Skip to main content

Ego Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13108))

Included in the following conference series:

  • 2624 Accesses

Abstract

Games on the Atari 2600 platform have served as a benchmark for reinforcement learning algorithms in recent years, and while deep reinforcement learning approaches make progress on most games, there are still some games that the majority of these algorithms struggle with. These are called hard exploration games. We introduce two new developments for the Random Network Distillation (RND) architecture. We apply self-attention and the mechanism of ego motion on the RND architecture and we evaluate them on three hard exploration tasks from the Atari platform. We find that the proposed ego network model improve the baseline of the RND architecture on these tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aytar, Y., Pfaff, T., Budden, D., Paine, T., Wang, Z., de Freitas, N.: Playing hard exploration games by watching YouTube. In: NeurIPS (2018)

    Google Scholar 

  2. Badia, A.P., et al.: Agent57: outperforming the Atari human benchmark. ArXiv abs/2003.13350 (2020)

    Google Scholar 

  3. Badia, A.P., et al.: Never give up: learning directed exploration strategies. ArXiv abs/2002.06038 (2020)

    Google Scholar 

  4. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents (extended abstract). J. Artif. Intell. Res. 47, 253–279 (2013)

    Article  Google Scholar 

  5. Bellemare, M.G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.: Unifying count-based exploration and intrinsic motivation. ArXiv abs/1606.01868 (2016)

    Google Scholar 

  6. Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention Augmented Convolutional Networks. arXiv e-prints arXiv:1904.09925, April 2019

  7. Burda, Y., Edwards, H., Storkey, A.J., Klimov, O.: Exploration by random network distillation. CoRR abs/1810.12894 (2018). http://arxiv.org/abs/1810.12894

  8. Burda, Y., Edwards, H.A., Pathak, D., Storkey, A.J., Darrell, T., Efros, A.A.: Large-scale study of curiosity-driven learning. ArXiv abs/1808.04355 (2019)

    Google Scholar 

  9. Choi, J., Lee, B., Zhang, B.: Multi-focus attention network for efficient deep reinforcement learning. ArXiv abs/1712.04603 (2017)

    Google Scholar 

  10. Choi, J., et al.: Contingency-aware exploration in reinforcement learning. ArXiv abs/1811.01483 (2019)

    Google Scholar 

  11. Haber, N., Mrowca, D., Fei-Fei, L., Yamins, D.L.K.: Emergence of structured behaviors from curiosity-based intrinsic motivation. CoRR abs/1802.07461 (2018). http://arxiv.org/abs/1802.07461

  12. Horgan, D., et al.: Distributed prioritized experience replay. ArXiv abs/1803.00933 (2018)

    Google Scholar 

  13. Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J., Munos, R.: Recurrent experience replay in distributed reinforcement learning. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=r1lyTjAqYX

  14. Martin, J., Sasikumar, S.N., Everitt, T., Hutter, M.: Count-based exploration in feature space for reinforcement learning. In: IJCAI (2017)

    Google Scholar 

  15. Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., Rezende, D.J.: Towards interpretable reinforcement learning using attention augmented agents. In: NeurIPS (2019)

    Google Scholar 

  16. Ostrovski, G., Bellemare, M.G., Oord, A., Munos, R.: Count-based exploration with neural density models. ArXiv abs/1703.01310 (2017)

    Google Scholar 

  17. Ostrovski, G., Bellemare, M.G., van den Oord, A., Munos, R.: Count-based exploration with neural density models. ArXiv abs/1703.01310 (2017)

    Google Scholar 

  18. Schrittwieser, J., et al.: Mastering Atari, go, chess and shogi by planning with a learned model. ArXiv abs/1911.08265 (2019)

    Google Scholar 

  19. Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., Ignateva, A.: Deep attention recurrent Q-network. ArXiv abs/1512.01693 (2015)

    Google Scholar 

  20. Tang, H., et al.: Exploration: a study of count-based exploration for deep reinforcement learning. In: NIPS (2017)

    Google Scholar 

  21. Tang, Y., Nguyen, D., Ha, D.: Neuroevolution of self-interpretable agents. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel Hosu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marin, A., Rebedea, T., Hosu, I. (2021). Ego Networks. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13108. Springer, Cham. https://doi.org/10.1007/978-3-030-92185-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92185-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92184-2

  • Online ISBN: 978-3-030-92185-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics