Skip to main content

A Focally Discriminative Loss for Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Book cover Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13108))

Included in the following conference series:

Abstract

The maximum mean discrepancy (MMD) as a representative distribution metric between source domain and target domain has been widely applied in unsupervised domain adaptation (UDA), where both domains follow different distributions, and the labels from source domain are merely available. However, MMD and its class-wise variants possibly ignore the intra-class compactness, thus canceling out discriminability of feature representation. In this paper, we endeavor to improve the discriminative ability of MMD from two aspects: 1) we re-design the weights for MMD in order to align the distribution of relatively hard classes across domains; 2) we explore a focally contrastive loss to trade-off the positive sample pairs and negative ones for better discrimination. The intergration of both losses makes the intra-class features close as well as push away the inter-class features far from each other. Moreover, the improved loss is simple yet effective. Our model shows state-of-the-art compared to the most domain adaptation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.: Domain-adversarial neural networks. arXiv preprint arXiv:1412.4446 (2014)

  2. Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., Tian, Q.: Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3941–3950 (2020)

    Google Scholar 

  3. Deng, W., Zheng, L., Sun, Y., Jiao, J.: Rethinking triplet loss for domain adaptation. IEEE Trans. Circuits Syst. Video Technol. 31(1), 29–37 (2020)

    Google Scholar 

  4. Donahue, J., et al.: A deep convolutional activation feature for generic visual recognition. UC Berkeley & ICSI, Berkeley, CA, USA

    Google Scholar 

  5. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  6. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066–2073. IEEE (2012)

    Google Scholar 

  7. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)

    Google Scholar 

  10. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems, pp. 1640–1650 (2018)

    Google Scholar 

  11. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2200–2207 (2013)

    Google Scholar 

  12. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems, pp. 136–144 (2016)

    Google Scholar 

  13. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2010)

    Article  Google Scholar 

  14. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  15. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. arXiv preprint arXiv:1809.02176 (2018)

  16. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  17. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  18. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  19. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  20. Wang, H., Yang, W., Wang, J., Wang, R., Lan, L., Geng, M.: Pairwise similarity regularization for adversarial domain adaptation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2409–2418 (2020)

    Google Scholar 

  21. Wang, M., Zhang, X., Lan, L., Wang, W., Tan, H., Luo, Z.: Improving unsupervised domain adaptation by reducing bi-level feature redundancy. arXiv preprint arXiv:2012.15732 (2020)

  22. Wang, W., Li, H., Ding, Z., Wang, Z.: Rethink maximum mean discrepancy for domain adaptation. arXiv preprint arXiv:2007.00689 (2020)

  23. Wang, X., Li, L., Ye, W., Long, M., Wang, J.: Transferable attention for domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5345–5352 (2019)

    Google Scholar 

  24. Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1426–1435 (2019)

    Google Scholar 

  25. Yang, X., Dong, J., Cao, Y., Wang, X., Wang, M., Chua, T.S.: Tree-augmented cross-modal encoding for complex-query video retrieval. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1339–1348 (2020)

    Google Scholar 

  26. Yang, X., Feng, F., Ji, W., Wang, M., Chua, T.S.: Deconfounded video moment retrieval with causal intervention. In: SIGIR (2021)

    Google Scholar 

  27. Yang, X., He, X., Wang, X., Ma, Y., Feng, F., Wang, M., Chua, T.S.: Interpretable fashion matching with rich attributes. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 775–784 (2019)

    Google Scholar 

  28. Zhang, W., Ouyang, W., Li, W., Xu, D.: Collaborative and adversarial network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3801–3809 (2018)

    Google Scholar 

  29. Zhang, W., Zhang, X., Liao, Q., Yang, W., Lan, L., Luo, Z.: Robust normalized squares maximization for unsupervised domain adaptation. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2317–2320 (2020)

    Google Scholar 

  30. Zhang, Y., Tang, H., Jia, K., Tan, M.: Domain-symmetric networks for adversarial domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5031–5040 (2019)

    Google Scholar 

  31. Zheng, S., Ding, C., Nie, F., Huang, H.: Harmonic mean linear discriminant analysis. IEEE Trans. Knowl. Data Eng. 31(8), 1520–1531 (2018)

    Article  Google Scholar 

  32. Zhu, Y., Zhuang, F., Wang, J., Ke, G., Chen, J., Bian, J., Xiong, H., He, Q.: Deep subdomain adaptation network for image classification. IEEE Trans. Neural Netw. Learn. Syst. 32(4), 1713–1722 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, D. et al. (2021). A Focally Discriminative Loss for Unsupervised Domain Adaptation. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13108. Springer, Cham. https://doi.org/10.1007/978-3-030-92185-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92185-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92184-2

  • Online ISBN: 978-3-030-92185-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics