Skip to main content

Triplet Mapping for Continuously Knowledge Distillation

  • Conference paper
  • First Online:
  • 2634 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13108))

Abstract

Knowledge distillation is regarded as a widely used technology that trains a small high-performance network and knowledge is transferred from a large network (teacher) to a miniature network (student). However, the student network simulates the teacher network quickly during training, which leads the effect of knowledge transmission is extremely reduced. In this paper, we propose a triplet mapping knowledge distillation (TMKD) for continuing and efficient knowledge transfer, which contains a new structure, an assistant network. The teacher and the assistant are employed to supervise the training of the student, helping it to gain expressive knowledge from the teacher and discard the useless knowledge of the assistant. To maintain effectiveness of knowledge transfer, we map the original features of the above three networks by the multilayer perceptron (MLP). The metric function is used to calculate the difference between the original features and the mapped features that have a large difference. The experimental results demonstrate that the TMKD can obviously enhance the capability of the student. The student VGGNet13 achieves 1.67%, 3.73%, 0.42%, and 2.89% performance improvements on the CIFAR-10, CIFAR-100, SVHN, and STL-10 datasets, reaching 94.72%, 76.22%, 95.55%, and 88.18% accuracies respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  2. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  3. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese’’ time delay neural network. Adv. Neural Inf. Process. Syst. 6, 737–744 (1993)

    Google Scholar 

  4. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223. JMLR Workshop and Conference Proceedings (2011)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  6. Goodfellow, I.: Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160 (2016)

  7. He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  8. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation boundaries formed by hidden neurons. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3779–3787 (2019)

    Google Scholar 

  9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Comput. Sci. 14(7), 38–39 (2015)

    Google Scholar 

  10. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 84–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24261-3_7

    Chapter  Google Scholar 

  11. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  14. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  15. Odena, A.: Semi-supervised learning with generative adversarial networks. arXiv preprint arXiv:1606.01583 (2016)

  16. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3967–3976 (2019)

    Google Scholar 

  17. Peng, B., et al.: Correlation congruence for knowledge distillation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5007–5016 (2019)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  19. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1365–1374 (2019)

    Google Scholar 

  22. Wang, K., Gao, X., Zhao, Y., Li, X., Dou, D., Xu, C.Z.: Pay attention to features, transfer learn faster CNNs. In: International Conference on Learning Representations (2020)

    Google Scholar 

  23. Xu, Z., Hsu, Y.C., Huang, J.: Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks. arXiv preprint arXiv:1709.00513 (2017)

  24. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

  25. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  26. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5907–5915 (2017)

    Google Scholar 

  27. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4320–4328 (2018)

    Google Scholar 

  28. Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-time visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4591–4600 (2019)

    Google Scholar 

Download references

Acknowledgement

The Sichuan Science and Technology Program under Grant 2020YFS0307 gave this work partial support, Mianyang Science and Technology Program 2020YFZJ016, SWUST Doctoral Foundation under Grant 19zx7102, 21zx7114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, X., Tang, J., Jiang, N., Yu, W., Zhang, P. (2021). Triplet Mapping for Continuously Knowledge Distillation. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13108. Springer, Cham. https://doi.org/10.1007/978-3-030-92185-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92185-9_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92184-2

  • Online ISBN: 978-3-030-92185-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics