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Abstract. In this paper we revisit a taxonomy of client-side IoT soft-
ware architectures that we presented a few years ago. We note that
the emergence of inexpensive AI/ML hardware and new communication
technologies are broadening the architectural options for IoT devices
even further. These options can have a significant impact on the overall
end-to-end architecture and topology of IoT systems, e.g., in determining
how much computation can be performed on the edge of the network.
We study the implications of the IoT device architecture choices in light
of the new observations, as well as make some new predictions about
future directions. Additionally, we make a case for isomorphic IoT sys-
tems in which development complexity is alleviated with consistent use
of technologies across the entire stack, providing a seamless continuum
from edge devices all the way to the cloud.
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1 Introduction

The Internet of Things (IoT) represents the next significant step in the evolution
of the Internet. The emergence of the Internet of Things will bring us connected
devices that are an integral part of the physical world. We believe that this evo-
lution will ultimately result in the creation of a Programmable World in which
even the simplest and most ordinary everyday things and artifacts in our sur-
roundings are connected to the Internet and can be accessed and programmed
remotely. The possibility to connect, manage, configure and dynamically repro-
gram remote devices through local, edge and global cloud environments will open
up a broad variety of new use cases, services, applications and device categories,
and enable entirely new product and application ecosystems [1, 2].



From economic perspective, the Internet of Things represents one of the
most significant growth opportunities for the IT industry in the coming years.
According to Fortune Business Insights, the global Internet of Things market
size stood at USD 250.72 billion in 2019, and is projected to reach USD 1463.19
billion (nearly $1.5 trillion) by 2027, exhibiting a CAGR of 24.9% during the
forecast period1.

At the technical level, the Internet of Things is all about turning physical
objects and everyday things into digital data products and services – bringing
new value and intelligence to previously lifeless things. Effectively this means
adding computing capabilities and cloud connectivity to hitherto unconnected
devices, as well as adding backend services and web and/or mobile applications
for viewing and analyzing data and controlling those devices in order to bring
new value and convenience to the users. Given the integrated, connected nature
of the devices, applications and cloud, IoT systems are end-to-end (E2E) systems
in which the visible parts – the devices and the apps – are only a small part of
the overall solution.

In our earlier work, we have pointed out that a common, generic end-to-
end (E2E) architecture for IoT systems has already emerged. Furthermore, we
have also identified relevant research topics and problems associated with IoT
development [3–5]. In this paper we will revisit those topics, and analyze the
software architecture options for IoT devices in view of new occurrences in the
industry in the past four years. We study the implications of the IoT device ar-
chitecture choices in light of the new occurrences, as well as make some new pre-
dictions about future directions. More specifically, we make a case for isomorphic
IoT systems in which development complexity is alleviated with consistent use
of technologies across the entire end-to-end system, spanning from IoT/mobile
devices on the edge all the way to the cloud. The paper is based on the authors’
experiences in a number of industrial and academic IoT development projects
carried out in the past ten years, as well as countless discussions with our col-
leagues and acquaintances in the academia and in the industry.

The structure of this paper is as follows. In Section 2, we start the paper
by discussing the generic end-to-end IoT system architecture that serves as the
backdrop for the rest of the paper. In Section 3, we examine the basic software
architecture options for IoT devices. In Section 4, we focus on the emergence of
inexpensive AI/ML hardware, which is bringing significant changes in the over-
all IoT system architecture by enabling much more computationally intensive
AI/ML capabilities at the edge of the IoT systems. In Section 5, we make a
case for isomorphic IoT software technologies that will be crucial in driving the
industry towards a more seamless device-edge-cloud technology continuum. We
discuss the implications of these trends briefly in Section 6. Finally, in Section
7 we draw some conclusions.

1 https://www.fortunebusinessinsights.com/industry-reports/internet-of-

things-iot-market-100307
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Fig. 1. Conventional Generic End-to-End (E2E) IoT Architecture.

2 Background

Given the connected nature of smart things and the need for a backend service,
IoT systems are end-to-end (E2E) systems that consist of a number of high-
level architectural elements that tend to be pretty much identical in all IoT
solutions. In our 2018 IEEE Software article, we pointed out that a common,
generic end-to-end (E2E) architecture for IoT systems has already emerged [3].

As depicted in Fig. 1, IoT systems generally consist of Devices, Gateways,
Cloud and Applications. Devices are the physical hardware elements that collect
sensor data and may perform actuation. Gateways collect, preprocess and trans-
fer sensor data from devices, and may deliver actuation requests from the cloud
to devices. Cloud has a number of important roles, including data acquisition,
data storage and query support, real-time and/or offline data analytics, device
management and device actuation control. Applications range from simple web-
based data visualization dashboards to highly domain-specific web and mobile
apps. Furthermore, some kind of an administrative web user interface is typically
needed, e.g., for managing usage rights and permissions. Granted, IoT product
offerings have their differentiating features and services as well, but the overall
architecture typically follows the high-level model shown in Fig. 1.

Given the relatively uniform nature of the end-to-end IoT systems, it is not
surprising that a large number of IoT platforms have emerged. According to IoT
Analytics, in 2020 the number of known IoT platforms was 6202. In addition,
there are a lot of company-specific IoT platform implementations that are less
widely known.

Historically, IoT systems were very cloud-centric (Fig. 2) in the sense that
nearly all the computation was performed in the cloud in a centralized fashion
[6]. In contrast, the role of devices and gateways was limited mainly to sensor
data aggregation, acquisition and actuation. However, as more computing power
and storage has become available on the edge (devices and gateways), the more

2 https://iot-analytics.com/iot-platform-companies-landscape-2020/
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realistic it has become to perform significant computation also in IoT devices
and gateways.

The recent development of the Internet of Things paradigm is enabled pri-
marily by advances in hardware development. Hardware evolution has led to
widespread availability of increasingly capable and power-efficient low-cost com-
puting chips and development boards. These boards easily match or even exceed
the memory and processing power capabilities that mobile phones or even PCs
had in the late 1990s, and far surpass the processing capabilities of the early
8-bit and 16-bit personal computers from the early 1980s.

Examples of low-cost IoT development boards include the 10e Arduino Nano
Every (https://store.arduino.cc/arduino-nano-every) and the $4 Rasp-
berry Pi Pico (https://www.raspberrypi.org/products/raspberry-pi-pico/).
In spite of its low price, the latter device has computing capabilities that exceed
those of the once dominant Intel 80386 and 80486 based personal computers in
the late 1980s and early 1990s. Some of the more recently introduced devices,
such as the popular $89 Raspberry Pi 4B and the $109 all-in-one keyboard-
integrated Raspberry Pi 400 device have a quad-core ARM Cortex-A72 proces-
sor running at 1.5 GHz and 1.8 GHz, respectively – and are thus more powerful
than many laptop computers only some 15 years ago.

The widespread availability of inexpensive IoT chips has made it possible
to embed intelligence and Internet communication capabilities in virtually all
everyday devices. Projecting five to ten years ahead, everyday objects in our
surroundings such as coffee brewing machines, refrigerators, sauna stoves and



door locks might have more computing power, storage capacity and network
bandwidth than computers that were used for running entire computing depart-
ments in the 1970s and 1980s.

Nowadays, 16-bit microcontroller-based IoT devices are less common, as the
market is increasingly dominated by 32-bit solutions. In that sense the evolution
of IoT devices has been even faster than the evolution of the PC and mobile
phone markets a few decades earlier. Except for Narrowband IoT (NB-IoT)
cellular connectivity (discussed later in the paper), network speeds supported by
today’s IoT devices are also significantly faster than those available for personal
computers or mobile phones in their early history.

Finally, IoT key design choices are often connected to energy consumption.
In practice, one of the most significant differentiating feature driving or even
dictating the selection of the software architecture in the majority of IoT de-
vices is the battery. Battery-operated IoT devices typically have strict minimum
operating time requirements. For instance, a smartwatch should usually be ca-
pable of operating a full day without recharging. A safety tracker bracelet for
elderly people should ideally operate at least 4-7 days between charges. An air
quality sensor installed in a remote forest might need to operate several months
without recharging. Such requirements mean that the most energy-consuming
components of the device such as the CPU, display and the radio modem will
have to be chosen (and used) carefully to meet the power requirements. The
form factor characteristics of the device (e.g., wearability and design aspects)
play a significant role in determining the right tradeoffs, hence impacting also
the type of software architecture that the device can support.

3 IoT Devices – Basic Software Architecture Options

Based on our experiences with various industrial IoT development efforts, the
software architecture choices for IoT client devices can be classified as follows,
ranging from simple to more complex architectures (Fig. 3 and Table 1):

Fig. 3. Example IoT Devices for Each Architecture Choice.

1. No OS architecture: for simplest sensing devices that do not need any operat-
ing system at all. Software is written specifically for the device, and software
development is typically carried in-house. Hence, there is no need for third-
party developer support, and support for firmware updates may be limited



Table 1. Basic Hardware Configurations for IoT Devices

Architecture
Choice

Typical Device Hardware OS RAM Expected
Battery
Duration

No OS Simple sensor de-
vices (e.g., heart-
beat sensor)

Low-end micro-
controllers

None; basic drivers
only

up to 10 kB weeks-months

RTOS More advanced sen-
sors (e.g., feature
watches)

Higher-end
microcontrollers

Real-time OS (e.g.,
FreeRTOS, Nucleus,
QNX)

10KBs-1MB days-weeks

Language
Runtime

Generic sensing
solutions, ”maker”
devices

Off-the-shelf
hardware

RTOS + VM sup-
porting specific pro-
gramming languages

100s kB to
few MBs

days

Full OS Generic sensing
solutions, ”maker”
devices

Off-the-shelf
hardware

Linux 1/2 to few
MBs

N/A or days

App OS High-end smart-
watches

Off-the-shelf or
custom hardware

Android Wear or Ap-
ple Watch OS

From 512MB up to 24 hours

Server OS Solutions benefit-
ing from portable
Web server

Off-the-shelf
hardware

Linux and Node.js 10s of MBs up to 24 hours

Container OS Solutions bene-
fiting from fully
isomorphic apps

Fully virtualized Linux and Docker GBs N/A or hours

or non-existent. Given the fixed nature of software in these types of low-end
devices, the amount of RAM and Flash memory can be kept minimal. In
many cases, only a few kilobytes or tens of kilobytes of RAM will suffice.

2. RTOS architecture: for more capable IoT devices that benefit from a real-
time operating system. Several off-the-shelf systems exist, both commercial
and open source. Software development for RTOS-based IoT devices is usu-
ally carried out in-house, since such devices do not typically provide any
third-party developer APIs or the ability to reprogram the device dynami-
cally (apart from performing a full firmware update). Memory requirements
of RTOS-based architectures are comparable to No OS architectures, often
necessitating as little as a few tens of kilobytes of RAM and a few hundred
kilobytes of Flash memory. However, in recent years even in this area the
amounts of memory have increased significantly; modern RTOS solutions
may have megabytes of storage memory.



3. Language runtime architecture: for devices that require dynamic program-
ming capabilities offered by languages such as Java, JavaScript or Python.
Compared to No OS or RTOS solutions, language runtime based IoT devices
are significantly more capable in the sense that they can support third-party
application development and dynamic changes, i.e., updating the device soft-
ware (or parts thereof) dynamically without having to reflash the entire
firmware. The dynamic language runtime serves as the portable execution
layer that enables third-party application development and the creation of
developer-friendly application interfaces. Such capabilities leverage the in-
teractive nature of the dynamic languages, allowing flexible interpretation
and execution of code on the fly without compromising the security of the
underlying execution environment and device.
Examples of IoT development boards that provide support for a specific
built-in language runtime or virtual machine (VM) are: Espruino (https:
//www.espruino.com/) or Tessel 2 (https://tessel.io/) which provide
built-in support for JavaScript applications, while Pycom’s WiPy boards
(https://pycom.io/development-boards) enable Python development.
The technical capabilities and memory requirements of devices based on
language runtime architecture vary considerably based on the supported
language(s). Virtual machines for minimalistic programming languages such
as Forth might require only a few tens of kilobytes of dynamic memory,
while Java, JavaScript, WebAssembly, or Python VMs require at least several
hundreds of kilobytes or preferably multiple megabytes of RAM. The size
and complexity of the virtual machines also varies considerably, and thus
the minimum amount of Flash or ROM memory can also range from a few
hundreds of kilobytes to several megabytes.

4. Full OS architecture: for devices that are capable enough to host a full op-
erating system (typically some variant of Linux). The presence of a full
operating system brings a lot of benefits, such as built-in support for se-
cure file transfers, user accounts, device management capabilities, security
updates, very mature development toolchains, possibility to run third-party
applications, and numerous other features. Compared to low-end No OS or
RTOS architectures, the memory and CPU requirements of Full OS stacks
are significantly higher. For instance, the desire to run a Linux-based oper-
ating system in a device bumps the RAM requirements from a few tens or
hundreds of kilobytes (for an RTOS-based solution) up to half a megabyte
at the minimum. Also, the significantly higher energy consumption require-
ments make it difficult to use such devices in use cases that require battery
operation.

5. App OS architecture: for devices that are designed specifically to support
third party application development. Located at the current high end of
the IoT device spectrum, wearable device platforms such as Android Wear
(https://www.android.com/wear/) or Apple watchOS (https://www.apple.
com/watchos/) are in many ways comparable to mobile phone application
platforms from 5-10 years ago. These wearable device platforms provide
very rich platform capabilities and third-party developer APIs, but they



also bump up the minimum hardware requirements considerably. For in-
stance, already back in 2014, the minimum amount of RAM required by
Android Wear was half a gigabyte (512 MB) – over 10,000 times more than
the few tens of kilobytes of RAM required for simple IoT sensor devices.
Furthermore, the processing power requirements of App OS devices are also
dramatically higher than in simplest microcontroller-based IoT devices. Typ-
ically, an ARM Cortex-A class processor is mandated (for instance, an ARM
A7 processor running at 1.2 GHz was stated as the minimum requirement
for Android Wear back in 2014), limiting maximum battery duration to a
few days, or only to a few hours in highly intensive use.

6. Server OS architecture: for devices that are capable enough to run a server-
side operating system stack (typically Linux + Node.js). The Node.js ecosys-
tem (https://nodejs.org/) has popularized the use of the JavaScript language
also in server-side development, thus turning JavaScript into lingua franca
for web development from client to cloud. By default, Node.js assumes the
availability of at least 1.5 GB of RAM. However, Node.js can be configured
to operate with considerably smaller amounts of memory, starting from a few
tens of megabytes. In addition to (or instead of) Node.js, there are several
other web server offerings that are more tailored to embedded environments.

7. Container OS architecture: for high-end IoT devices that are powerful to
host a virtualized, container-based operating system stack such as Docker or
CoreOS Rocket (rkt). Given the independence of the physical execution envi-
ronment that containers can provide, containers are a very attractive concept
also for IoT development, especially in light of the technical diversity of IoT
devices. Thus, although container technologies add considerable overhead
compared to traditional binary software, their use has already started also
in the context of IoT devices. From a purely technical viewpoint container-
based architectures are definitely a viable option for IoT devices if adequate
memory and other resources are available [7]. At the minimum, the host
environment must typically have several gigabytes of RAM available, thus
making this approach unsuitable for the vast majority of IoT devices.

4 Emergence of Edge IoT AI/ML Capabilities

One of the things unforeseen by our original taxonomy was the rapid emergence
of AI/ML capabilities on the edge. These capabilities have made it possible to
perform tasks such as object recognition, voice recognition, gesture detection and
gas detection in IoT devices themselves. Only some five years ago, such tasks
would have required significant data transfer and computation in the cloud.

In this section we will take a look at edge IoT AI/ML capabilities that have
already resulted in significant changes in the future software architecture of IoT
devices and their broader end-to-end system architecture.

From the viewpoint of IoT devices, current edge IoT AI/ML capabilities can
be divided broadly into two or three categories based on whether AI/ML support
is provided with dedicated hardware or in the form of software libraries. Software



libraries can be further divided into ”generic” libraries and such AI/ML libraries
that have been provided to support specific sensors.

4.1 Dedicated AI/ML Hardware for the Edge

In the past few years, a broad variety of AI/ML enabled single board computers
(SBCs) and modules have emerged, all providing remarkable edge processing
capabilities at a reasonable price. Examples of such single board computers and
modules include the following (in alphabetical order):
– BeagleBone AI (https://beagleboard.org/ai) – priced at about 115e– is

BeagleBoard.org’s open source single-board computer (SBC) that is meant
for use in home automation, industry automation and other commercial use
cases. Beaglebone AI is intended for bridging the gap between small SBCs
and more powerful industrial computers. The hardware and software of the
BeagleBoard are fully open source.

– Coral (https://coral.ai/) is Google’s product family for local, on-device
AI applications. Google Coral product family consists of a number of stan-
dalone development boards, PC enhancement solutions (in the form factor of
USB sticks or M.2 or PCIe accelerator boards), as well as modules that can
be embedded into custom hardware products. Coral development boards
such as the Dev Board Mini come pre-flashed with Mendel Linux, so the
setup process only requires connecting to the board’s shell console, updating
some software, and then running a TensorFlow Lite model on the board. In
contrast, the PC enhancement boards (such as the Coral Accelerator USB
stick) can simply be plugged in to a host computer. After installing some
additional TensorFlow-related software, the user can run typical examples
such as object detection, pose detection, and keyphrase detection.

– Khadas VIM3 (https://docs.khadas.com/vim3/) is an NPU (Neural Pro-
cessing Unit) enabled development board that can be used as a standalone
computer, small-footprint server or robotics system driver. Just like the
other single-board AI/ML computers, Khadas VIM3 comes with a num-
ber of camera- and image-oriented sample applications for performing tasks
such as object recognition.

– NVIDIA Jetson product family (https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/). NVIDIA’s Jetson product family provides
a number of different options ranging from $59 Jetson Nano and $399 Jet-
son TX2 ”supercomputer-on-a-module” all the way to Jetson AGX Xavier
priced at $649 USD apiece. Each model is a complete System-on-Module
(SOM) with CPU, GPU, PMIC (integrated power management), DRAM
and flash storage. Jetson boards can run multiple neural networks in par-
allel for applications such as image classification, object detection, segmen-
tation, and speech processing. Support for different AI/ML frameworks is
provided. Even the smallest NVIDIA Jetson Nano model is rather powerful,
featuring a quad core ARM Cortex A57 processor, 2GB LPDDR4 memory,
16 GB eMMC Flash and NVIDIA Maxwell GPU with 128 cores. However,
for more advanced video processing tasks, higher-level Jetson devices are



recommended. The more powerful Jetson TX2 model features on-board AI
support with an NVIDIA Pascal GPU, up to 8 GB of LPDDR4 memory,
59.7 GB/s of memory bandwidth, and a wide range of hardware interfaces.
These devices are fit for various use cases, including also those that involve
’do-it-yourself’ characteristics [8]. For software development, quite sophisti-
cated tools are provided, including support for container-based deployment
(https://docs.nvidia.com/egx/egx-introduction/).

– ROCK Pi N10 (https://wiki.radxa.com/RockpiN10) – developed by Radxa
– is an inexpensive NPU-equipped single-board computer that is part of the
ROCK Pi product family (https://rockpi.org/). It is being offered in
three variants: ROCK Pi N10 Model A, ROCK Pi N10 Model B and ROCK
Pi N10 Model C. The only differences between these variants are the price,
RAM and Storage capacities. The base variant of ROCK Pi N10 is available
at $99, while its range topping variant comes in at $169. All the variants
are equipped with an NPU that offers up to 3 TOPS (Tera Operations Per
Second) of performance.

For a summary of single-board computers for AI/ML applications, refer to:
https://itsfoss.com/best-sbc-for-ai/

4.2 Software-Based AI/ML Solutions for the Edge

In addition to custom hardware, AI/ML capabilities can be added to edge de-
vices also in the form of software libraries. As already indicated by the summary
of emerging AI/ML hardware technologies above, AI/ML software is being re-
designed to support intelligent operations away from the cloud. This involves
the ability to feed local sensor data to pre-trained models running on the sen-
sor devices themselves, or even to use such data to locally train or improve the
training of such models, thus paving the way towards offline and disconnected
operation of self-calibrating sensors.

Software-based AI/ML solutions can be divided into (a) generic solutions
and (b) those that have been customized to support specific devices or sensors;
we will discuss both categories below.

Generic solutions. Popular generic AI/ML solutions include TinyML [9]
which allows the integration of ML capabilities with microcontroller units for
analytics applications which require an extremely low power (typically in the
mW range and below). In addition, existing ML tools and libraries such as
TensorFlow are being adapted so they can be used to perform ML inferences
on such devices. Popular systems include TensorFlow Lite and TensorFlow Lite
for Microcontrollers. Moreover, customized tools are needed for converting ML
models trained on high-powered devices so that these models can be simplified
to fit in low-power devices. Other libraries, e.g., the Artificial Intelligence for
Embedded Systems (AIfES) library developed at Fraunhofer IMS, have been
designed with the consideration of the limitations of small powered devices from
the start. For example, they can ensure that pre-allocated, static data structures
are used to store the weights and the training data of a neural network [10].



As an example of an inexpensive microcontroller that provides support for
software-based AI/ML capabilities, we mention the Arduino Nano 33 BLE Sense
(https://docs.arduino.cc/hardware/nano-33-ble-sense). This device is in-
tended for developers who are becoming familiar with embedded machine learn-
ing; it combines multiple sensors for inertial measurements, digital microphone,
temperature, humidity and barometric pressure, proximity, light and gesture
recognition with the ability to run MicroPython code invoking the TensorFlow
Lite libraries.

Custom solutions for specific devices/sensors. The main arguments in
favor of using AI/ML capabilities on the edge include both the abundance of
incoming data which can be locally classified or filtered as well as privacy con-
cerns [11]. In the past year or so, new technologies have been announced that
will provide such processing capabilities at the very edge – as part of the sensors
that can be embedded in the IoT devices. A good example of such technology is
the AI-enabled Bosch BME688 gas sensor (https://www.bosch-sensortec.
com/products/environmental-sensors/gas-sensors/bme688/) that can be
trained to detect different gas compositions. The sensor itself is very small –
only 3mm by 3mm by 1mm, and it costs under 10e apiece. In practice, the
AI/ML capabilities of this sensor are provided in the form of a custom library
that needs to be compiled into the firmware of the microcontroller that is hosting
the sensor.

5 Towards Seamless Device-Edge-Cloud Continuum

Historically, IoT systems were very cloud-centric, with the majority of compu-
tation taking place centrally in the cloud. However, given the rapidly increasing
computing and storage capacities of IoT devices, it is clear that in the future
IoT systems it can be very beneficial to balance and seamlessly transfer intel-
ligence between the cloud and the edge. Such capabilities are important, since
the ability to preprocess data in IoT devices allows for lower latencies and can
also significantly reduce unnecessary data traffic between the devices and cloud.
In general, in recent years there has been a noticeable trend towards edge com-
puting, i.e., cloud computing systems that perform a significant part of their
data processing at the edge of the network, near the source of the data [12]. In
IoT systems supporting edge computing, devices and gateways play a key role
in filtering and preprocessing the data, thus reducing the need to upload all the
collected data to the cloud for further processing.

Intelligence at the Edge. The edge of a modern computing system consists
of a broad range of devices such as base stations, smart phones, tablets, mea-
surement and sensing devices, gateways, and so on. In contrast with the cloud,
the computing capacity, memory and storage of edge devices are often limited.
However, these devices are conveniently located near the endpoint, thus offer-
ing low latency. Due to limitations in connectivity and the increasing capacity



of edge devices, intelligence in a modern end-to-end computing system is mov-
ing towards the edge, first to gateways and then to devices. This includes both
generic software functions, and – more importantly – time critical AI/ML fea-
tures for processing data available in the edge, referred to as Edge AI. It has
been envisioned that evolution of telecom infrastructures beyond 5G will con-
sider highly distributed AI, moving the intelligence from the central cloud to
edge computing resources [13]. Furthermore, edge intelligence is a necessity for
a world where intelligent autonomous systems are commonplace.

AI/ML can be a new reason for using heterogeneous technologies across the
different types of devices, assuming that we accept each technology domain to re-
main separate, as indicated in the taxonomy presented in Section 3. In contrast,
the emergence of AI/ML capabilities at the edge can also provide a motiva-
tion for technologies that blur the line between the cloud and the edge with
approaches that scale AI/ML operations down to small devices (e.g., Tensor-
Flow Lite, AIfES, TinyML) or provide seamless flexibility for the migration of
components that host the AI/ML features (e.g., isomorphic and liquid software).

Isomorphic IoT systems. One of the key challenges for IoT system development
is development complexity. As we have pointed out in our previous papers (see,
e.g., [14]), the software technologies required for the development of key elements
of an end-to-end IoT system – devices, gateways and cloud backend – tend to
be very diverse. For the development of cloud components, developers need to
be familiar with technologies such as Docker, Kubernetes, NGINX, Grafana,
Kibana, Node.js, and numerous Node.js libraries and modules. Gateways are
commonly built upon native or containerized Linux or – in case of consumer
solutions – on top of mobile operating systems such as Android or iOS. In con-
trast, IoT device development still requires the mastery of ”classic” embedded
software development skills and low-level programming languages such as C. In
addition, IoT systems commonly include web-based user interfaces that are de-
veloped with frontend web technologies such as React.js or Angular. The palette
of development technologies covered by the entire end-to-end system is so wide
that hardly any developer can master the full spectrum.

Earlier in this paper, we noted that software containers and virtualization
technologies are becoming available also in IoT devices. We predict that within
the next five to ten years, this may lead the industry to isomorphic IoT system
architectures [14] – in analogy to isomorphic web applications [15] – in which
the devices, gateways and the cloud will have the ability to run exactly the same
software components and services, allowing flexible migration of code between
any element in the overall system. In an isomorphic system architecture, there
does not have to be any significant technical differences between software that
runs in the backend or in the edge of the network. Rather, when necessary,
software can freely ”roam” between the cloud and the edge in a seamless, liquid
fashion. However, aiming at this goal means new research for lighter-weight
containers [16] as well as new solutions for runtime migration [17].



Granted, there will still be various technical differences in the components
that are intended for different elements in the end-to-end system. Still, it should
be easier to constrain where isomorphic software can or cannot be deployed as
opposed to rewriting it completely when the need for a new deployment arises.
For instance, those components that are intended for interfacing with specific
sensors or radio protocols in IoT devices do not necessarily have to run in end-
user web or mobile applications. Conversely, end user UI components are not
expected to run in IoT devices that do not have a display at all. However, the
key point here is the reduced need to learn completely different development
technologies and paradigms. This is important if we wish to reduce the intel-
lectual burden and lower the steep learning curve that hampers end-to-end IoT
systems development today.

In many ways, isomorphic architectures can be seen as the missing link in
IoT development. Instead of having to learn and use many different incom-
patible ways of software development, in an isomorphic system architecture a
small number of base technologies will suffice and will be able to cover differ-
ent aspects of end-to-end development. At this point it is still difficult to predict
which technologies will become dominant in this area. The earlier mentioned soft-
ware container technologies such as Docker and CoreOS rkt are viable guesses,
even though their memory and computing power requirements may seem ludi-
crous from the viewpoint of today’s IoT devices. Amazon’s Greengrass system
(https://aws.amazon.com/greengrass/) also points out to a model in which
the same programming model can be used both in the cloud and in IoT devices;
in Greengrass, the programming platform is Amazon’s Lambda. In the smaller
end of the spectrum, the Toit system (https://toit.io/) developed by people
from Google’s original V8 JavaScript VM team seems very promising.

In our recent IEEE Computer paper [14], we predicted that isomorphic
IoT systems would most likely form around two primary base technologies: (1)
JavaScript/ECMAScript [18] and (2) WebAssembly [19]. The former is the de
facto language for web applications both for the web browser and the cloud
backend (Node.js); it is currently the most viable option for implementing static
isomorphism, i.e., to allow the use of the same programming language throughout
the end-to-end system. The latter is a binary instruction format to be executed
on a stack-based virtual machine that can leverage contemporary hardware [20,
21]; we see WebAssembly as the best option for providing support for dynamic
isomorphism, i.e., the ability to use of common runtime that is powerful but
small enough to fit also in low-end IoT devices. Note that these options are not
mutually exclusive, i.e., it would be possible to implement an architecture in
which WebAssembly is used as the unifying runtime but in which JavaScript is
used as the programming language throughout the end-to-end system.

Liquid software. Liquid software [22], also known as cross-device experience
roaming [23], is a concept where software can dynamically flow between different
computers, basically allowing execution of code and associated user experiences
to be transferred dynamically and seamlessly from one computational element



to another. While the majority of the work associated with liquid software has
focused on the UI layer (e.g., [24–26]), the concept is applicable to any situation
in which software can be dynamically redeployed and adapted to take full ad-
vantage of the storage and computational resources provided by different devices
that are shared by one or multiple collaborating users.

In essence, building liquid applications needs two facilities. One is the ability
to relocate code flexibly across different computing entities, which is an elemen-
tary expectation and principle also for the isomorphism of software. The second
facility is the ability to synchronize the state of the application and its UI across
all devices running the code. This has been implemented by Apple in their Con-
tinuity/Handoff framework [27], which today is the most advanced industrial
implementation, as well as by many academic agent frameworks (e.g., [28]) and
web development frameworks (e.g., [29, 30]).

Cellular IoT and mesh networking technologies will increase the role
of edge computing. Another area in which there has been a lot of development
after the creation of our initial software architecture taxonomy are radio tech-
nologies and communication protocols. These emerging technologies can have
a significant impact on the overall IoT system architecture, thus also impact-
ing the device-edge-cloud continuum. We focus especially on two categories: (1)
LPWAN (Low-Power Wide Area Network) technologies and (2) local mesh net-
working connectivity.

Low-Power Wide Area Network technologies. Low-power wide area network
(LPWAN) technologies make it possible for IoT devices to communicate with
the cloud directly from a distance – without the need for gateway devices
in the middle. Prominent LPWAN technologies include Cellular IoT technolo-
gies such as NarrowBand-IoT and LTE-M, as well as more proprietary tech-
nologies such as LoRa (https://lora-alliance.org/) and SIGFOX (https:
//www.sigfox.com/). We do especially wish to highlight the 3GPP Cellular IoT
radio technologies – NB-IoT and LTE-M – which make it possible to connect
virtually any artifact directly to the Internet at low cost and minimal battery
consumption. Cellular IoT technologies can eliminate (or at least dramatically
reduce the need for) gateways in IoT systems, allowing IoT devices to commu-
nicate with the cloud directly.

Standardization of 3GPP Cellular IoT technologies was completed in 2016,
and these technologies have already been widely deployed onto existing commer-
cial cellular networks. In fact, nationwide Cellular IoT coverage for IoT devices
is already available in numerous countries, although these capabilities are still
in relatively low use. Chipsets and hardware modules supporting Cellular IoT
technologies are available from various vendors, including Gemalto, Nordic Semi-
conductor, Quectel, Sierra Wireless and u-Blox.

Local mesh networking connectivity. Another area that is likely to have a sig-
nificant impact on the overall topology of IoT systems is peer-to-peer (P2P) con-
nectivity between IoT devices. New technologies such as Bluetooth Mesh (https:
//www.bluetooth.com/specifications/mesh-specifications) are making it



feasible for IoT devices to exchange information with each other efficiently with
minimal latencies – thus further reducing the need for more expensive communi-
cation with the cloud. As opposed to current cloud-centric IoT systems, P2P and
edge computing are fundamental characteristics of systems in which low latency
is required. An interesting broader question is whether there will still be need
for ”constrained” protocols such as CoAP or MQTT, or will the landscape be
dominated by broader de facto standard solutions such as REST/HTTPS. At
the time of this writing, MQTT (https://mqtt.org/) seems to be the dominant
IoT system communication protocol, although there are emerging standards such
as Matter (https://buildwithmatter.com/) that may replace it in the longer
run.

Even though the dominant LPWAN and mesh networking protocols have
not been fully established yet, together the emergence of mesh networking and
LPWAN technologies can be expected to lead to a drastically increased role of
edge computing, as well as to a significantly reduced role of gateways in the
overall IoT system architecture. As the role of the gateways withers down, IoT
devices themselves will take a more active role in the overall E2E architecture.

Table 2. High-Level Comparison of Software Architecture Options

Feature No OS /
RTOS

Language
VM

Full OS App OS Server
OS

Container
OS

Typical
development
language

C or assembly Java,
JavaScript,
Python

C or C++ Java,
Objective-
C, Swift

JavaScript Various

Libraries None or
System-
specific

Language-
specific
generic
libraries

OS
libraries,
generic UI
libraries

Platform
libraries

Node.js
NPM
modules

Various

Dynamic SW
updates

Firmware
updates only
(Reflashing)

Yes Yes Yes
(App Stores)

Yes Yes
(Image Snapshots)

Third-party
apps supported

No Yes Yes Yes
(Rich APIs)

Yes Yes

AI/ML at the
edge

Emerging Yes Yes Yes Yes Yes

Isomorphic
apps possible

No Yes Only if
the same
OS/HW

Yes Yes Yes



6 Wrapping Things Up

In summary, there exists a broad range of software architecture options and
stacks for IoT devices, depending on the expected usage, power budget, and
memory requirements (see Table 1 earlier in the paper) and the need to support
dynamic software deployment and/or third-party development as well as intel-
ligent decision making on the device. Table 2 provides a condensed summary of
the software architecture options for IoT devices, focusing on the broader archi-
tectural implications in the device-edge-cloud continuum. It should be noted that
the options summarized in the table are by no means exclusive. For instance,
as already mentioned above, devices based on the language runtime architecture
commonly have an RTOS underneath. Likewise, in Full OS platforms, it is ob-
viously possible to run various types of language runtimes and virtual machines
as long as an adequate amount of memory is available to host those runtime(s).
In general, the more capable the underlying execution environment is, the more
feasible it is to run various types of software architectures, platforms and appli-
cations on it.

7 Conclusions

In this paper we have revisited a taxonomy of software architecture options for
IoT devices, starting from the most limited sensing devices to high-end devices
featuring full-fledged operating systems and developer frameworks. After exam-
ining each of the basic options, we presented a comparison and some broader
observations, followed by relevant emerging trends and future directions. In par-
ticular, we noted that the emergence of inexpensive AI/ML hardware – unfore-
seen by our original taxonomy – is increasing the role of the edge in IoT systems.
Later in the paper, we additionally predicted that new communication technolo-
gies such as Cellular IoT and mesh networking will alter the overall topology of
IoT systems quite considerably, e.g., leading to a reduced role of gateways in the
overall architecture.

Although the vast majority of IoT devices today have fairly simple software
stacks, the overall software stack complexity can be expected to increase due to
hardware evolution and the general desire to support edge computing, AI/ML
technologies and software containers. In light of these observations, we made a
case for isomorphic IoT systems in which development complexity is alleviated
with consistent use of technologies across the entire end-to-end system, providing
a more seamless technology continuum from IoT devices on the edge all the way
to the cloud. In such systems, different subsystems and computational entities
can be programmed with a consistent set of technologies. Although fully isomor-
phic IoT systems are still some years away, their arrival may ultimately dilute
or even dissolve the boundaries between the cloud and its edge, allowing com-
putations to be performed in those elements that provide the optimal tradeoff
between performance, storage, network speed, latency and energy efficiency. We
hope that this paper, for its part, encourages people to investigate these exciting
new directions in more detail.
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