≥ 2, at least .92 for k ≥ 4, and at least .99 for k ≥ 7.

Proof. The proof is given in Appendix A.

Theorem 3.5. For any cyclic group family G = (Gκ)∞κ=1, integers k ≥ 2, S ≥ 4:

HOC
ck(1−e−k·CS )/2, ⌈Sk/p⌉
================⇒

HO-SM
DLog, e.g., HOC

.49, ⌈56/p⌉
=======⇒

HO-SM
DLog,

where p := AdvDLog
G,A (κ), CS as in Lemma 2.6, and ck := σ(k, 1/10) ≥ 0.505. The example uses S = 8

and k = 7.

Proof. Given a DLog adversary A with advantage p(κ) := AdvDLog
G,A (κ), then given k ≥ 2, S ≥ 4 we

construct an HOC adversary BA which takes input (1κ,G, g) with (G, g) ∈ Gκ as follows.

M := ∅
for i = 1, . . . , ⌈Sk/p(κ)⌉

ri $←− UU2 , di ← A(g, gri)

if gri = gdi then M ←M ∪ {|di − ri|}
if M ̸= ∅ then return gcd(M) else return ⊥

This adversary is similar to the one in the proof of Lemma 3.3, except it performs ⌈Sk/p(κ)⌉ such
sample & queries and returns the gcd of the obtained differences |ri − di|. This corresponds to the
time complexity factor ⌈Sk/p(κ)⌉ in the claim.

We have already shown that for each sample & query the probability that gr = gd depends on
(G, g) and is p′G := pG−negl(κ), where pG := AdvDLog

(G,g),A. Let p
′ := EG∈Gκ

[p′G] be the average success

probability of a successful sample & query for a random group G ∈ Gκ, then p′ = p(κ)− negl(κ).
Next we bound the probability we find at least k successful samples for a random group G ∈ Gκ.

We apply Lemma 2.6 on X = {B(⌈Sk/p(κ)⌉, pG)}G∈Gκ and use Lemma 2.7 to find that

Pr
G∈Gκ

[|M | ≥ k] = Pr
X∈X

[X ≥ k]− negl(κ) ≥ p · (1− e−k·CS )/2− negl(κ).

For any given (G, g), consider any successful sample & query gri = gdi and let N := ⌈U2/|G|⌉.
As the size of the outputs di of A are polynomially bounded in κ, there is an integer K such that
for all κ ≥ K the outputs of A are bounded by |di| ≤ NN/10. Assume that indeed |di| ≤ NN/10

and N ≥ U ≥ |G| ≥ 223.
We have already shown that r′′i = ⌊ri/|G|⌋ is distributed independently from di and has

negligible statistical distance ε1 to UN . By Theorem 3.4 it follows that if we have k successful
samples |r1 − d1|, . . . , |rk − dk| then

Pr [gcd (|r1 − d1|/|G|, . . . , |rk − dk|/|G|) = 1] ≥ σ(k, 1/10)− kε1 = ck − negl(κ).

Finally, we can conclude that indeed:
Pr(G,g)∈Gκ

[
BA(1κ,G, g) = |G|

]
≥ p · (ck(1− e−k·CS )/2)− negl(κ).
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4 Abelian Hidden Order Standard Model (AHO-SM)

In this section we propose a computational framework for working in finite abelian groups of hidden
order. We first generalize the notion of a (hard) group family from Damg̊ard and Koprowski [13],
and later introduce generalized notions of the algebraic group model from Fuchsbauer et al. [16] as
well as of the strong algebraic group model from Katz et al. [17].

In our definition of an abelian group family below we do not assume sampled groups come with
a canonical set of generators. Instead a sufficiently large set of random group elements can always
be used as generator set. Hence, for the computational problems considered in Table 2, each game
starts with sampling a group G as well as a set of random generators (g1, . . . , gn).

Definition 4.1. An abelian group family G = (Gκ)∞κ=1 is a family of probability distributions over
finite abelian groups defined with:

1. An efficient sampling algorithm GGen that, on input 1κ, samples uniformly at random a group
G ∈ Gκ and outputs a group description of G and 1G.

2. An efficient sampling algorithm GSample which, given a group description of G, outputs a group
element x ∈ G sampled uniformly at random.

3. Efficient algorithms GMul and GInv that, respectively, multiplies two group elements, and inverts
a group element.

4. A group order upper bound U(κ): ∀κ∀G ∈ Gκ : U(κ) ≥ |G|, such that logU(κ) ∈ poly(κ) and
1/U(κ) ∈ negl(κ).

5. A random group generator count n(κ) ∈ Z>0 and n(κ) ∈ poly(κ) such that

Pr[⟨g⟩ ≠ G | G $←− Gκ, g $←− Gn(κ)] ∈ negl(κ).

When the security parameter κ is clear from the context, we will usually omit κ and simply denote
U and n instead of U(κ) and n(κ), respectively.

Note that by the same arguments as in Remark 3.2, for any tuple of abelian group fam-
ily algorithms (GGen, GSample, GMul, GInv) there always exists a candidate U(κ) that satisfies
Definition 4.1. Moreover, the following Lemma also provides a candidate n(κ).

Lemma 4.2. For any abelian group G and U ≥ |G|, let n := ⌈log2 U⌉. Then there exist g1, . . . , gn
such that ⟨g1, . . . , gn⟩ = G. Moreover, 2n random elements fail to generate the full group with
exponentially small probability in n, i.e.,

Pr[⟨g⟩ ≠ G | g $←− G2n] ≤ 2−n(≤ 1/U).

Proof. The first part of the lemma follows directly from the observation that if gi+1 /∈ ⟨g1, . . . , gi⟩
then we have that |⟨g1, . . . , gi+1⟩| = k · |⟨g1, . . . , gi⟩| with k ∈ Z≥2. The second part of the
lemma follows from two observations. First, that for all g1, . . . , gi that generate a strict subgroup
G′ := ⟨g1, . . . , gi⟩ ≠ G the probability that a randomly sampled element lies in the subgroup is
bounded as Pr[x ∈ G′ | x $←− G] ≤ 1/2. Second, for g ∈ G2n with ⟨g⟩ ≠ G, it follows that for at
least n indices i it holds that gi+1 ∈ ⟨g1, . . . , gi⟩ ≠ G.

We generalize the notion of a hard group family from Damg̊ard and Koprowski [13, Definition
1] to the abelian hidden order setting as follows.

Definition 4.3. Let lp(N) denote the largest prime divisor of N . Sampling a group G $←− Gκ and
considering lp(|G|), induces a distribution Dκ on the primes. Define α(Gκ) := maxp PrG[p = lp(|G|)]
to be the maximal probability in Dκ. For a positive integer M , define the probability β(Gκ,M) :=
PrG[lp(|G|) ≤M ] that the largest prime divisor of the group order is at most M .

Definition 4.4. A hard abelian group family is an abelian group family (Gκ)κ∈Z>0
which satisfies

the following conditions:

1. α(Gκ) is negligible in κ;
2. There exists B(κ) such that ∀G ∈ Gκ : B(κ) ≤ |G| and 1/B(κ) ∈ negl(κ).
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Moreover, Damg̊ard and Koprowski noted that if (Gκ)κ∈Z>0
is a hard abelian group family, then

setting Mκ := 1/
√
α(Gκ) leads to β(Gκ,Mκ) as well as 1/Mκ being negligible [13, Fact 1].

The order of elements sampled uniformly at random will in general be superpolynomially large,
which we will show using the following two lemmas.

Lemma 4.5. Let |G| =
∏

p p
e(p) be the prime factorization of |G|. Then the probability for a prime

p | |G| to divide the order of a uniformly random element of G is 1− 1/pe(p).

Proof. By the fundamental theorem of finite abelian groups we can write G ∼=
⊕t

i=1(Z/p
ei
i Z),

where p1, . . . pt are (not necessarily distinct) prime numbers. The order of an element X ∈ G is not
divisible by a prime p | |G| if and only if X has trivial components in all subgroups corresponding
to (Z/peii Z) with pi = p. There are exactly

∏
pi ̸=p p

ei
i = |G|/pe(p) such elements.

Lemma 4.6. Let (Gκ)∞κ=1 be a hard abelian group family. Then there exists a superpolynomial
bound Mκ such that the order of a random element X ∈ G ∈ Gκ will have order greater than Mκ

with all but negligible probability, i.e.:

Pr [|⟨X⟩| < Mκ | X $←− G, G $←− Gκ] ∈ negl(κ).

Proof. As mentioned above, for Mκ := 1/
√
α(Gκ), the probability β(Gκ,Mκ) is negligible and the

bound Mκ is superpolynomial [13, Fact 1]. Assume that the largest prime divisor p of |G| is at least
Mκ, which thus happens with probability 1− negl(κ). Now, sampling X $←− G, we see that p divides
the order of X with probability ≥ 1− 1/p by Lemma 4.5, i.e. with all but negligible probability.

Note that even without knowing the exact group structure or the exact group order we can
efficiently sample group elements as gr close to uniform, as shown in the following two lemmas.

Lemma 4.7. Let G be a finite abelian group and let g1, . . . , gn ∈ G be a system of generators. Put
Oi := |⟨gi⟩| for i = 1, . . . , n. If we sample (ri)

n
i=1

$←−
∏n

i=1 UOi
and set X := gr11 · · · grnn , then X is

uniformly distributed in G.

Lemma 4.8. Let G be a finite abelian group and ⟨g1, . . . , gn⟩ = G, and let ℓ, v be positive integers.

If we sample (rij)
ℓ,n
i,j=1

$←− (UUv)ℓn and set Xi := gri11 · · · grinn for i = 1, . . . , ℓ. Then the statistical

distance between the distribution of (Xi)
ℓ
i=1 and the uniform distribution UGℓ is upper bounded by

ℓn/2Uv−1 + ℓ2n2
/2U2v−2.

Proofs of Lemmas 4.7 and 4.8 can be found in Appendix A.

4.1 Abelian Hidden Order Algebraic Group Model (AHO-AGM)

In this subsection we generalize the algebraic group model (AGM) of Fuchsbauer et al. [16] to
the setting of finite abelian groups of hidden order. We call this model the abelian hidden order
algebraic group model (AHO-AGM). In the AHO-AGM, all algorithms must satisfy the following
definition.

Definition 4.9. An algorithm A executed in an algebraic game G is called algebraic if for all
group elements X ∈ G that A outputs, it also outputs a representation a = (a1, . . . , aℓ) ∈ Zℓ such

that X =
∏ℓ

i=1 g
ai
i , where g = (g1, . . . , gℓ) ∈ Gℓ is the list of all group elements that have been

given to A so far. We will denote such a representation by [X]g. (Here, typically, g1, . . . , gn are the
uniformly randomly chosen generators for G.)

Surprisingly, a standard model reduction and an algebraic group model reduction can compose
to a standard model reduction under certain conditions. That is Z ======⇒

AHO-SM
X may follow from

Z =======⇒
AHO-AGM

Y and Y ======⇒
AHO-SM

X. For instance, note that any standard model algorithm for any

game X ∈ {MO, HO, DLog1, DLog2} is by definition also algebraic, since no group elements are
output. In that case any generic or algebraic reduction Y ⇒ X results in an algebraic adversary
for Y. Hence, such generic reductions Y ⇒ X in the standard model can be composed with any
algebraic group model reduction from Z⇒ Y to obtain a standard model reduction Z⇒ X. (See e.g.
Corollary 6.4.)
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4.2 Abelian Hidden Order Strong Algebraic Group Model (AHO-SAGM)

In this subsection we extend the strong algebraic group model (SAGM) to finite abelian (not
necessarily cyclic) groups. In the SAGM the running time of an algorithm is measured by the number
of algebraic rounds and the “normal” running time measured in some underlying computational
model (e.g. the Turing machine model). The SAGM is similar to the AGM, but in the case of the

repeated squaring problem with timing parameter T , an adversary can simply output g2
T

in one
algebraic round. Therefore the AGM is not the right model to study the hardness of the repeated
squaring problem. This is made formal in [17, Theorem 3]. Moreover, note that this model allows
for arbitrary parallelism, since strongly algebraic algorithms are allowed to output multiple tuples
per round. Of course efficient algebraic algorithms are only allowed to output a polynomial number
of tuples in each round.

Note that a strong algebraic algorithm is automatically an algebraic algorithm. Conversely,
assuming that the output length is polynomial, any algebraic algorithm can be turned into a
strongly algebraic algorithm with a polylogarithmic time loss (see [17, Theorem 1]).

Our definition is a generalization of the original definition introduced by Katz et al. [17]. Contrary
to Katz et al. [17], we let G be any finite abelian group, which is sampled according to some group
family G = (Gκ)∞κ=1. Here κ can be seen as the security parameter of the corresponding game.
We call this model the abelian hidden order strong algebraic group model (AHO-SAGM). In the
AHO-SAGM, all algorithms must satisfy the following definition.

Definition 4.10. An algorithm A over a group G is called strongly algebraic if it has one or more
output rounds (between which it may perform arbitrary local computation). An output round is
called algebraic if it contains one or more group elements. For each group element X it outputs it
must also output a tuple of one of the following forms:

1. (X,X1, X2) ∈ G3 such that X = X1X2, where X1, X2 were either previously given to A or
previously output by A.

2. (X,X1) ∈ G2 such that X = X−1
1 , where X1 was either previously given to A or previously

output by A.

In the AHO-SAGM, we will denote a tuple of one of the above forms by [X]. The algebraic running
time of A is the number of algebraic rounds it takes, and is denoted by ATime. We denote the
running time of A by a pair (ATime,Time).

5 Computing (a Multiple of) the Group Order

Following [7], given a system of generators g = (g1, . . . , gn) of a finite abelian group G, we call any
vector e = (e1, . . . , en) ∈ Zn with the property that ge = 1G a relation for g. The relations for g
form a lattice in Zn, which we will denote by L(g). Since this lattice is the kernel of the surjective
homomorphism

Zn → G, e 7→ ge, (1)

its dimension is n. Let B = (b1, . . . , bn) be a basis for the lattice L(g), then Zn/B Zn ∼= G by (1),
from which it follows that [7, Lemma 3.1]

|det(B)| = |Zn/B Zn| = |G|. (2)

We can show that if you find a full rank sublattice of L(g), then you obtain a multiple of the
group order:

Lemma 5.1. Let G be a finite abelian group, let g = (g1, . . . , gn) be a system of generators of
G, and let B = (b1, . . . , bn) be a basis for the relationship lattice L(g). Let R = (r1, . . . , rn) be a
system of relations for g, which are linearly independent as vectors over R. This implies these form
a full rank sublattice Λ := RZn ⊂ L(g). Then |det(R)| is an integer multiple of |G|.

Proof. Since both lattice bases B and R generate Rn as a vector space, we know that there is a
matrix T = (tij)

n
i,j=1 such that R = BT , with d := det(T ) ̸= 0. Since a change of basis on either

L(g) or Λ multiplies d by ±1, the absolute value of d is uniquely determined by L(g) and Λ, and
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we will also refer to this as the relative determinant d(Λ/L(g)) := |d|. Since ri ∈ Λ ⊂ L(g), we can
write ri =

∑n
j=1 aijbj for some aij ∈ Z. Hence from the expression ri =

∑n
j=1 tijbj , we deduce

that tij ∈ Z (since otherwise we would obtain a linear relation between the bj). This implies that
d = det(T ) ∈ Z. Together with equation (2), we see that |det(R)| = |d · det(B)| is an integer
multiple of |G|.

Given a distribution over Zn×n resulting in the uniform distribution over Zn×n
p when reducing

matrices modulo a prime p, then one can use the Schwartz-Zippel lemma [28,31] to upper bound
the probability of sampling a singular matrix.

Lemma 5.2 ([28,31]). Let p be prime. Let F (X1, . . . , Xk) ∈ Zp[X1, . . . , Xk] be a nonzero poly-
nomial of total degree d. Then for uniformly random x1, . . . , xk

$←− Zp, the probability that
F (x1, . . . , xk) = 0 is at most d/p.

Corollary 5.3. Let p be a prime and n ≥ 1 an integer. Then
we have Pr[det(x1, . . . ,xn) = 0 | x1, . . . ,xn

$←− Zn
p ] ≤ n/p.

5.1 Reduction Template for MO

Using the previous results, we construct a template reduction MO ⇒ G for some computational
game G, and specify certain conditions G needs to satisfy in order for such a reduction to succeed
with sufficiently high probability.

We have seen in Lemma 5.1 that if we can find n linearly independent relations R = (r1, . . . , rn)
w.r.t. some system of generators g for G, then |det(R)| is going to be an integer multiple of the order
of G. Therefore to show that we can reduce the multiple order problem MO to some computational
problem G, it suffices to show that we can use any adversary A for game G to obtain n linearly
independent relations for a given system of generators with a reasonable probability.

We are now ready to formulate the necessary conditions on the game G for a reduction MO⇒ G
to exist, and construct a template for such a reduction.

Lemma 5.4. Let G = (Gκ)∞κ=1 be a group family with security parameter κ ∈ Z>0. Let G be some
computational game, which, given κ, is based on sampling a group G $←− Gκ and g = (g1, . . . , gn)

$←−
Gn uniformly at random. Let RelA be a relation sampler that takes as input a group G ∈ Gκ,
g = (g1, . . . , gn) ∈ Gn, and has oracle access to an adversary A for game G. Assume RelA satisfies
the following properties for any given adversary A in a given group model AHO-GM (i.e., AHO-SM,
AHO-AGM, AHO-SAGM):

(i) RelA(G, g) outputs either ⊥ (failure) or a relation e s.t. ge = 1G (success).
(ii) When G = ⟨g⟩, each execution of RelA(G, g) has independent and identical success probability

p′G,g with |p′G,g − pG| ≤ ε1 ∈ negl(κ).
(iii) When G = ⟨g⟩, given n relation outputs e1, . . . , en of n independent and successful executions

of RelA(G, g), then Pr[det (e1, . . . , en) = 0] ∈ negl(κ).
(iv) TimeG,Rel ∼ TimeGG,A, i.e., the time complexity of Rel is asymptotically equivalent to that of A.

Then for S ≥ 4:

MO
(1−e−n·CS )/2, ⌈Sn/p⌉
===============⇒

AHO-GM
G,

where p := AdvGG,A(κ), pG := AdvGG,A|G(κ) and CS is defined as in Lemma 2.6.

Proof. Given an adversary A for game G, we construct an MO adversary BA which takes input
(1κ,G, g) where G ∈ Gκ, g ∈ Gn as given in Figure 2. The adversary B calls A exactly l := ⌈Sn/p⌉
times, which explains the time factor. For the advantage of B our proof is based on the following
inequality:

AdvMO
G,B(κ) ≥ Pr

G,g
[BA(1κ,G, g) ∈ Z>0 | Columns(E) = n ∧ ⟨g⟩ = G]

· Pr
G,g

[Columns(E) = n | ⟨g⟩ = G] · Pr
G,g

[⟨g⟩ = G]

≥ p · (1− e−n·CS )/2− negl(κ) (3)
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E := ()

for i = 1, . . . , ⌈Sn/p⌉

ei ← RelA(G, g)

if ei ̸= ⊥ then

E ← (E∥eT
i )

if Columns(E) = n then return |det(E)|
return ⊥

Fig. 2. Template for MO adversary BA(G, g)

First, recall that by Definition 4.1(5.):

Pr
G,g

[⟨g⟩ = G] = 1− negl(κ). (4)

Second, by condition (iii), over all G, g with ⟨g⟩ = G:

Pr
G,g

[BA(1κ,G, g) ∈ Z>0 | Columns(E) = n ∧ ⟨g⟩ = G] = 1− negl(κ). (5)

Third, for any given G, g with ⟨g⟩ = G, the success probability of each call to Rel is p′G,g and
the amount of successful calls has distribution B(l, p′G,g) by condition (ii). From condition (ii)
and Lemma 2.7 it follows that the statistical distance between B(l, p′G,g) and B(l, pG) is at most

ε2 := (l2/2) · ε1 ∈ negl(κ).
By applying Lemma 2.6 on X = {B(l, pG)}G∈Gκ

, we find that

Pr
G,g

[Columns(E) = n | G = ⟨g⟩] ≥ Pr
X∈X

[X ≥ n]− ε2 ≥ p · (1− e−n·CS )/2− ε2. (6)

The desired inequality (3) is obtained by multiplying Eqs. (4), (5) and (6).

6 Security Reductions in the AHO-SM

In this section we prove reductions in the abelian hidden order standard model. Firstly, {StRoot,
ARoot, e-RT, T -RSW} ⇒ MO were previously shown. Using an assumed small prime divisor of
group order oracle O, we can prove LOO ⇒ MO as well. Followed by reductions MO⇒ DLog1 and
MO⇒ DLog2, where the latter follows from the straightforward reduction CDH2 ⇒ DLog2 and the
reduction MO⇒ CDH2 from Theorem 7.5. An impossibility of efficient generic reductions in the
opposite direction for DLog1, DLog2 and CDH2 is treated in section 6.1.

Lemma 6.1 ([13,30,17,2]).

{StRoot,ARoot, T -RSW, e-RT} 1,1
======⇒
AHO-SM

MO, for gcd(e, |G|) = 1.

Proof (sketch). Let N denote the multiple of the group order |G|. For e-RT this is a trivial
generalization over [13,2]. Given N , one can determine N ′ = N/ gcd(e⌊loge(N)⌋, N). The resulting
value N ′ will still be a multiple of |G| and coprime with e, hence one can compute an e-th root
of X ∈ G as Y := Xd where ed ≡ 1 mod N ′. Now the first two reductions can be easily shown
using the e-RT reduction: For StRoot one can pick an exponent coprime to N (e.g., by picking
a prime > N); For ARoot the adversary receives a random large prime e which is coprime to N
with all but negligible probability. Finally, T -RSW ⇒ MO since log2(2

T ) ≫ log2(2
T mod N) for

any T ≫ log2(N).

Note that for e-RT with gcd(e, |G|) > 1 the situation is less straightforward. For cyclic groups
and some more general forms of finite abelian groups, Shank’s algorithm can be extended to compute
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e-th roots [19, Chapter 3]. However, this holds in the known group order setting, and it remains an
open question whether it is possible to compute e-th roots given only a multiple of the order.

The situation for the reduction LO⇒ MO is also complex. First of all, there need to be elements
or order < 2κ in the group G in order for the reduction to be possible at all. An algebraic method
that works in any finite abelian group which contains elements of low order, is not known to the
authors at this time. However, if one has access to an oracle which provides a small prime divisor
of the group order, then it is possible to construct such a reduction as we prove below. Note that a
concrete example of such an oracle can be given in the setting of class groups of imaginary quadratic
number fields. Here the Cohen-Lenstra heuristics [11] predict that the group order is divisible by
an odd prime q with probability ℧(q) = 1−

∏∞
n=1 (1− 1/qn). For example: ℧(3) ≈ 0.439874.

Proposition 6.2. Let O be an oracle that on input a finite abelian group G ∈ Gκ, outputs a prime
q < 2κ which divides the order |G| with non-negligible probability p. Let LOO denote the low order
game where an adversary playing the game has access to O. Then

LOO p/2, 1
======⇒
AHO-SM

MO.

Proof. Given an MO adversary A, we construct an LO adversary BA,O, which takes input (G, g)
with G ∈ Gκ and g ∈ Gn, as defined below:

q ← O(G), N ← A(g), r $←− (UU2)n, X := gr

for i = 1, . . . , ⌊logq(N)⌋

if N ̸≡ 0 mod qi then return ⊥

if XN/qi ̸= 1G then return (XN/qi , q)

return ⊥

For random G $←− Gκ and g $←− Gn, if the output of A is correct and q divides the order of X, then
we claim that BA,O outputs a correct element of low order. Indeed, we know that XN = 1G and
since N/q⌊logq(N)⌋ is not divisible by q, there must be an 1 ≤ i ≤ ⌊logq(N)⌋ for which XN/qi ̸= 1G.

Let i∗ be the first i for which this happens, then (XN/qi
∗

)q = XN/qi
∗−1

= 1G, so the output of
BA,O is indeed correct in this case.

By definition of the oracle O, the group order |G| is divisible by q with probability p. If q divides
the group order, then by Lemma 4.5 the probability that q divides the order of a uniformly chosen
X ∈ G is at least 1− 1/q ≥ 1/2.

By Lemma 4.8, the distribution of X has negligible statistical distance to the uniform distribution
UG when g forms a system of generators for G, and we assume the latter to happen with all but
negligible probability. Hence BA,O succeeds with probability AdvLOG,BA,O (κ) ≥ (p/2+ ε) ·AdvMO

G,A(κ),
for some negligible ε.

Lemma 6.3.

CDH2
1, 1

======⇒
AHO-SM

DLog2

Proof (sketch). Given a CDH2 instance (X,A,B), one can simply query a DLog2 adversary on
(X,A) and raise B to the resulting output.

Note that any standard model DLog2 adversary is algebraic as well, hence the above generic
reduction produces an algebraic CDH2 adversary which can be composed with the algebraic reduction
in Theorem 7.5 to obtain:

Corollary 6.4.

MO
(1−e−n·CS )/2, ⌈Sn/p⌉
===============⇒

AHO-SM
DLog2, for S ≥ 4,

where p := Adv
DLog2
G,A (κ) and CS is defined as in Lemma 2.6.
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Theorem 6.5.

MO
(1−e−n·CS )/2, ⌈Sn/p⌉
===============⇒

AHO-SM
DLog1, for S ≥ 4,

where p := Adv
DLog1
G,A (κ) and CS is defined as in Lemma 2.6.

Proof. Given a DLog1 adversary A, we construct an MO adversary BA, which takes input (G, g)
with G ∈ Gκ and g ∈ Gn, according to the template in Lemma 5.4. We define a relation sampler
RelA as follows, where we assume that a state is maintained in which all internal variables are
stored and which is passed between the subroutines.

RelA(G, g)
(g̃i, Xi)← Samp(G)

d̃i ← A(g̃i, Xi)

return Ext(G, g, state)

Samp(G)

Ai
$←− (UU2)n

2

ri
$←− (UU3)n

return (gAi , gri)

Ext(G, g, state)
if g̃d̃i

i = Xi then

return ri −Aid̃i

else return ⊥

Assume G $←− Gκ and g $←− Gn are sampled uniformly at random. It is straightforward to check that
ri −Aid̃i do indeed form relations with respect to g; hence Lemma 5.4(i) is satisfied.

By assumption, g forms a system of generators with all but negligible probability. Conditioned
on the event that G = ⟨g⟩, the instances (g̃i, Xi) have negligible statistical distance to the uniform
distribution UGn+1 by Lemma 4.8, which is the way problem instances are distributed in the
definition of DLog1. Hence each execution of RelA(G, g) has independent and identical success
probability p′G,g, with

p′G,g = Adv
DLog1
G,A |G(κ) + ε1

for some negligible ε1; thus Lemma 5.4(ii) is satisfied. Moreover, Lemma 5.4(iv) is also clear under
the assumption that the runtime of Rel is asymptotically dominated by the runtime of A.

It remains to show that Lemma 5.4(iii) is satisfied. Let Oj := |⟨gj⟩| and write rij = r′ij + r′′ijOj

with 0 ≤ r′ij < Oj . Furthermore, write Ai = (ai1, . . . ,ain) and let dij =
∑n

k=1 aikj d̃ik. We can split
the relationship coefficients as

r̂ij − d̂ij with r̂ij := r′′ijOj , d̂ij := dij − r′ij .

Without loss of generality, we assume A succeeds on the instances i = 1, . . . , n. Our goal will be
to show that the r̂ij are distributed negligibly close to uniform modulo p given arbitrary values

of the shifts d̂ij , so that we can conclude that the coefficients r̂ij − d̂ij = rij − dij are distributed
negligibly close to uniform modulo p by Lemma 2.1. Ultimately, we conclude that the probability
that det(rij − dij)ni,j=1 = 0 is negligible by Corollary 5.3.

Since g
rij
j = g

r′ij
j , the execution of A is independent from the r′′ij . So despite the distribution

of the ri being conditioned on A succeeding on input (gAi , gri), the distribution of the r′′ij is
independent from that of the dij . It therefore suffices to show that the r̂ij are distributed negligibly
close to uniform modulo p given arbitrary values of the r′ij ∈ [0, Oj). We pick p to be a prime
|G|/2 < p < |G|, which exists by Bertrand’s postulate (see e.g., [1, Chapter 2]), so that p is coprime
to Oj for each j = 1, . . . , n. Hence it suffices to show that the r′′ij are distributed negligibly close to
uniform modulo p given arbitrary values of the r′ij ∈ [0, Oj).

Let y ∈ [0, p) and fix x ∈ [0, Oj). We can bound the probability as

1

p
− Oj

U3 −Oj
≤ Pr[r′′ij ≡ y mod p | r′ij = x] ≤ 1

p
+

Oj

U3 −Oj
,

and denote this distribution by RU3,ij,p,x. Hence we can apply Lemma 2.5 with δ = Oj/(U
3 −Oj)

to find that, for fixed (xij)
n
i,j=1 ∈

∏n
i,j=1[0, Oj), the statistical distance ∆ between (Up)n

2

and∏n
i,j=1RU3,ij,p,xij

is bounded as

∆ ≤ 1

2

(
n2pOj

U3 −Oj
+

(
n2pOj

U3 −Oj

)2
)
≤ 1

2

(
n2

U − 1
+

(
n2

U − 1

)2
)

which is negligible. Hence the probability that det(E) = det(rij − dij)ni,j=1 = 0 is negligible by
Corollary 5.3; thus Lemma 5.4(iii) is satisfied.
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6.1 Impossibility Results for Generic Reductions

Corollary 6.6. There do not exist efficient generic reductions from DLog1 to MO and from CDH1

to MO: solving these problems in the generic group model for prime cyclic groups G takes time√
|G| with known group order [29, Theorem 1 and 3]. Since DLog2 is equivalent to DLog1 in the

case of cyclic groups of prime order, it also follows that no efficient generic reduction from DLog2
to MO exists.

Lemma 6.7. For a group family of (hidden) cyclic large prime order, we have

CDH1
1,1

=====⇒
HO-SM

CDH2

Proof (sketch). On CDH1 input tuple (g, ga, gb), choose random exponent r and let s = r−1 mod p.
Let X = gr, Y = (ga)r = Xa, Z = gb = Xbs and we return R = A(g,X, Y, Z). If A is successful
then R = Xabs = gabsr = gab as desired. Note that it does not need to know the prime order p.

Corollary 6.8. There does not exist an efficient generic reduction from CDH2 to MO, as otherwise
this would contradict Corollary 6.6 using Lemma 6.7.

7 Security Reductions in the AHO-AGM

Theorem 7.1.

MO
(1−e−n·CS )/2, ⌈Sn/p⌉
===============⇒

AHO-AGM
StRoot, for S ≥ 4,

where p := AdvStRootG,A (κ) and CS is defined as in Lemma 2.6.

Proof. Again we will use the template from Lemma 5.4 to construct an MO adversary BA, which
takes input (G, g) with G ∈ Gκ and g ∈ Gn, given an algebraic StRoot adversary A. We define a
relation sampler RelA as follows, where we assume that a state is maintained in which all internal
variables are stored and which is passed between the subroutines.

RelA(G, g)
(g̃i, Xi)← Samp(G)

([Yi](g̃i,Xi), ei)← A(g̃i, Xi)

(bi, ci) := [Yi](g̃i,Xi)

return Ext(G, g, state)

Samp(G)

Ai
$←− (UU2)n

2

ri
$←− (UU3)n

return (gAi , gri)

Ext(G, g, state)
if (Y ei

i = Xi ∧ ei > 1) then

return ri(1− ciei)− eiAibi

else return ⊥

Assume G $←− Gκ and g $←− Gn are sampled uniformly at random. Again it is straightforward to
check that ri(1− ciei)− eiAibi do indeed form relations with respect to g; hence Lemma 5.4(i) is
satisfied. Completely analogous to Theorem 6.5 conditions (ii) and (iv) of Lemma 5.4 are satisfied.

Our approach to show that Lemma 5.4(iii) is satisfied will be similar to the one in Theorem
6.5. Without loss of generality, we assume that A succeeds on instances i = 1, . . . , n. Write
Ai = (ai1, . . . ,ain) and rij = r′ij + r′′ij Oj with 0 ≤ r′ij < Oj , and split the relationship coefficients
as

r̂ij − d̂ij with r̂ij := r′′ij(1− ciei)Oj , d̂ij := ei

n∑
k=1

aikjbik + r′ij(ciei − 1).

We claim that we can now pick a prime p such that it is coprime to each Oj for j = 1, . . . , n, and
additionally coprime to 1 − ciei for all i = 1, . . . , n (note that 1 − ciei ≠ 0 since ei > 1). This is
possible since by [14, Théorème 1.10: 4 & 5], for |G| ≥ 120368 ≈ 217, there are superpolynomially
many, namely at least

|G| (log(|G|/4)− 1.2)

2(log |G| − 1)(log(|G|/2)− 1.1)
,

primes between |G|/2 and |G|. As mentioned before, these are coprime to each Oj for j = 1, . . . , n.
Moreover, the number of prime factors of 1− ciei is bounded polynomially for each i = 1, . . . , n, and
n is bounded polynomially; hence there are superpolynomially many primes meeting our criteria.
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From Theorem 6.5 we know that the distribution of (r′′ij mod p)ni,j=1, conditioned on arbitrary

values of (r′ij)
n
i,j=1 ∈

∏n
i,j=1[0, Oj), has negligible statistical distance to (Up)n

2

and is independent

of ei, bi and ci for i = 1, . . . , n. Hence we can conclude that (r̂ij − d̂ij mod p)ni,j=1 has negligible

statistical distance to (Up)n
2

, and thus that the probability that det(E) = det(r̂ij − d̂ij)ni,j=1 = 0 is
negligible by Corollary 5.3; hence Lemma 5.4(iii) is satisfied.

Theorem 7.2.

MO
(1−e−n·CS )/2, ⌈Sn/p⌉
===============⇒

AHO-AGM
ARoot, for S ≥ 4,

where p := AdvARootG,A (κ) and CS is defined as in Lemma 2.6.

Proof. Given an algebraic ARoot adversary A, we will again use the template from Lemma 5.4 to
construct an MO adversary BA, which takes input (G, g) with G ∈ Gκ and g ∈ Gn. We define a
relation sampler RelA as follows, where we assume that a state is maintained in which all internal
variables are stored and which is passed between the subroutines.

RelA(G, g)
(g̃i, Xi, ℓi)← Samp(G)

[Yi](g̃i,Xi)
← A(g̃i, Xi, ℓi)

(ci, di) := [Yi](g̃i,Xi)

return Ext(G, g, state)

Samp(G)

Ai
$←− (UU3)n

2

[Xi]gAi
i

← A(gAi)

bi := [Xi]gAi
i

ℓi $←− Primes(2κ)

return (gAi , Xi, ℓi)

Ext(G, g, state)
if (Y ℓi

i = Xi ∧ Xi ̸= 1G) then

return Ai(bi(1− diℓi)− ciℓi)

else return ⊥

It is straightforward to check that Ai(bi(1− diℓi)− ciℓi) do indeed form relations with respect
to g; hence Lemma 5.4(i) is satisfied. Completely analogous to Theorem 6.5 conditions (ii) and (iv)
of Lemma 5.4 are satisfied.

To show that Lemma 5.4(iii) is satisfied, we again take a similar approach as in the proof of
Theorem 6.5. Without loss of generality, we assume that A succeeds on instances i = 1, . . . , n.
Write Ai = (ai1, . . . ,ain) and aikj = a′ikj + a′′ikjOj with 0 ≤ aikj < Oj . Note that for every
i = 1, . . . , n, there is at least one k ∈ {1, . . . , n} for which bik ̸= 0 since A needs to output a
non-trivial Xi to succeed. For each i = 1, . . . , n, pick such a k ∈ {1, . . . , n}, and denote it by ki.
Put δik := bik(1− diℓi)− cikℓi, expand and split the relation coefficients as

r̂ij + d̂ij with r̂ij := a′′ikijδikiOj , d̂ij := a′ikijδiki +
∑
k ̸=ki

aikjδik.

As before, our goal is to show that the r̂ij are distributed negligibly close to uniform modulo some

prime p given arbitrary values of the shifts d̂ij . We first claim that the δiki
can only be zero with

negligible probability, so that we can pick the prime p coprime to δiki for all i = 1, . . . , n, just as
in the proof of Theorem 7.1. Then it suffices to show that the distribution of (a′′ikij

mod p)ni,j=1,

conditioned on arbitrary values of the (a′ikij
)ni,j=1 ∈

∏n
i,j=1[0, Oj), has negligible statistical distance

to (Up)n
2

. The latter follows completely analogous as in the proof of Theorem 6.5. So it remains to
show the first claim.

Recall that δiki = biki(1− diℓi)− cikiℓi with biki ̸= 0. If ciki = 0, then δiki = biki(1− diℓi) ̸= 0
since ℓi > 1. If ciki

̸= 0 and δiki
= 0, this implies that ℓi divides biki

, which can only happen with
negligible probability since biki

is chosen before ℓi is picked uniformly from a superpolynomially
large set of primes.

Ultimately we can conclude analogous to Theorem 7.1 that Lemma 5.4(iii) is satisfied, which
concludes our proof.

Boneh, Bünz and Fisch [6] previously established the standard model reduction ARoot ==⇒
SM

LO.

(That is, given an element X ∈ G whose order divides d, one can compute an ℓ-th root as Y = Xe

where eℓ ≡ 1 mod d.) We note that this reduction is generic, and thus ARoot =======⇒
AHO-AGM

LO as well.

Composing this reduction with Theorem 7.2, we obtain the following corollary.
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RelA(G, g)

(g̃i, Xi, Ai, Bi)← Samp(G)

[Yi](g̃i,Xi,Ai,Bi)
← A(g̃i, Xi, Ai, Bi)

(ci, di, ei, fi) := [Yi](g̃i,Xi,Ai,Bi)

return Ext(G, g, state)

Samp(G)

Hi
$←− (UU2)n

2

(ri, ai, bi) $←− (UU3)n+2

return (gHi , gri , griai , gribi)

Ext(G, g, state)

if Yi = Xaibi
i then

return ri(di + aiei + bifi − aibi) +Hici

else return ⊥

Fig. 3. The MO relation sampler Rel(G, g,A) given CDH2 adversary A.

Corollary 7.3.

MO
(1−e−n·CS )/2, ⌈Sn/p⌉
===============⇒

AHO-AGM
LO, for S ≥ 4,

where p := AdvLOG,A(κ) and CS is defined as in Lemma 2.6.

Theorem 7.4.

MO
(1−e−n·CS )/2, ⌈Sn/p⌉
===============⇒

AHO-AGM
e-RT, for S ≥ 4,

where p := Adv e-RT
G,A (κ) and CS is defined as in Lemma 2.6.

Proof. Given an algebraic e-RT adversary A for some fixed e ∈ Z>1, we use the template from
Lemma 5.4 to construct an MO adversary BA, which takes input (G, g) with G ∈ Gκ and g ∈ Gn.
We define a relation sampler RelA as follows, where we assume that a state is maintained in which
all internal variables are stored and which is passed between the subroutines.

RelA(G, g)
(g̃i, Xi)← Samp(G)

[Yi](g̃i,Xi)
← A(g̃i, Xi)

(bi, ci) := [Yi](g̃i,Xi)

return Ext(G, g, state)

Samp(G)

Ai
$←− (UU2)n

2

ri
$←− (UU3)n

return (gAi , grie)

Ext(G, g, state)
if Y ei

i = Xi then

return ri(e− cie
2)−Aibie

else return ⊥

It is straightforward to check that ri(e− cie2)−Aibie do indeed form relations with respect to
g; hence Lemma 5.4(i) is satisfied. Again, completely analogous to Theorem 6.5, conditions (ii) and
(iv) of Lemma 5.4 are satisfied.

We can show almost completely analogous to the proof of Theorem 7.1 that Lemma 5.4(iii)
is satisfied, with the only difference being that we now pick the prime p coprime to e − cie2 for
i = 1, . . . , n (where we again assume without loss of generality that A succeeds on the instances
i = 1, . . . , n). Note that e− cie2 is nonzero since e > 1.

Theorem 7.5.

MO
(1−e−n·CS )/2, ⌈Sn/p⌉
===============⇒

AHO-AGM
CDH2, for S ≥ 4,

where p := AdvCDH2

G,A (κ) and CS is defined as in Lemma 2.6.

Proof. Given an algebraic CDH2 adversary A, we construct an MO adversary BA, which takes
input (G, g) with G ∈ Gκ and g ∈ Gn, using the template from Lemma 5.4. We define a relation
sampler RelA as shown in Figure 3, where we assume that a state is maintained in which all internal
variables are stored and which is passed between the subroutines. It is again straightforward to
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check that ri(di+aiei+bifi−aibi)+Hici do indeed form relations with respect to g; hence Lemma
5.4(i) is satisfied. Conditions (ii) and (iv) of Lemma 5.4 hold up analogous to Theorem 6.5.

To show that Lemma 5.4(iii) is satisfied, we again follow a similar approach to Theorem
6.5, only with a few more subtleties. Without loss of generality, we assume that A succeeds on
instances i = 1, . . . , n. Write Hi = (hi1, . . . ,hin) and rij = r′ij + r′′ijOj with 0 ≤ r′ij < Oj , put
δi := di + aiei + bifi − aibi, and split the relation coefficients as

r̂ij + d̂ij with r̂ij := r′′ijδiOj , d̂ij := r′ijδi +

n∑
k=1

hikjcik.

Similar to the proof of Theorem 7.2, we want to pick our prime p coprime to δi for all i = 1, . . . , n.
We claim that δi can only be zero with negligible probability, and show this using a similar argument
as for that the determinant of the relationship matrix can only be zero with negligible probability.

Write ai = a′i + a′′i |⟨Xi⟩| and bi = b′i + b′′i |⟨Xi⟩| with 0 ≤ a′i, b
′
i ≤ |⟨Xi⟩|. Pick a prime

|G|/2 < p′ < |G| so that it is coprime to |⟨Xi⟩| for each i = 1, . . . , n. Completely analogous to
the proof of Theorem 6.5, the distribution of (a′′i mod p′, b′′i mod p′)ni=1, conditioned on arbitrary

values of (a′i, b
′
i) ∈

∏n
i=1 [0, |⟨Xi⟩|)2, has negligible statistical distance to (Up′)2n. Moreover, it is

independent from di, ei and fi since a
′′
i and b′′i are completely hidden from the point of view of the

adversary. By Lemma 5.2, the probability that (z1i, z2i)
n
i=1

$←− (Up′)2n are a zero modulo p′ of the
polynomial F (Z11, . . . , Z1n, Z21, . . . , Z2n), defined as

n∏
i=1

di + (a′i + Z1i|⟨Xi⟩|) ei + (b′i + Z2i|⟨Xi⟩|) fi − (a′i + Z1i|⟨Xi⟩|) (b′i + Z2i|⟨Xi⟩|) ,

is at most 2n/p′ (note that F reduces to a nonzero polynomial of degree 2n over Fp′), which
is negligible. It follows that any of the δi can only be zero with negligible probability since
F (a′′1 , . . . , a

′′
n, b

′′
1 , . . . , b

′′
n) =

∏n
i=1 δi.

Now analogous to the proof of Theorem 7.2, we can conclude that Lemma 5.4(iii) is satisfied.

8 Security Reductions in the AHO-SAGM

In this section we will show, using similar arguments as before, that it is possible to reduce the
multiple order problem MO to the T -repeated squaring problem T -RSW in the AHO-SAGM. Our
result can be seen as a generalization of that of [17, Theorem 2] from the family of cyclic RSA
groups to all finite abelian groups. The proof in the abelian case is more complex due to the
additional complications that arise from having to run the T -RSW adversary multiple times in order
to extract several group relations, which have to be shown to be independent enough. Furthermore,
our security definition of T -RSW in AHO-SAGM is weaker by giving the adversary A1 more power:
(1) in contrast to [17], A1 itself may be standard model and does not have to be strongly algebraic;
(2) in contrast to [17], A1 is given g (i.e., the same generators g as the strongly algebraic online
algorithm A2 output by A1).

We have already seen the reduction in the opposite direction T -RSW⇒ MO; hence this shows
the T -repeated squaring and the multiple order game are (asymptotically) equivalent in the
AHO-SAGM. Before we show this reduction, we first prove a useful lemma bounding the size of the
representation coefficients of the output elements of strongly algebraic algorithms.

Lemma 8.1. Let G be a finite abelian group and let g = (g1, . . . , gn) be a tuple of elements
of G. Let A be any strongly algebraic algorithm running in at most t rounds on input g and
X = gr = gr11 · · · grnn for r = (r1, . . . , rn) ∈ Zn

≥1 (i.e. ATime(A(g, X)) ≤ t). Let Y be any output of
A and let (Ys, Ys,1, Ys,2) or (Ys, Ys,1) be the corresponding tuples for each element Ys being output
at round 1 ≤ s ≤ t. (Note that A is in fact allowed to output arbitrary many tuples in each round,
but we can always pick a path of sequential computation leading to Y .) Then the following two
statements hold.

1. The generalized discrete logarithm DLogA(g, Y ) of Y with respect to g and A, can be recursively
computed as follows:
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– DLogA(g, gi) = 1i (the vector with a 1 on the i-th place and 0 on all others) for 1 ≤ i ≤ n,
DLogA(g, X) = r;

– For s = 1, . . . , t, let

DLogA(g, Ys) =

{
DLogA(g, Ys,1) + DLogA(g, Ys,2) if Ys = Ys,1Ys,2

−DLogA(g, Ys,1) if Ys = Y −1
s,1

2. The generalized discrete logarithm d = (d1, . . . , dn) := DLogA(g, Y ) satisfies |di| ≤ 2t ri for all
1 ≤ i ≤ n.

Proof. The first statement is clear. For the second statement we note that if t = 1, the only elements
A can output are:

gi = g1i , g2i = g2·1i , gigj = g1i+1j , g−1
i = g−1i ,

X = gr, giX = gr+1i , X2 = g2r, X−1 = g−r

for 1 ≤ i ̸= j ≤ n; hence the statement holds for t = 1. We proceed to prove the statement by
induction. Suppose that the lemma holds for t− 1. Now suppose that A outputs (Y, Y1, Y2) in round
t. Then Y1 and Y2 are either equal to one of the gi (1 ≤ i ≤ n), X = gr, or one of the outputs of A
in rounds 1, . . . , t− 1. Hence we see that for 1 ≤ i ≤ n:

|DLogA(g, Y )i| = |DLogA(g, Y1)i + DLogA(g, Y2)i|
≤ |DLogA(g, Y1)i|+ |DLogA(g, Y2)i| ≤ 2t−1ri + 2t−1ri = 2t ri.

Similarly, if A outputs (Y, Y1) in round t, then for 1 ≤ i ≤ n we have that |DLogA(g, Y )i| =
|DLogA(g, Y1)i| ≤ 2t−1ri, which completes the proof of the second statement.

Theorem 8.2.

MO
(1−e−n·CS )/2, ⌈Sn/p⌉
===============⇒

AHO-SAGM
T -RSW, for S ≥ 4,

where p := AdvT -RSW
G,A (κ) and CS is defined as in Lemma 2.6.

Proof. Let A1 be an adversary which runs in the standard model in the preprocessing phase and
produces A2 ← A1(G,g) which runs as a strongly algebraic algorithm in the online phase. We
use the template from Lemma 5.4 to construct an adversary BA1 , which takes input (G, g) with
G ∈ Gκ and g ∈ Gn. We define a relation sampler RelA1 as follows, where we assume that a state is
maintained in which all internal variables are stored and which is passed between the subroutines,
and use the shorthand ti := ATime(A2(g̃i, Xi)).

RelA1(G, g)
(g̃i, Xi)← Samp(G)

A2 ← A1(G, g̃i)

(Yi, ([Yi,s])
ti
s=1)← A2(g̃i, Xi)

return Ext(G, g, state)

Samp(G)

Ai
$←− (UU3)n

2

ri
$←− (UU3)n

return (gAi , gAiri)

Ext(G, g, state)
if

(
Yi = X2T

i ∧ ti < T
)
then

di ← DLogA2
(g̃i, Yi)

return 2TAiri −Aidi

else return ⊥

It is straightforward to check that 2TAiri − Aidi do indeed form relations with respect to g;
hence Lemma 5.4(i) is satisfied. Conditions (ii) and (iv) of Lemma 5.4 again hold up completely
analogous to Theorem 6.5.

We once more show similar to the proof of Theorem 6.5 that Lemma 5.4(iii) is satisfied. Without
loss of generality, we assume that A succeeds on instances i = 1, . . . , n. Write Ai = (ai1, . . . ,ain)
and aikj = a′ikj + a′′ikjOj with 0 ≤ a′ikj < Oj , and expand the relationship coefficients as:

n∑
k=1

a′′ikj(2
T rik − dik)Oj +

n∑
k=1

a′ikj(2
T rik − dik).

Then by Lemma 8.1 and the fact that A2 runs in ti < T rounds on input (g̃i, Xi), we see that
|dik| < 2T rik and thus that δik := 2T rik − dik ≠ 0 for all i = 1, . . . , n and k = 1, . . . , n. Now we can
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pick an arbitrary ki ∈ {1, . . . , n} for each i = 1, . . . , n (e.g. ki = 1 for all i = 1, . . . , n suffices), and

split the coefficients as r̂ij+d̂ij with r̂ij := a′′ikij
δikiOj , d̂ij := a′ikij

δiki+
∑

k ̸=ki
aikjδik. Then, similar

to the proof of Theorem 7.2, we can pick our prime p coprime to δiki
for all i = 1, . . . , n. Analogous

to the proof of Theorem 6.5 it follows that the distribution of (a′′ikij
mod p)ni,j=1, conditioned on

arbitrary values of (a′ikij
)ni,j=1 ∈

∏n
i,j=1[0, Oj), has negligible statistical distance to (Up)n

2

. Hence

we conclude as in the proof of Theorem 6.5 that (r̂ij − d̂ij mod p)ni,j=1 has negligible statistical

distance to (Up)n
2

and thus that Lemma 5.4(iii) is satisfied.
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A Proofs

Lemma 2.5. Let UM be the uniform distribution on the set [0,M) and let Di be probability
distributions over the same set for i = 1, . . . , ℓ. Assume that there exists a constant 0 < δ ≤ 1/Mℓ

such that for all instances x ∈ [0,M)∣∣∣∣ Pr
X∼Di

[X = x]− Pr
Y∼UM

[Y = x]

∣∣∣∣ ≤ δ.
Then the statistical distance ∆ between the cartesian products

∏ℓ
i=1Di and

∏ℓ
i=1 UM can be upper

bounded as

∆ := δ

(
ℓ∏

i=1

Di,

ℓ∏
i=1

UM

)
≤ 1

2

(
δℓM + (δℓM)2

)
.

Proof. First note that PrY∼UM
[Y = x] = 1/M independent of x ∈ [0,M). Denote

δi,x := Pr
X∼Di

[X = x]− 1/M.

By assumption, |δi,x| ≤ δ for all x ∈ [0,M). Hence we can write

∆ =
1

2

M−1∑
x1,...,xℓ=0

∣∣∣∣∣
ℓ∏

i=1

(1/M + δi,xi
)− 1/M ℓ

∣∣∣∣∣
≤ 1

2
·M ℓ ·max{1/M ℓ − (1/M − δ)ℓ, (1/M + δ)ℓ − 1/M ℓ}.

Here
1/M ℓ − (1/M − δ)ℓ ≤ 1/M ℓ − (1− δMℓ)/M ℓ = δMℓ/M ℓ,

where we used that (1− x)ℓ ≥ 1− ℓx for x ≤ 1. Moreover

(1/M + δ)ℓ − 1/M ℓ ≤
(
1 + δMℓ+ (δMℓ)2

)
/M ℓ − 1/M ℓ

=
(
δMℓ+ (δMℓ)2

)
/M ℓ,

where we used that 1+ x ≤ ex ≤ 1+ x+ x2 for x < 1.79. Hence we can conclude that the statistical
distance is bounded as

∆ ≤ 1

2

(
δℓM + (δℓM)2

)
.

Lemma 2.6. Let X = {Xi}i∈I be a probability distribution ensemble, where Xi ∼ B(N, pi) follows
the binomial distribution with N samples with probability pi. Let the set X itself be endowed with
the uniform distribution. Given n ≥ 1, S ≥ 4 and the average probability p = E[pi], if N = ⌈Sn/p⌉
then

Pr
X∈X

[X ≥ n] ≥ (p/2) · (1− e−n·CS )

where CS := (S − 3)/2 + 1/S − log (S/2). Note that CS ≥ 1 for S ≥ 8.

Proof. We consider the subsets

X1 := {Xi ∈ X | pi ≤ p/2}, X2 := {Xi ∈ X | pi > p/2},

and want to lower bound the size of X2. Note that X2 is smallest when pi = p/2 for all Xi ∈ X1

and pi = 1 for all Xi ∈ X2. This leads to the system of equations

(|X1 + X2)/|X | = 1, (|X1| · p/2 + |X2|)/|X | = p,

with solutions
|X1|/|X | = (2− 2p)/(2− p), |X2|/|X | = p/(2− p) ≥ p/2.
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Hence uniformly picking X $←− X , then X lands in X2 with probability ≥ p/2.
We will continue to lower bound Pr[Xi ≥ n] for each Xi ∈ X2, thus pi > p/2. Note that it is

sufficient to upper bound Pr[Xi ≤ n]. By Chernoff’s bound, we have

Pr[Xi ≤ n] ≤ e(−N ·D(n/N∥pi)),

where D(a ∥ b) := a log(a/b) + (1− a) log ((1− a)/(1− b)) (for a, b ∈ [0, 1]) is the relative entropy.
Note that D(a ∥ b) is monotonically decreasing in a and monotonically increasing in b for 0 < a ≤
b < 1. Indeed, the partial derivatives are given by

∂

∂ a
D(a ∥ b) = log

(a
b

)
− log

(
a− 1

b− 1

)
,

∂

∂ b
D(a ∥ b) = b− a

b(1− b)
,

which are ≤ 0 and ≥ 0 for 0 < a ≤ b < 1, respectively. Since ⌈Sn/p⌉ ≥ Sn/p and pi > p/2 > p/S,
we deduce from these two monotonicity properties that

Pr[Xi ≤ n] ≤ exp (−Sn/p ·D(p/S ∥ p/2)) ,

where we note that the inequality also holds at the pole pi = 1. We therefore continue to lower
bound the relative entropy

D
( p
S
∥ p
2

)
=
p

S
log

(
2

S

)
+
(
1− p

S

)
log

(
1− p/S
1− p/2

)
≥ p

S
log

(
2

S

)
+
(
1− p

S

)( 2

S
− 1

)
log
(
1− p

2

)
≥ p

S
log

(
2

S

)
+
(
1− p

S

)(
1− 2

S

)
p

2
,

where from the first to the second line we use that 1− p/S ≥ (1− p/2)2/S and from the second to
the third line that − log(1− p/2) ≥ p/2. Hence

Pr[Xi ≤ n] ≤ exp

(
−n
(
log

(
2

S

)
+ (S − p)

(
1− 2

S

)
1

2

))
≤ exp

(
−n
(
log

(
2

S

)
+
S

2
+

1

S
− 3

2

))
,

where we used that p < 1. Hence ultimately we can conclude that

Pr
X∈X

[X ≥ n] ≥ (p/2) ·
(
1− exp

(
−n
(
log

(
2

S

)
+
S

2
+

1

S
− 3

2

)))

Theorem 3.4. Let k ≥ 2, n ≥ 223, and 1 ≤ d < n be positive integers, and let s1, . . . , sk be
arbitrary integers with |si| ≤ nd. Let X1, . . . , Xk be random variables with distribution Un, then:

Pr[gcd(s1 +X1, . . . , sk +Xk) = 1] ≥ (1− (d/n)k−1) · (1− ϵ) · 1/ζ(k),

where ζ(k) is the Riemann zeta function, ϵ ≤ .077 for k = 2 and ϵ ≤ 2.9 · 10−5 for k ≥ 3. When
d ≤ n/10, this probability is at least .505 for k ≥ 2, at least .92 for k ≥ 4, and at least .99 for k ≥ 7.

Proof. A prime p divides the joint GCD if and only if p divides si +Xi for all 1 ≤ i ≤ k. For the
joint GCD to equal one, this must not hold for all primes, hence it follows that:

Pr[gcd(s1 +X1, . . . , sk +Xk) = 1] =
∏

Prime p

Pr[(Xi)
k
i=1 ̸≡ (−si)ki=1 mod p] = P1 · P2 · P3.
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Here P1, P2, P3 are the following sub products based on the size of p, which we will lower bound
separately:

P1 =
∏

Prime p
2≤p≤

√
n

Pr[(Xi)
k
i=1 ̸≡ (−si)ki=1 mod p]

P2 =
∏

Prime p√
n<p≤n

Pr[(Xi)
k
i=1 ̸≡ (−si)ki=1 mod p]

P3 =
∏

Prime p
n<p

Pr[(Xi)
k
i=1 ̸≡ (−si)ki=1 mod p]

Below we will prove that P1 ≥ 1/ζ(k) · (1− 10−6), P3 ≥ (1− (d/n)k−1) and

P2 ≥

{
(1− 0.076) for k = 2

(1− 2.8 · 10−5) for k ≥ 3

Multiplying these bounds proves the theorem. Note that in this proof we will directly use several
numerical bounds without going into too much detail, these should be easy to verify though.

Note that using Lemma 2.3, we can bound each factor for all primes p ≤ n as:

Pr[(Xi)
k
i=1 ̸≡ (−si)ki=1 mod p] ≥ 1− (1/p + 1/n)k.

For primes p > n, there is at most one value 1 ≤ xi ≤ n such that p|(si + xi) for each 1 ≤ i ≤ k.
Thus the probability all si +Xi result in a multiple of p is upper bounded by (1/n)k (and 0 if there
is no possible multiple of p for at least one 1 ≤ i ≤ k), hence:

Pr[(Xi)
k
i=1 ̸≡ (−si)ki=1 mod p] ≥ 1− n−k.

Product P1. We first consider the product P1 over primes p ≤
√
n. Let ψ(p) = p′ where p′ is the

largest prime p′ < p, then for 5 ≤ p ≤
√
n, one can further lower bound each factor as:

1− (1/p + 1/n)k ≥ 1− (p− 2)−k ≥ 1− ψ(p)−k.

Considering the product for all primes B < p ≤
√
n, where we choose a prime B = 2879 <

√
223,

one can find: ∏
Prime p
B<p≤

√
n

(1− (1/p + 1/n)k) ≥
∏

Prime p
B<p≤

√
n

(1− ψ(p)−k)

≥
∏

Prime p
B−2<p

(1− p−k)

=
1/ζ(k)∏

Prime p
p≤B−2

(1− p−k)

Where in the last step we use Euler’s Product Formula 1/ζ(k) =
∏

Prime p(1 − p−k). This can be
multiplied with the product over all primes p ≤ B which results in 1/ζ(k) · (1− ϵ):

P1 ≥ 1/ζ(k) ·

∏
Prime
p≤B

(1− (1/p + 1/n)k)∏
Prime
p≤B

(1− p−k)
· (1−B−k)

≥ 1/ζ(k) · (1− 10−6)

In the last step we evaluate that ϵ ≤ 10−6 for the chosen B and for all n ≥ 223 and k ≥ 2. In
principle ϵ can be made arbitrary small for large enough n, k and B, however this constant is
sufficient for most purposes.
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Product P2. For primes
√
n < p ≤ n, we can lower bound each factor as:

1− (1/p + 1/n)k ≥ 1− (1/
√
n + 1/n)k = 1− (

√
n+1/n)

k
.

As {#Prime
√
n < p ≤ n} ≤ {#Prime p ≤ n} ≤ 1.256·n/ln(n), the product over these primes can be

lower bounded as:

P2 ≥ (1− (
√
n+1/n)k)

1.256n/ln(n)

= eln(1−(
√

n+1/n)k)·1.256n/ ln(n)

≥ e−1.001·(
√

n+1/n)k·1.256n/ ln(n)

Where in the last step we use the inequality ln(1− x) ≥ −1.001x that holds for 0 < x < 0.00199,
which is allowed since (

√
n+1/n)k < 0.00199 for k ≥ 2 and n ≥ 223. We now distinguish on values of

k:

– When k = 2, the exponent can be rewritten as

−1.257256/ ln(n)− 2.514512/(
√
n ln(n))− 1.257256/(n ln(n))

For all n ≥ 223, we find that this is greater than −1.259/ln(n), which results in an overall lower
bound:

P2 ≥ e
−1.259/ln(n) ≥ (1− 0.076)

– Similarly when k ≥ 3 we can find that for all n ≥ 223:

P2 ≥ e−1.001·(
√

n+1/n)3·1.256n/ ln(n) ≥ e−1.259/
√

n ln(n) ≥ (1− 2.8 · 10−5)

Product P3. The remaining case to be handled are all primes p > n. When we would allow arbitrarily
large shifts s1, . . . , sk, we cannot prove a lower bound on the probability. In fact, one can always
algorithmically generate shifts where the probability that the GCD equals 1 becomes zero:

1. Compute the first nk primes and arbitrary label these as p(xj)kj=1
where (xj)

k
j=1 ∈ {0, . . . , n−1}k.

2. For i = 1, . . . , k use the Chinese Remainder Theorem to solve si given the nk modular equations
si ≡ −xi mod p(xj)kj=1

for all possible values (xj)
k
j=1 ∈ {0, . . . , n− 1}k.

One can verify that then for all possible values (xj)
k
j=1 ∈ {0, . . . , n− 1}k that the prime p(xj)kj=1

divides sj +xj for j = 1, . . . , k, hence gcd(s1+x1, . . . , sk+xk) ̸= 1. For instance, a counter-example
for k = 2, n = 5 are the shifts s1 = 97933934092855859 and s2 = 205204317512618213 for which
∀x1, x2 ∈ {1, 2, 3, 4, 5} : gcd(s1 + x1, s2 + x2) ̸= 1.

In this case we will not lower bound each factor of the product, but lower bound the probability
that there does not exist a prime p > n that divides gcd(s1 +X1, . . . , sk +Xk). For all possible
values x1 the random variable X1 can take, let p1, . . . , pm be the list of prime divisors p of s1 + x1
for which p > n. As s1 + x1 < nd + n, there can be at most d such large prime divisors, thus m ≤ d.
For each pj and each 2 ≤ i ≤ k, there is at most one value xi for Xi such that pj |(si + xi), thence

∀2 ≤ i ≤ k : Pr[gcd(p1 · · · pm, si +Xi) ̸= 1] ≤ d/n.

It follows that for the given value x1 of X1 the probability that no large prime divisor p > n of
s1 + x1 also divides all si +Xi for 2 ≤ i ≤ k is:

Pr[gcd(p1 · · · pm, s2 +X2, . . . , sk +Xk) = 1] ≥ 1− (d/n)k−1.

Since this lower-bound holds for all possible values x1 and all large prime divisors p > n of s1 + x1,
we have established that it lower bounds the product over the region p > n:

P3 ≥ 1− (d/n)k−1.
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Lemma 4.7. Let G be a finite abelian group and let g1, . . . , gn ∈ G be a system of generators. Put
Oi := |⟨gi⟩| for i = 1, . . . , n. If we sample (ri)

n
i=1

$←−
∏n

i=1 UOi
and set X := gr11 · · · grnn , then X is

uniformly distributed in G.

Proof. By the fundamental theorem of finite abelian groups we can write G ∼=
⊕t

k=1(Z/qkZ), where
q1, . . . , qt are powers of not necessarily distinct prime numbers. Let g̃1, . . . , g̃t be the system of
generators of G corresponding to the generators of the respective cyclic components under the
aforementioned isomorphism. Every X ∈ G can be uniquely represented as

X = g̃a1
1 · · · g̃

at
t , 0 ≤ ai < qi for i = 1, . . . , t,

and thus one can uniformly sample elements in G by sampling (ai)
t
i=1

$←−
∏t

i=1 Uqi . In particular,
we can represent our original generators as

gi = g̃b1i1 · · · g̃
bti
t , i = 1, . . . , n. (7)

Since g1, . . . , gn generate G, we can also express g̃1, . . . , g̃t as

g̃i = gc1i1 · · · gcni
n , i = 1, . . . , t. (8)

Now sample (ri)
n
i=1

$←−
∏n

i=1 UOi
and (ai)

t
i=1

$←−
∏t

i=1 Uqi , and set

X := gr11 · · · grnn , Y := g̃a1
1 · · · g̃

at
t , Z := XY.

Then we can write

Z = g
r1+

∑t
j=1 c1jaj

1 · · · grn+
∑t

j=1 cnjaj

n ,

from which we can deduce that Z is distributed identical to X since the coefficients ri +
∑t

j=1 cijaj
are distributed uniformly modulo Oi for i = 1, . . . , n by Lemma 2.1. Similarly, we can write

Z = g̃
a1+

∑n
j=1 b1jrj

1 · · · g̃at+
∑n

j=1 btjrj
t ,

from which we can deduce that Z is distributed identical to Y since the coefficients ai +
∑n

j=1 bijrj
are distributed uniformly modulo qi for i = 1, . . . , t by Lemma 2.1. Hence we can conclude that Z
is distributed uniformly in G since Y is distributed uniformly in G, from which we can conclude
that X is distributed uniformly in G.

Lemma 4.8. Let G be a finite abelian group, let g1, . . . , gn ∈ G be a system of generators, and let
ℓ, v be positive integers. If we sample (rij)

ℓ,n
i,j=1

$←− (UUv )ℓn and set Xi := gri11 · · · grinn for i = 1, . . . , ℓ.

Then the statistical distance between the distribution of (Xi)
ℓ
i=1 and the uniform distribution UGℓ is

upper bounded by
ℓn

2Uv−1
+

ℓ2n2

2U2v−2
. (9)

Proof. By Lemma 4.7, it suffices to show that the statistical distance between the distribution of
(rij mod Oj)

ℓ,n
i,j=1 and

∏ℓ,n
i,j=1 UOj

is upper bounded by the desired quantity (9).

First note that for xi = (xi1, . . . , xin) ∈
∏n

j=1[0, Oj), by Lemma 2.3, we have

1/Oj − 1/Uv ≤ Pr[rij ≡ xij mod Oj ] ≤ 1/Oj + 1/Uv

for each j = 1, . . . , n and i = 1, . . . , ℓ. Similar to the proof of Lemma 2.5, the statistical distance ∆
between

∏ℓ,n
i,j=1RUv, Oj

and
∏ℓ,n

i,j=1 UOj
satisfies

∆ =
1

2

∑
x∈

∏ℓ,n
i,j=1[0,Oj)

∣∣∣∣∣∣
ℓ,n∏

i,j=1

Pr[rij ≡ xij mod Oj ]−
ℓ,n∏

i,j=1

1

Oj

∣∣∣∣∣∣
≤ 1

2
·max


n∏

j=1

(
1 +

Oj

Uv

)ℓ

− 1, 1−
n∏

j=1

(
1− Oj

Uv

)ℓ
 ,
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where
n∏

j=1

(
1 +

Oj

Uv

)ℓ

− 1 ≤
(
1 +

1

Uv−1

)ℓn

− 1 ≤ ℓn

Uv−1
+

ℓ2n2

U2v−2
,

and

1−
n∏

j=1

(
1− Oj

Uv

)ℓ

≤ 1−
(
1− 1

Uv−1

)ℓn

≤ ℓn

Uv−1
.

So the statistical distance between the distribution sampling (Xi)
ℓ
i=1 in the way described in the

Lemma and the uniform distribution on Gℓ is indeed upper bounded by expression (9).
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