Skip to main content

Trash Detection on Water Channels

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13108))

Included in the following conference series:

Abstract

Rivers and canals flowing through cities are often used illegally for dumping trash that contaminates freshwater channels, causes blockage in sewerage leading to urban flooding. The dumped trash is often found floating on the water surface. We propose to automatically identify this trash through visual inspection with the eventual goal of quantification, an early warning system to avoid blockages and urban flooding. The trash could be disfigured, partially submerged, or clumped together with other objects which obscure its shape and appearance. Thus, we consider surface trash as a blob detection problem that could either be solved as object detection or image segmentation or both. To this extent, we evaluate and compare several deep-learning-based object detection and segmentation algorithms. Unlike ocean trash, to the best of our knowledge, there is no large dataset on urban trash on water channels. Thus, using IoT-based camera nodes at multiple water channels, we collected a large dataset containing 48, 450 trash objects annotated for both bounding box and segmentation (the dataset will be made publicly available (Dataset is available at https://cvlab.lums.edu.pk/watertrash/)). In addition, we also propose modifications in state-of-the-art detection and segmentation algorithms to cater to an issue such as partially submerged, varying object sizes, and edge-based computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017)

    Article  Google Scholar 

  2. Bircanoglu, C., Atay, M., Beser, F., Genc, O., Kizrak, M.A.: RecycleNet: intelligent waste sorting using deep neural networks. In: IEEE Innovations in Intelligent Systems and Applications (2018)

    Google Scholar 

  3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision, pp. 801–818 (2018)

    Google Scholar 

  4. Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)

  5. Engin, K., Tran, M., Connor, R., Uhlenbrook, S.: The united nations world water development report 2018: nature-based solutions for water; facts and figures. UNESCO (2018)

    Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

  7. Fulton, M., Hong, J., Islam, M.J., Sattar, J.: Robotic detection of marine litter using deep visual detection models. In: IEEE International Conference on Robotics and Automation (2019)

    Google Scholar 

  8. Gomez, A.N., Kaiser, L.M., Chollet, F.: Depthwise separable convolutions for neural machine translation (2020). US Patent App. 16/688,958

    Google Scholar 

  9. Hoang, V.T., Jo, K.H.: PydMobileNet: pyramid depthwise separable convolution networks for image classification. In: IEEE 28th International Symposium on Industrial Electronics (2019)

    Google Scholar 

  10. Hong, J., Fulton, M., Sattar, J.: TrashCan: a semantically-segmented dataset towards visual detection of marine debris (2020)

    Google Scholar 

  11. Kako, S., Morita, S., Taneda, T.: Estimation of plastic marine debris volumes on beaches using unmanned aerial vehicles and image processing based on deep learning. Mar. Pollut. Bull. 155, 111127 (2020)

    Article  Google Scholar 

  12. Kooi, M., Besseling, E., Kroeze, C., van Wenzel, A.P., Koelmans, A.A.: Modeling the fate and transport of plastic debris in freshwaters: review and guidance. In: Wagner, M., Lambert, S. (eds.) Freshwater Microplastics. THEC, vol. 58, pp. 125–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61615-5_7

    Chapter  Google Scholar 

  13. Lei, C., Gong, W., Wang, Z.: Fusing recalibrated features and depthwise separable convolution for the mangrove bird sound classification. In: Proceedings of Machine Learning Research, vol. 101, pp. 924–939 (2019)

    Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Liu, Y., Ge, Z., Lv, G., Wang, S.: Research on automatic garbage detection system based on deep learning and narrowband internet of things. In: Journal of Physics: Conference Series, vol. 1069, p. 012032. IOP Publishing (2018)

    Google Scholar 

  16. Mittal, G., Yagnik, K.B., Garg, M., Krishnan, N.C.: SpotGarbage: smartphone app to detect garbage using deep learning. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 940–945 (2016)

    Google Scholar 

  17. Proença, P.F., Simões, P.: TACO: trash annotations in context for litter detection. arXiv preprint arXiv:2003.06975 (2020)

  18. Rad, M.S., et al.: A computer vision system to localize and classify wastes on the streets. In: Liu, M., Chen, H., Vincze, M. (eds.) ICVS 2017. LNCS, vol. 10528, pp. 195–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68345-4_18

    Chapter  Google Scholar 

  19. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Russell, B., Torralba, A., Murphy, K., Freeman, W.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173 (2008)

    Article  Google Scholar 

  22. Sakr, G.E., Mokbel, M., Darwich, A., Khneisser, M.N., Hadi, A.: Comparing deep learning and support vector machines for autonomous waste sorting. In: IEEE International Multidisciplinary Conference on Engineering Technology (2016)

    Google Scholar 

  23. Sherwood, B.: Variable selection for additive partial linear quantile regression with missing covariates. J. Multivar. Anal. 152, 206–223 (2016)

    Article  MathSciNet  Google Scholar 

  24. Tzutalin: LabelImg (2015). https://github.com/tzutalin/labelImg. Accessed 21 Oct 2020

  25. Van Lieshout, C., Van Oeveren, K., Van Emmerik, T., Postma, E.: Automated river plastic monitoring using deep learning and cameras. Earth Space Sci. 7, e2019EA000960 (2020)

    Article  Google Scholar 

  26. Vo, A.H., Vo, M.T., Le, T., et al.: A novel framework for trash classification using deep transfer learning. IEEE Access 7, 178631–178639 (2019)

    Article  Google Scholar 

  27. Wang, R.J., Li, X., Ling, C.X.: Pelee: a real-time object detection system on mobile devices. In: Advances in Neural Information Processing Systems, pp. 1963–1972 (2018)

    Google Scholar 

  28. Wang, T., Cai, Y., Liang, L., Ye, D.: A multi-level approach to waste object segmentation. Sensors 20(14), 3816 (2020)

    Article  Google Scholar 

  29. Yang, M., Thung, G.: Classification of trash for recyclability status. CS229 Project Report (2016)

    Google Scholar 

  30. Yun, P., Tai, L., Wang, Y., Liu, C., Liu, M.: Focal loss in 3D object detection. IEEE Robot. Autom. Lett. 4, 1263–1270 (2019)

    Article  Google Scholar 

  31. Zeng, D., Zhang, S., Chen, F., Wang, Y.: Multi-scale CNN based garbage detection of airborne hyperspectral data. Access 7, 104514–104527 (2019)

    Article  Google Scholar 

  32. Zhao, Q., et al.: M2Det: a single-shot object detector based on multi-level feature pyramid network. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohbat Tharani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tharani, M., Amin, A.W., Rasool, F., Maaz, M., Taj, M., Muhammad, A. (2021). Trash Detection on Water Channels. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13108. Springer, Cham. https://doi.org/10.1007/978-3-030-92185-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92185-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92184-2

  • Online ISBN: 978-3-030-92185-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics