Skip to main content

Coordinate Attention Residual Deformable U-Net for Vessel Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13110))

Abstract

The location information of features is essential for pixel-level segmentation tasks such as retinal vessel segmentation. In this study, we proposed the CARDU-Net (Coordinate Attention Gate Residual Deformable U-Net) model based on coordinate attention mechanism for the segmentation task, which can extract effective features by accurately locating feature location information and enhance the accuracy of segmentation. The deformable convolution and residual structure with Dropblock are also introduced to refine the encoder structure of U-Net. The model is applied to DRIVE, CHASE_DB1, and LUNA (2017) datasets, and the experimental results on the three public datasets demonstrate the superior segmentation capability of CARDU-Net, and the modified part is reflected by ablation experiments in this work. The results show that the CARDU-Net model performs better compared to other network models and can segment medical images accurately.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Smart, T.J., Richards, C.J., Bhatnagar, R., Pavesio, C., Agrawal, R., Jones, P.H.: A study of red blood cell deformability in diabetic retinopathy using optical tweezers. In: Optical Trapping and Optical Micromanipulation XII, vol. 9548, p. 954825. International Society for Optics and Photonics (2015)

    Google Scholar 

  2. Cheung, CYl., et al.: Retinal vascular tortuosity, blood pressure, and cardiovascular risk factors. Ophthalmology 118(5), 812–818 (2011)

    Article  Google Scholar 

  3. Sinthanayothin, C., et al.: Automated detection of diabetic retinopathy on digital fundus images. Diabet. Med. 19(2), 105–112 (2002)

    Article  Google Scholar 

  4. Gardner, G.G., Keating, D., Williamson, T.H., Elliott, A.T.: Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br. J. Ophthalmol. 80(11), 940–944 (1996)

    Article  Google Scholar 

  5. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  7. Zhuang, J.: Laddernet: multi-path networks based on u-net for medical image segmentation. arXiv preprint arXiv:1810.07810 (2018)

  8. Wu, Y., Xia, Y., Song, Y., Zhang, Y., Cai, W.: Multiscale network followed network model for retinal vessel segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 119–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_14

    Chapter  Google Scholar 

  9. Khan, T.M., Robles-Kelly, A., Naqvi, S.S.: A semantically flexible feature fusion network for retinal vessel segmentation. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1332, pp. 159–167. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63820-7_18

    Chapter  Google Scholar 

  10. Badar, M., Haris, M., Fatima, A.: Application of deep learning for retinal image analysis: a review. Comput. Sci. Rev. 35, 100203 (2020)

    Article  MathSciNet  Google Scholar 

  11. Wu, C., Zou, Y., Zhan, J.: DA-U-Net: densely connected convolutional networks and decoder with attention gate for retinal vessel segmentation. In: IOP Conference Series: Materials Science and Engineering, vol. 533, p. 012053. IOP Publishing (2019)

    Google Scholar 

  12. Wang, B., Qiu, S., He, H.: Dual encoding U-Net for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10

    Chapter  Google Scholar 

  13. Guo, C., Szemenyei, M., Hu, Y., Wang, W., Zhou, W., Yi, Y.: Channel attention residual u-net for retinal vessel segmentation. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1185–1189. IEEE (2021)

    Google Scholar 

  14. Guo, C., Szemenyei, M., Yi, Y., Zhou, W., Bian, H.: Residual spatial attention network for retinal vessel segmentation. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12532, pp. 509–519. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63830-6_43

    Chapter  Google Scholar 

  15. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13713–13722 (2021)

    Google Scholar 

  16. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Ghiasi, G., Lin, T.Y., Le, Q.V.: Dropblock: a regularization method for convolutional networks. arXiv preprint arXiv:1810.12890 (2018)

  19. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  20. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. arXiv preprint arXiv:1802.06955 (2018)

  21. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, C., Liu, X., Li, S., Long, C. (2021). Coordinate Attention Residual Deformable U-Net for Vessel Segmentation. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics