
SPBERT: An Efficient Pre-training BERT on
SPARQL Queries for Question Answering over

Knowledge Graphs

Hieu Tran1,2, Long Phan3, James Anibal4, Binh T. Nguyen1,2, and Truong-Son
Nguyen1,2

1 University of Science, Ho Chi Minh City, Vietnam
2 Vietnam National Univeristy, Ho Chi Minh City, Vietnam

3 Case Western Reserve University, Ohio, USA
4 National Cancer Institute, Maryland, USA

long.phan@case.edu, ntson@fit.hcmus.edu.vn

Abstract. In this paper, we propose SPBERT, a transformer-based lan-
guage model pre-trained on massive SPARQL query logs. By incorporat-
ing masked language modeling objectives and the word structural objec-
tive, SPBERT can learn general-purpose representations in both natural
language and SPARQL query language. We investigate how SPBERT
and encoder-decoder architecture can be adapted for Knowledge-based
QA corpora. We conduct exhaustive experiments on two additional tasks,
including SPARQL Query Construction and Answer Verbalization Gen-
eration. The experimental results show that SPBERT can obtain promis-
ing results, achieving state-of-the-art BLEU scores on several of these
tasks.

Keywords: Machine translation · SPARQL · Language models · Ques-
tion answering.

1 Introduction

During the last decade, pre-trained language models (LM) have been playing
an essential role in many areas of natural language processing (NLP), including
Question Answering (QA) [15]. Large pre-trained models like GPT [1], BERT
[2], and XLNet [18] derive contextualized word vector representations from im-
mense text corpora. It can represent a significant deviation from traditional word
embedding methods wherein each word is given a global representation. After
training, one can usually fine-tune the corresponding models for downstream
tasks. These pre-trained models have dramatically improved the state-of-the-art
performance on multiple downstream NLP tasks. As such, this concept has been
extended into various domains. One can retrain BERT models on corpora con-
taining text specific to a particular area; for instance, Feng and colleagues used
CodeBERT for tasks involving programming languages [3].

ar
X

iv
:2

10
6.

09
99

7v
2

 [
cs

.C
L

]
 3

0
Ju

n
20

21

2 Tran et al.

There has also been widespread use of publicly available Knowledge Graph
(KG) datasets, such as DBpedia1, Wikidata2, or Yago3. These datasets provide
a valuable source of structured knowledge for NL relational tasks, including QA.
These knowledge base (KB) endpoints use a query language called SPARQL,
a standard graphing-matching query language to query graph data in the form
of RDF triples [7] (an example format of a SPARQL query can be referred
to Table 1). One of the key challenges in these SPAQRL-NL generation tasks
is understanding the structured schemas between entities and relations in the
KGs. In addition, it is necessary to correctly generate NL answers from SPARQL
queries and generate SPARQL queries from NL descriptions. These challenges
call for the development of pre-trained language models (LMs) that understand
SPARQL schemas’ structure in KGs and free-form text. While existing LMs
(e.g., BERT) are only trained on encoding NL text, we present an unprecedented
approach for developing an LM that supports NL and SPARQL query language
(SL).

Previous works in this area [19] utilized the traditional word embedding
method and built the vocabulary from tokens separated by spaces. The higher
the number of entities and predicates in the dataset, the larger the vocabulary
size. It is a notable drawback that needs to be improved to reduce time and cost
complexity. We present SPBERT, a pre-trained model for SPARQL query lan-
guage (SL) using a common vocabulary. SPBERT is a multi-layer transformer-
based model [14], in which the architecture has been proven effective for various
other large LMs models. We train SPBERT using standard masked language
modeling [2]. To further advance the exhibit of the underlying solid structure of
SPARQL schemas, we also incorporate the word structural objective [16]. These
structural learning objectives can enable SPBERT to gain insights into the word-
level structure of SL language during pre-training. We train SPBERT from large,
processed SPARQL query logs. To show the effectiveness of our approach in cre-
ating a general-purpose pre-trained LMs for NL and SL, SPBERT is fine-tuned
and evaluated on six popular datasets in SPARQL query construction and an-
swer verbalization generation topics. In addition, we test various pre-training
strategies, including different learning objectives and model checkpoints.

Our paper provides the following contributions: (1) We investigate how pre-
trained language models can be applied to the sequence-to-sequence architecture
in KBQA; (2) We introduce SPBERT, the first pre-trained language model for
SPARQL Query Language that focuses on understanding the query structure;
(3) We show that pre-training on large SPARQL query corpus and incorporating
word-level ordering learning objectives lead to better performance. Our model
achieves competitive results on Answer Verbalization Generation and SPARQL
Query Construction; (4) We make our pre-trained checkpoints of SPBERT and
related source code4 for fine-tuning publicly available.

1 https://dbpedia.org
2 https://wikidata.org
3 https://yago-knowledge.org
4 https://github.com/heraclex12/NLP2SPARQL

SPBERT: A Pre-trained Model for SPARQL Query Language 3

2 Related Work

BERT [2] is a pre-trained contextualized word representation model which con-
sists of the encoder block taken from the transformer method. [14]. BERT is
trained with masked language modeling to learn word representation in both
left and right contexts. The model incorporates information from bidirectional
representations in a sequence - this has proved to be effective in learning a nat-
ural language. We hypothesize that this architecture will be effective in more
domain-specific SPARQL query language contexts.

Multiple prior attempts use deep learning for enhancing performance on nat-
ural language-SPARQL query language-related tasks. For example, Yin et al.
[19] presented different experiments with three types of neural machine transla-
tion models, including RNN-based, CNN-based, and Transformer-based models
for translating natural language to SPARQL query tasks. The results showed a
dominance of the convolutional sequence-to-sequence model over all of the pro-
posed models across five datasets. This method is highly correlated with our
approach, so we treat this work as our baseline later in this paper. Luz and Fin-
ger [6] proposed an LSTM encoder-decoder model that is capable of encoding
natural language and decoding the corresponding SPARQL query. Furthermore,
this work presented multiple methods for generating vector representation of
Natural Language and SPARQL language. Finally, the paper introduced a novel
approach for developing a lexicon representation vector of SPARQL. The results
illustrated that this approach could achieve state-of-the-art results on natural
language-SPARQL datasets.

There have also been attempts to developing a Knowledge-based question an-
swering (KBQA) system that leverages multiple models for the various tasks. For
example, Kapanipathi and colleagues introduced semantic parsing and reasoning-
based Neuro-Symbolic Question Answering (NSQA) system [5]. The model con-
sisted of an Abstract Meaning Representation (AMR) layer that could parse the
input question, a path-based approach to transform the AMR into KB logical
queries, and a Logical Neural Network (LNN) to filter out invalid queries. As a
result, NSQA could achieve state-of-the-art performance on KBQA datasets.

3 SPBERT

3.1 Pre-training Data

To prepare a large-scale pre-training corpus, we leverage SPARQL queries from
end-users, massive and highly diverse structures. These query logs can be ob-
tained from the DBpedia endpoint1 powered by a Virtuoso2 instance. We only
focus on valid DBpedia query logs spans from October 2015 to April 2016. These
raw queries contain many duplicates, arbitrary variable names, and unnecessary
components such as prefixes and comments.

1 https://dbpedia.org/sparql
2 https://virtuoso.openlinksw.com

4 Tran et al.

To address these issues, we prepared a heuristics pipeline to clean the DB-
pedia SPARQL query logs and released this pipeline with the model4. This
pipeline includes a cleaning process specific to SPARQL query language (i.e., re-
moving comments, excluding prefix declarations, converting namespace, filtering
unknown links, standardizing white space and indentations, etc.). In addition,
the processed queries will go through an encoding process suggested by [19] to
make these queries look more natural. We obtained approximately 6.8M queries.
An example SPARQL query can be depicted in Table 1.

Table 1. An example of SPARQL query and the corresponding encoding

Original query SELECT DISTINCT ?uri

WHERE { <http://dbpedia.org/resource/Tom Hanks>
<http://dbpedia.org/ontology/spouse> ?uri }

Encoded query select distinct var uri where brack open <dbr Tom Hanks>
<dbo spouse> var uri brack close

3.2 Input Representation

The input of SPBERT is a sequence of tokens of a single, encoded SPARQL
query. We follow the style of input representation used in BERT. Every input
sequence requires a special classification token, [CLS] as the first token, and a
special end-of-sequence, [SEP]. [CLS] token contains representative information
of the whole input sentence, while the [SEP] token is used to separate different
sentences of an input. To alleviate the out-of-vocabulary problem in tokenization,
we use WordPiece [17] to split the query sentence into subword units. In addition,
we employ the same vocabulary with cased BERT for the following reasons: (i)
SPARQL queries are almost made up of English words, and we aim to leverage
existing pre-trained language models; (ii) these queries require strictly correct
representations of entities and relations, which can contain either lowercase and
uppercase characters. All tokens of the input sequence can be mapped to this
vocabulary to pick up their corresponding indexes and then feed these indexes
into the model.

3.3 Model Architecture

SPBERT uses the same architecture as BERT [2], which is based on a multi-layer
bidirectional transformer [14]. BERT model is trained on two auxiliary tasks:
masked language modeling and next sentence prediction. As our training corpus
only contains independent SPARQL queries, we substitute the next sentence
prediction with the word structural objective [16]. We illustrate how to combine
these two tasks in Figure 1.

SPBERT: A Pre-trained Model for SPARQL Query Language 5

[MASK]W2 W3 W1 W5 W6 [SEP][CLS] [MASK]

W1 W2 W3 W4 W5 W6 W7

Transformer Encoder

W1 W2 W3 W4 W5 W6 [SEP][CLS] W7

Embedding

Fig. 1. An illustration about the combination of MLM and WSO

Task #1: Masked Language Modeling (MLM) randomly replaces some
percentage of tokens from a sequence (similar to [2], the rate of 15% of the
tokens will be covered) with a special token [MASK]. The model will then try
to reconstruct this sequence by predicting the original token.

Task #2: Word Structural Objective (WSO) gives our model the ability
to capture the sequential order dependency of a sentence. This objective corrupts
the right order of words by randomly selecting n-grams from unmasked tokens
and then permuting the elements. The model has to predict the original order
of tokens to correct the sentence. Different from [16], our pre-training data are
mostly short queries (less than 256 tokens). Therefore, we permute 10% of the
n-grams rather than 5%.

We released three different versions of SPBERT. The first version begins
training with randomly initialized weights, and the second starts with the weights
from the pre-trained BERT model. Both these models use only the MLM objec-
tive, while we combine MLM and WSO to train the third SPBERT.

3.4 Pre-training Setup

In the pre-training step, we denote the number of Transformer encoder layers
as L, the size of hidden vectors as H, and the number of self-attention heads as
A. We followed the setting of BERTBASE (L=12, H=768, A=12, total param-
eters=110M) and continued to train 200K steps from cased BERTBASE check-
point. The maximum sequence length was fixed to 512, and the batch size was
set to 128. We used Adam with a learning rate of 2e-5 and epsilon of 1e-8 and
employed cased BERTBASE vocabulary with 30K tokens.

3.5 Fine-tuning SPBERT

Transformer-based sequence-to-sequence architecture [10] is an encoder-decoder
architecture that employs multi-layer self-attention to efficiently parallelize long-
term dependencies. This architecture has two components: an encoder and a

6 Tran et al.

decoder. The encoder can capture a contextualized representation of input se-
quences, and the decoder uses this information to generate target sequences.
Intuitively, this architecture is often used for generating a target sequence from
a source sequence.

To fine-tune SPBERT on the natural language-SPARQL query language
tasks required for an end-to-end KBQA, we apply pre-trained language models to
the Transformer-based sequence-to-sequence architecture. BERT and SPBERT
are encoder-only models developed for encoding language representations, so we
can quickly assemble this model into the encoder. However, to adapt BERT-
based models to the decoder, we must change the self-attention layers from bidi-
rectional to left-context-only. We must also insert a cross-attention mechanism
with random weights. For tasks with the input as a question and the output as
a query, we initialize the encoder with BERT checkpoints and the decoder with
SPBERT checkpoints. We denote this model as BERT2SPBERT. Conversely,
when we use SPARQL queries as input and NL answers are the outputs, SP-
BERT will be initialized as the encoder. The decoder can be initialized at random
(SPBERT2RND) or from BERT checkpoints (SPBERT2BERT). Similar to the
pre-training phase, all SPARQL queries will be encoded before being put into
the model.

We apply the weight typing method to reduce the number of parameters but
still boost the performance. Same as [9], we tie the input embedding and the
output embedding of the decoder that help the output embedding makes use of
the weights learned from the input embedding instead of initializing randomly.

4 Experiments

This section first describes the datasets used to evaluate our proposed models
and then explains the experimental setup and the results.

4.1 Datasets

An end-to-end KBQA system must perform two tasks sequentially. First, this
system acquires a question and constructs a corresponding SPARQL query. We
refer to this task as SPARQL Query Construction. The remaining task is Answer
Verbalization Generation which inputs the generated queries from the previous
one and produces natural language answers. In these experiments, we only con-
sider English datasets, and all queries can be encoded in the way described
in Section 3.1. We represent both tasks below and summarize the evaluation
datasets in Table 2.

SPARQL Query Construction QALD-9 (Question Answering over Linked
Data) [13] consists of a question and query pairs from real-world questions and
query logs. LC-QuAD (Large-scale Complex Question Answering Dataset) [12]
contains 5000 questions and corresponding queries from the DBPedia dataset.

SPBERT: A Pre-trained Model for SPARQL Query Language 7

Table 2. Data statistics about Question Answering datasets over Knowledge Graphs

Dataset
Amount

Tokens Creation
Training Validation Test

QALD-9 [13] 408 - 150 1042 Manual

LC-QuAD [12] 4000 500 500 5035 Manual

Mon [11] 14588 100 100 2066 Automatic

Mon50 [19] 7394 1478 5916 2066 Automatic

Mon80 [19] 11830 1479 1479 2066 Automatic

VQuAnDa [4] 4000 500 500 5035 Manual

Each NL question in the LC-QuAD dataset is peer-reviewed by fluent English
speakers to ensure the quality of the data.

The Mon dataset was introduced by [11]. This dataset contains 38 pairs
of handcrafted question and query templates. Each template is automatically
inserted into one or two entities of the Monument ontology. In order to compare
the performance between different number of training samples, [19] splits this
dataset using two different ratios for training, test, and validation sets 80%-10%-
10% (Mon80) and 50%-10%-40% (Mon50).

Answer Verbalization Generation VQuAnDa (Verbalization QUestion AN-
swering DAtaset) [4] extends the LC-QuAD dataset by providing the query an-
swers in natural language. These answers are created based on the questions and
the corresponding SPARQL queries. An automatic framework generates the tem-
plates for the answers and uses a rule-based method to produce the first version.
The final results are manually reviewed and rephrased to ensure grammatical
correctness. We give a sample of this dataset in Table 3.

Table 3. An example of two KBQA tasks

Question How many people play for the Dallas Cowboys?

With Entites

SPARQL select distinct count(var uri) where brack open var uri <dbo team>
<dbr Dallas Cowboys> brack close

Answer <ans> people play for the dallas cowboys .

Covered Entities

SPARQL select distinct count(var uri) where brack open var uri <dbo team>
<ent> brack close

Answer <ans> people play for the <ent> .

8 Tran et al.

4.2 Experimental Setup

We verify the effectiveness of our proposed methods by comparing these models
with three following types of network architectures from previous works [4,19].

– RNN-based models: These models are based on a standard sequence-to-
sequence architecture and combine variants of RNNs (such as Long Short-
Term Memory and Gated Recurrent Unit) with an attention mechanism.

– CNN-based models: CNN-based sequence to sequence (ConvS2S) models,
which leverage an encoder-decoder architecture with an attention mecha-
nism. In these cases, both the encoder and decoder consist of stacked con-
volutional layers.

– Transformer models: These models are based on [14], in which each layer
of encoder-decoder architecture includes two major components: a multi-
head self-attention layer and a feed-forward network. Since these models are
initialized with random weights, they also are called RND2RND.

Performance metrics The most reliable evaluation method is to have appro-
priately qualified experts look at the translation and evaluate manually. However,
this evaluation is costly and time-consuming. Therefore, we are using automatic
metrics that are faster and cheaper but still correlate with human judgments. We
use corpus level Bilingual Evaluation Understudy (BLEU) [8] and Exact Match
score (EM) as follows: (1) BLEU measure the differences in word choice and
word order between candidate translations and reference translations by calcu-
lating the overlap of n-grams between a generated sequence and one or more
reference sequences. (2) EM is the ratio of the number of generated sequences
that perfectly match reference to the total number of input samples.

Experimental settings For each dataset, we fine-tuned our proposed models
for a maximum of 150 epochs using Adam optimizer with a learning rate of 5e-5,
a weight decay of 0.1, and a batch size of 16 or 32. We selected the best model
based on the performance in the validation set. For SPARQL query language, we
set the maximum input length as either 128 (QALD, LC-QuAD, VQuAnDa) or
256 (Mon, Mon50, Mon80). We fixed the maximum length of natural language
as 64. In the decoding step, we used beam search of beam width 10 for all
the experiments. All experiments were completed using Python 3.7.10, Pytorch
1.8.1, and Transformers 4.5.1.

4.3 Results

SPARQL Query Construction Table 4 shows the BLEU and EM results on
the five datasets. Our approaches perform pretty well compared to the previ-
ous works. On the LC-QuAD, BERT2SPBERTMLM+WSO(B) achieves 69.03%,
creating new state-of-the-art results on this dataset. Moreover, one can see
that BERT2SPERTMLM+WSO(B) outperforms the other models on the QALD

SPBERT: A Pre-trained Model for SPARQL Query Language 9

Table 4. Experiment results on SPARQL Query Construction

Model QALD Mon Mon50 Mon80 LC-QuAD

RNN-Luong 31.77|5.33 91.67|76 94.75|85.38 96.12|89.93 51.06|1.20

Transformer 33.77|6.00 95.31|91 93.92|84.70 94.87|85.80 57.43|7.80

ConvS2S 31.81|5.33 97.12|95 96.62|90.91 96.47|90.87 59.54|8.20

BERT2RND 34.36|6.67 97.03|96 95.28|90.69 96.44|91.35 66.52|14.80

BERT2BERT 35.86|6.67 97.03|96 96.20|90.99 96.14|91.35 68.80|18.00

MLM

BERT2SPBERT (S) 35.19|6.67 97.28|97 96.06|90.80 96.29|92.22 64.18|12.40

BERT2SPBERT (B) 35.95|6.67 96.78|95 96.45|91.18 96.87|92.70 68.08|20.20
MLM + WSO

BERT2SPERT (B) 37.58|6.67 97.33|96 96.20|90.84 96.36|91.75 69.03|18.80

Notes: We train SPBERT (third group) from scratch (S) or initialized with the
parameters of BERT (B), and we also use different learning objectives (only MLM,
the combination of MLM and WSO). The left scores are BLEU and the right scores

are EM. The best scores are in bold.

dataset and improves by 3.81% over the baselines, indicating our model can per-
form well even with limited data. SPBERT also obtains competitive results on
three simple Mon datasets, including Mon, Mon50, and Mon80. BERT-initialized
as an encoder can increase significant performance. However, the difference be-
tween BERT2RND and BERT2BERT is only apparent on QALD and LC-QuAD.
They are almost equal on the three remaining datasets. According to Table 4,
SPBERT outperforms the baselines in EM metric and is slightly better than
BERT2BERT on some datasets. Specifically, BERT2SPERTMLM(B) achieves
state-of-the-art results by more than 1% on two out of five datasets. These re-
sults show that pre-training on SPARQL queries improves the construction of
complete and valid queries.

Answer Verbalization Generation In Table 5, the results show that our
proposed models significantly outperform BERT-initialized as encoder and the
baseline methods for both With Entities and Covered Entities. Fine-tuning SP-
BERT improves results on the test set by 17.69% (With Entities) and 8.18%
(Covered entities). The results also indicate that combining MLM and WSO
can perform better than MLM when the input data are the SPARQL queries.
At the same time, BERT2BERT is much better than BERT2RND in With Enti-
ties setting, but BERT2BERT fails to predict in the sentences (Covered Entities)
that have no context and are incomplete.

4.4 Discussion

The experimental results show that leveraging pre-trained models is highly ef-
fective. Our proposed models are superior to baseline models on both tasks.
The main reason for this is that we employ robust architectures that can un-
derstand the language from a bidirectional perspective. These models train on

10 Tran et al.

Table 5. BLEU score experiment results on Answer Verbalization Generation

Model
With Entities Covered Entities

Validation Test Validation Test

RNN-Luong 22.29 21.33 34.34 30.78

Transformer 24.16 22.98 31.65 29.14

ConvS2S 26.02 25.95 32.61 32.39

BERT2RND 33.30 33.79 42.19 38.85

BERT2BERT 41.48 41.67 41.75 38.42

MLM

- SPBERT2RND (S) 43.25 43.64 41.49 38.57

- SPBERT2RND (B) 42.21 41.59 42.44 39.63

- SPBERT2BERT (S) 42.58 41.44 41.39 38.56

- SPBERT2BERT (B) 41.75 40.77 42.01 39.59

MLM + WSO

- SPBERT2RND (B) 43.52 42.39 41.74 38.48

- SPBERT2BERT (B) 43.23 41.70 41.97 40.57

massive corpora, learning a generalized representation of the language that can
be fine-tuned on smaller evaluation datasets.

The performance between the decoder initialized from the BERT checkpoint
(BERT2BERT) and SPBERT checkpoint (BERT2SPBERT) is not significantly
different in most cases. One possible reason is that we still need to randomly
initialize the weights (∼28M) for the attention mechanism between the encoder
and the decoder, regardless of the decoder weights. This attention is used to
align relevant information between the input and the output. Furthermore, we
believe that this is why our proposed models underperform on SPARQL Query
Construction compared to other tasks.

In Table 4, our proposed models performed very well with up to 97.33%
BLEU score and 92.70% EM score on some datasets such as Mon, Mon50, Mon80.
On the other hand, QALD and LC-QuAD only obtained 37.58% and 69.03%
BLEU scores while achieving 6.67% and 20.20% EM scores. One possible reason
for this significant disparity comes from creating the evaluation datasets and
the number of samples in these datasets. As previously mentioned in Section
4.1, QALD and LC-QuAD contain many complex question-query pairs which
are manually constructed by a human. Meanwhile, the Mon dataset is gener-
ated automatically and lacks a variety of entities even though this dataset holds
many samples. In Table 5, our models drop the performance with Covered Enti-
ties setting when compared to With Entities setting. That is because SPBERT
is trained on executable SPARQL queries that fully contain entities and their
relationships.

Results in the SPARQL Query Construction task are much higher than re-
sults in the Answer Verbalization Generation. Although VQuAnDa is the exten-

SPBERT: A Pre-trained Model for SPARQL Query Language 11

sion of LC-QuAD by expanding verbalized answers, BERT2SPBERTMLM+WSO(B)
achieved 69.03% BLEU score in LC-QuAD and SPBERT2BERTMLM+WSO(B)
only obtained 40.57% BLEU score in VQuAnDa. The possible reason is SPARQL
is a structured query language, which almost starts with SELECT keyword and
ends up with brack close (curly brackets). Meanwhile, natural answers are
highly diverse, with many different sentences in the same meaning.

5 Conclusion

In this paper, we have employed pre-trained language models within a sequence-
to-sequence architecture. We have also introduced SPBERT, which is the first
structured pre-trained model for SPARQL query language. We conducted ex-
tensive experiments to investigate the effectiveness of SPBERT on two essential
tasks of an end-to-end KBQA system. SPBERT obtains competitive results on
several datasets of SPARQL Query Construction. The experimental results show
that leveraging weights learned on large-scale corpora can outperform baseline
methods in SPARQL Query Construction and Answer Verbalization Generation.
SPBERT has also demonstrated that pre-training on SPARQL queries achieves a
significant improvement in Answer Verbalization Generation task performance.

The number of our SPARQL queries is currently negligible compared to
the number of triples (relationships) in the knowledge base. To improve the
performance, we plan to expand the pre-training corpus. In addition, we can
use an end-to-end architecture to improve efficiency. We plan to train a sin-
gle BERT-SPBERT-BERT model on the two essential tasks rather than using
BERT2SPBERT and SPBERT2BERT separately.

References

1. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Win-
ter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language
models are few-shot learners (2020)

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186 (Jun 2019)

3. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu,
T., Jiang, D., Zhou, M.: CodeBERT: A pre-trained model for programming and
natural languages. In: Findings of the Association for Computational Linguistics:
EMNLP 2020. pp. 1536–1547 (2020)

4. Kacupaj, E., Zafar, H., Lehmann, J., Maleshkova, M.: Vquanda: Verbalization
question answering dataset. In: Harth, A., Kirrane, S., Ngonga Ngomo, A.C., Paul-
heim, H., Rula, A., Gentile, A.L., Haase, P., Cochez, M. (eds.) The Semantic Web.
pp. 531–547. Springer International Publishing, Cham (2020)

12 Tran et al.

5. Kapanipathi, P., Abdelaziz, I., Ravishankar, S., Roukos, S., Gray, A., Astudillo,
R., Chang, M., Cornelio, C., Dana, S., Fokoue, A., Garg, D., Gliozzo, A., Gu-
rajada, S., Karanam, H., Khan, N., Khandelwal, D., Lee, Y.S., Li, Y., Luus, F.,
Makondo, N., Mihindukulasooriya, N., Naseem, T., Neelam, S., Popa, L., Reddy,
R., Riegel, R., Rossiello, G., Sharma, U., Bhargav, G.P.S., Yu, M.: Question an-
swering over knowledge bases by leveraging semantic parsing and neuro-symbolic
reasoning (2020)

6. Luz, F.F., Finger, M.: Semantic parsing natural language into SPARQL: improving
target language representation with neural attention (2018), http://arxiv.org/
abs/1803.04329

7. Manola, F., Miller, E.: RDF primer. w3c recommendation.
http://www.w3.org/TR/rdf-primer/ (February 2004)

8. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics. pp. 311–318 (Jul 2002)

9. Press, O., Wolf, L.: Using the output embedding to improve language models. pp.
157–163. Association for Computational Linguistics, Valencia, Spain (Apr 2017)

10. Rothe, S., Narayan, S., Severyn, A.: Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Association for Computational Lin-
guistics 8, 264–280 (2020)

11. Soru, T., Marx, E., Moussallem, D., Publio, G., Valdestilhas, A., Esteves, D., Neto,
C.B.: Sparql as a foreign language (2020)

12. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: Lc-quad: A corpus for com-
plex question answering over knowledge graphs. In: d’Amato, C., Fernandez, M.,
Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.)
The Semantic Web – ISWC 2017. pp. 210–218. Springer International Publishing,
Cham (2017)

13. Usbeck, R., Gusmita, R.H., Ngomo, A.C.N., Saleem, M.: 9th challenge on question
answering over linked data (qald-9) (invited paper). In: Semdeep/NLIWoD@ISWC
(2018)

14. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need (2017), http://arxiv.org/abs/1706.
03762

15. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE: A
multi-task benchmark and analysis platform for natural language understanding
(2018), http://arxiv.org/abs/1804.07461

16. Wang, W., Bi, B., Yan, M., Wu, C., Bao, Z., Peng, L., Si, L.: Structbert: Incor-
porating language structures into pre-training for deep language understanding
(2019), http://arxiv.org/abs/1908.04577

17. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X.,
 Lukasz Kaiser, Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian,
G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O.,
Corrado, G., Hughes, M., Dean, J.: Google’s neural machine translation system:
Bridging the gap between human and machine translation (2016)

18. Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le, Q.V.: Xlnet:
Generalized autoregressive pretraining for language understanding (2019), http:
//arxiv.org/abs/1906.08237

19. Yin, X., Gromann, D., Rudolph, S.: Neural machine translating from natural lan-
guage to SPARQL (2019), http://arxiv.org/abs/1906.09302

http://arxiv.org/abs/1803.04329
http://arxiv.org/abs/1803.04329
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1908.04577
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.09302

	SPBERT: An Efficient Pre-training BERT on SPARQL Queries for Question Answering over Knowledge Graphs

